Generated on Wed Nov 1 15:05:06 2006 for Gecode by doxygen 1.4.5

Connection constraints to finite domain variables
[Using finite integer sets]

Collaboration diagram for Connection constraints to finite domain variables:


Functions

void Gecode::min (Space *home, SetVar s, IntVar x)
 Post propagator that propagates that x is the minimal element of s.
void Gecode::max (Space *home, SetVar s, IntVar x)
 Post propagator that propagates that x is the maximal element of s.
void Gecode::match (Space *home, SetVar s, const IntVarArgs &x)
 Post propagator that propagates that s contains the $x_i$ , which are sorted in non-descending order.
void Gecode::channel (Space *home, const IntVarArgs &x, const SetVarArgs &y)
 Post propagator for $x_i=j \Leftrightarrow i\in y_j$.
void Gecode::cardinality (Space *home, SetVar s, IntVar x)
 Post propagator for $ |s|=x $.
void Gecode::weights (Space *home, const IntArgs &elements, const IntArgs &weights, SetVar x, IntVar y)
 Post propagator for $y = \mathrm{weight}(x)$.


Function Documentation

void Gecode::min Space *  home,
SetVar  s,
IntVar  x
 

Post propagator that propagates that x is the minimal element of s.

Definition at line 103 of file int.cc.

void Gecode::max Space *  home,
SetVar  s,
IntVar  x
 

Post propagator that propagates that x is the maximal element of s.

Definition at line 108 of file int.cc.

void Gecode::match Space *  home,
SetVar  s,
const IntVarArgs x
 

Post propagator that propagates that s contains the $x_i$ , which are sorted in non-descending order.

Definition at line 114 of file int.cc.

void Gecode::channel Space *  home,
const IntVarArgs x,
const SetVarArgs y
 

Post propagator for $x_i=j \Leftrightarrow i\in y_j$.

Definition at line 121 of file int.cc.

void Gecode::cardinality Space *  home,
SetVar  s,
IntVar  x
 

Post propagator for $ |s|=x $.

Definition at line 42 of file cardinality.cc.

void Gecode::weights Space *  home,
const IntArgs elements,
const IntArgs weights,
SetVar  x,
IntVar  y
 

Post propagator for $y = \mathrm{weight}(x)$.

The weights are given as pairs of elements and their weight: $\mathrm{weight}(\mathrm{elements}_i) = \mathrm{weights}_i$

The upper bound of x is constrained to contain only elements from elements. The weight of a set is the sum of the weights of its elements.

Definition at line 128 of file int.cc.