00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042 #include "examples/support.hh"
00043 #include "gecode/minimodel.hh"
00044
00050 class LangfordNumberOptions : public Options {
00051 public:
00052 int k, n;
00053
00054 LangfordNumberOptions(const char* s, int k0, int n0)
00055 : Options(s), k(k0), n(n0) {}
00057 void parse(int& argc, char* argv[]) {
00058 Options::parse(argc,argv);
00059 if (argc < 3)
00060 return;
00061 n = atoi(argv[1]);
00062 k = atoi(argv[2]);
00063 }
00065 virtual void help(void) {
00066 Options::help();
00067 std::cerr << "\t(unsigned int) default: " << n << std::endl
00068 << "\t\tparameter n" << std::endl
00069 << "\t(unsigned int) default: " << k << std::endl
00070 << "\t\tparameter k" << std::endl;
00071 }
00072 };
00073
00081 class LangfordNumber : public Example {
00082 protected:
00083 int k, n;
00084 IntVarArray y;
00085
00086 public:
00088 enum {
00089 PROP_REIFIED,
00090 PROP_EXTENSIONAL,
00091 PROP_EXTENSIONAL_CHANNEL
00092 };
00094 LangfordNumber(const LangfordNumberOptions& opt)
00095 : k(opt.k), n(opt.n), y(this,k*n,1,n) {
00096
00097 switch (opt.propagation()) {
00098 case PROP_REIFIED:
00099 {
00101 IntVarArgs p(k*n);
00102 for (int i=k*n; i--; )
00103 p[i].init(this,0,k*n-1);
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115 for (int i=n; i--; )
00116 for (int j=k-1; j--; )
00117 post(this, p[i*k+j] + (i+2) == p[i*k+j+1]);
00118
00119 distinct(this, p, opt.icl());
00120
00121
00122 for (int i=n; i--; )
00123 for (int j=k; j--; )
00124 element(this, y, p[i*k+j], i+1);
00125 }
00126 break;
00127 case PROP_EXTENSIONAL:
00128 {
00129 IntArgs a(n-1);
00130 for (int v=2; v<=n; v++)
00131 a[v-2]=v;
00132 for (int v=1; v<=n; v++) {
00133
00134 if (v > 1)
00135 a[v-2]=v-1;
00136 REG ra(a), rv(v);
00137 extensional(this, y, *ra+rv+(ra(v,v)+rv)(k-1,k-1)+*ra);
00138 }
00139 }
00140 break;
00141 case PROP_EXTENSIONAL_CHANNEL:
00142 {
00143
00144 BoolVarArgs b(k*n*n);
00145 for (int i=n*n*k; i--; )
00146 b[i].init(this,0,1);
00147
00148
00149 for (int i=n*k; i--; ) {
00150 BoolVarArgs c(n);
00151 for (int j=n; j--; )
00152 c[j]=b[i*n+j];
00153 channel(this, c, y[i], 1);
00154 }
00155
00156
00157
00158
00159 REG r0(0), r1(1);
00160 for (int v=1; v<=n; v++) {
00161
00162 BoolVarArgs c(k*n);
00163 for (int i = k*n; i--; )
00164 c[i] = b[i*n+(v-1)];
00165 extensional(this, c, *r0 + r1 + (r0(v,v) + r1)(k-1,k-1) + *r0);
00166 }
00167 }
00168 break;
00169 }
00170
00171
00172 rel(this, y[0], IRT_LE, y[n*k-1]);
00173
00174
00175 branch(this, y, INT_VAR_SIZE_MIN, INT_VAL_MAX);
00176 }
00177
00179 virtual void print(std::ostream& os){
00180 os << "\t" << y << std::endl;
00181 }
00182
00184 LangfordNumber(bool share, LangfordNumber& l)
00185 : Example(share, l), k(l.k), n(l.n) {
00186 y.update(this, share, l.y);
00187
00188 }
00190 virtual Space*
00191 copy(bool share) {
00192 return new LangfordNumber(share, *this);
00193 }
00194 };
00195
00196
00200 int
00201 main(int argc, char* argv[]) {
00202 LangfordNumberOptions opt("Langford Numbers",3,9);
00203 opt.icl(ICL_DOM);
00204 opt.propagation(LangfordNumber::PROP_EXTENSIONAL_CHANNEL);
00205 opt.propagation(LangfordNumber::PROP_REIFIED,
00206 "reified");
00207 opt.propagation(LangfordNumber::PROP_EXTENSIONAL,
00208 "extensional");
00209 opt.propagation(LangfordNumber::PROP_EXTENSIONAL_CHANNEL,
00210 "extensional-channel");
00211 opt.parse(argc, argv);
00212 if (opt.k < 1) {
00213 std::cerr << "k must be at least 1!" << std::endl;
00214 return 1;
00215 }
00216 if (opt.k > opt.n) {
00217 std::cerr << "n must be at least k!" << std::endl;
00218 return 1;
00219 }
00220 Example::run<LangfordNumber,DFS,LangfordNumberOptions>(opt);
00221 return 0;
00222 }
00223
00224
00225