Generated on Fri Oct 19 11:25:35 2018 for Gecode by doxygen 1.6.3

Simple relation constraints over Boolean variables
[Using integer variables and constraints]

Functions

void Gecode::rel (Home home, BoolVar x0, IntRelType irt, BoolVar x1, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ x_0 \sim_{irt} x_1$.
void Gecode::rel (Home home, BoolVar x0, IntRelType irt, BoolVar x1, Reify r, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $(x_0 \sim_{irt} x_1)\equiv r$.
void Gecode::rel (Home home, const BoolVarArgs &x, IntRelType irt, BoolVar y, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ x_i \sim_{irt} y $ for all $0\leq i<|x|$.
void Gecode::rel (Home home, BoolVar x, IntRelType irt, int n, IntPropLevel ipl=IPL_DEF)
 Propagates $ x \sim_{irt} n$.
void Gecode::rel (Home home, BoolVar x, IntRelType irt, int n, Reify r, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $(x \sim_{irt} n)\equiv r$.
void Gecode::rel (Home home, const BoolVarArgs &x, IntRelType irt, int n, IntPropLevel ipl=IPL_DEF)
 Propagates $ x_i \sim_{irt} n $ for all $0\leq i<|x|$.
void Gecode::rel (Home home, const BoolVarArgs &x, IntRelType irt, const BoolVarArgs &y, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for relation between x and y.
void Gecode::rel (Home home, const BoolVarArgs &x, IntRelType irt, const IntArgs &y, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for relation between x and y.
void Gecode::rel (Home home, const IntArgs &x, IntRelType irt, const BoolVarArgs &y, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for relation between x and y.
void Gecode::rel (Home home, const BoolVarArgs &x, IntRelType irt, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for relation between elements in x.
void Gecode::rel (Home home, BoolVar x0, BoolOpType o, BoolVar x1, BoolVar x2, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for Boolean operation on x0 and x1.
void Gecode::rel (Home home, BoolVar x0, BoolOpType o, BoolVar x1, int n, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for Boolean operation on x0 and x1.
void Gecode::rel (Home home, BoolOpType o, const BoolVarArgs &x, BoolVar y, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for Boolean operation on x.
void Gecode::rel (Home home, BoolOpType o, const BoolVarArgs &x, int n, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for Boolean operation on x.
void Gecode::clause (Home home, BoolOpType o, const BoolVarArgs &x, const BoolVarArgs &y, BoolVar z, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for Boolean clause with positive variables x and negative variables y.
void Gecode::clause (Home home, BoolOpType o, const BoolVarArgs &x, const BoolVarArgs &y, int n, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for Boolean clause with positive variables x and negative variables y.
void Gecode::ite (Home home, BoolVar b, IntVar x, IntVar y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for if-then-else constraint.
void Gecode::ite (Home home, BoolVar b, BoolVar x, BoolVar y, BoolVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for if-then-else constraint.

Function Documentation

void Gecode::rel ( Home  home,
BoolVar  x0,
IntRelType  irt,
BoolVar  x1,
IntPropLevel   
)

Post domain consistent propagator for $ x_0 \sim_{irt} x_1$.

void Gecode::rel ( Home  home,
BoolVar  x0,
IntRelType  irt,
BoolVar  x1,
Reify  r,
IntPropLevel   
)

Post domain consistent propagator for $(x_0 \sim_{irt} x_1)\equiv r$.

void Gecode::rel ( Home  home,
const BoolVarArgs &  x,
IntRelType  irt,
BoolVar  y,
IntPropLevel   
)

Post domain consistent propagator for $ x_i \sim_{irt} y $ for all $0\leq i<|x|$.

void Gecode::rel ( Home  home,
BoolVar  x,
IntRelType  irt,
int  n,
IntPropLevel  ipl = IPL_DEF 
)

Propagates $ x \sim_{irt} n$.

Throws an exception of type Int::NotZeroOne, if n is neither 0 or 1.

void Gecode::rel ( Home  home,
BoolVar  x,
IntRelType  irt,
int  n,
Reify  r,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $(x \sim_{irt} n)\equiv r$.

Throws an exception of type Int::NotZeroOne, if n is neither 0 or 1.

void Gecode::rel ( Home  home,
const BoolVarArgs &  x,
IntRelType  irt,
int  n,
IntPropLevel  ipl = IPL_DEF 
)

Propagates $ x_i \sim_{irt} n $ for all $0\leq i<|x|$.

Throws an exception of type Int::NotZeroOne, if n is neither 0 or 1.

void Gecode::rel ( Home  home,
const BoolVarArgs &  x,
IntRelType  irt,
const BoolVarArgs &  y,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for relation between x and y.

Note that for the inequality relations this corresponds to the lexical order between x and y.

Note that the constraint is also defined if x and y are of different size. That means that if x and y are of different size, then if r = IRT_EQ the constraint is false and if r = IRT_NQ the constraint is subsumed.

void Gecode::rel ( Home  home,
const BoolVarArgs &  x,
IntRelType  irt,
const IntArgs &  y,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for relation between x and y.

Note that for the inequality relations this corresponds to the lexical order between x and y.

Note that the constraint is also defined if x and y are of different size. That means that if x and y are of different size, then if r = IRT_EQ the constraint is false and if r = IRT_NQ the constraint is subsumed.

void Gecode::rel ( Home  home,
const IntArgs &  x,
IntRelType  irt,
const BoolVarArgs &  y,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for relation between x and y.

Note that for the inequality relations this corresponds to the lexical order between x and y.

Note that the constraint is also defined if x and y are of different size. That means that if x and y are of different size, then if r = IRT_EQ the constraint is false and if r = IRT_NQ the constraint is subsumed.

void Gecode::rel ( Home  home,
const BoolVarArgs &  x,
IntRelType  irt,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for relation between elements in x.

States that the elements of x are in the following relation:

  • if r = IRT_LE, r = IRT_LQ, r = IRT_GR, or r = IRT_GQ, then the elements of x are ordered with respect to r.
  • if r = IRT_EQ, then all elements of x must be equal.
  • if r = IRT_NQ, then not all elements of x must be equal.
void Gecode::rel ( Home  home,
BoolVar  x0,
BoolOpType  o,
BoolVar  x1,
BoolVar  x2,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for Boolean operation on x0 and x1.

Posts propagator for $ x_0 \diamond_{\mathit{o}} x_1 = x_2$

void Gecode::rel ( Home  home,
BoolVar  x0,
BoolOpType  o,
BoolVar  x1,
int  n,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for Boolean operation on x0 and x1.

Posts propagator for $ x_0 \diamond_{\mathit{o}} x_1 = n$

Throws an exception of type Int::NotZeroOne, if n is neither 0 or 1.

void Gecode::rel ( Home  home,
BoolOpType  o,
const BoolVarArgs &  x,
BoolVar  y,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for Boolean operation on x.

Posts propagator for $ x_0 \diamond_{\mathit{o}} \cdots \diamond_{\mathit{o}} x_{|x|-1}= y$

Throws an exception of type Int::TooFewArguments, if $|x|<2$ and o is BOT_IMP, BOT_EQV, or BOT_XOR.

void Gecode::rel ( Home  home,
BoolOpType  o,
const BoolVarArgs &  x,
int  n,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for Boolean operation on x.

Posts propagator for $ x_0 \diamond_{\mathit{o}} \cdots \diamond_{\mathit{o}} x_{|x|-1}= n$

Throws an exception of type Int::NotZeroOne, if n is neither 0 or 1.

Throws an exception of type Int::TooFewArguments, if $|x|<2$ and o is BOT_IMP, BOT_EQV, or BOT_XOR.

void Gecode::clause ( Home  home,
BoolOpType  o,
const BoolVarArgs &  x,
const BoolVarArgs &  y,
BoolVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for Boolean clause with positive variables x and negative variables y.

Posts propagator for $ x_0 \diamond_{\mathit{o}} \cdots \diamond_{\mathit{o}} x_{|x|-1} \diamond_{\mathit{o}} \neg y_0 \diamond_{\mathit{o}} \cdots \diamond_{\mathit{o}} \neg y_{|y|-1}= z$

Throws an exception of type Int::IllegalOperation, if o is different from BOT_AND or BOT_OR.

void Gecode::clause ( Home  home,
BoolOpType  o,
const BoolVarArgs &  x,
const BoolVarArgs &  y,
int  n,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for Boolean clause with positive variables x and negative variables y.

Posts propagator for $ x_0 \diamond_{\mathit{o}} \cdots \diamond_{\mathit{o}} x_{|x|-1} \diamond_{\mathit{o}} \neg y_0 \diamond_{\mathit{o}} \cdots \diamond_{\mathit{o}} \neg y_{|y|-1}= n$

Throws an exception of type Int::NotZeroOne, if n is neither 0 or 1.

Throws an exception of type Int::IllegalOperation, if o is different from BOT_AND or BOT_OR.

void Gecode::ite ( Home  home,
BoolVar  b,
IntVar  x,
IntVar  y,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for if-then-else constraint.

Posts propagator for $ z = b ? x : y $

Supports both bounds (ipl = IPL_BND) and domain consistency (ipl = IPL_DOM, default).

void Gecode::ite ( Home  home,
BoolVar  b,
BoolVar  x,
BoolVar  y,
BoolVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for if-then-else constraint.

Posts propagator for $ z = b ? x : y $