Generated on Fri Oct 19 11:25:35 2018 for Gecode by doxygen 1.6.3

Element constraints
[Using integer variables and constraints]

Typedefs

typedef SharedArray< int > Gecode::IntSharedArray
 Arrays of integers that can be shared among several element constraints.

Functions

void Gecode::element (Home home, IntSharedArray n, IntVar x0, IntVar x1, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ n_{x_0}=x_1$.
void Gecode::element (Home home, IntSharedArray n, IntVar x0, BoolVar x1, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ n_{x_0}=x_1$.
void Gecode::element (Home home, IntSharedArray n, IntVar x0, int x1, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ n_{x_0}=x_1$.
void Gecode::element (Home home, const IntVarArgs &x, IntVar y0, IntVar y1, IntPropLevel ipl=IPL_DEF)
 Post propagator for $ x_{y_0}=y_1$.
void Gecode::element (Home home, const IntVarArgs &x, IntVar y0, int y1, IntPropLevel ipl=IPL_DEF)
 Post propagator for $ x_{y_0}=y_1$.
void Gecode::element (Home home, const BoolVarArgs &x, IntVar y0, BoolVar y1, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ x_{y_0}=y_1$.
void Gecode::element (Home home, const BoolVarArgs &x, IntVar y0, int y1, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ x_{y_0}=y_1$.
void Gecode::element (Home home, IntSharedArray a, IntVar x, int w, IntVar y, int h, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ a_{x+w\cdot y}=z$.
void Gecode::element (Home home, IntSharedArray a, IntVar x, int w, IntVar y, int h, BoolVar z, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ a_{x+w\cdot y}=z$.
void Gecode::element (Home home, const IntVarArgs &a, IntVar x, int w, IntVar y, int h, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for $ a_{x+w\cdot y}=z$.
void Gecode::element (Home home, const BoolVarArgs &a, IntVar x, int w, IntVar y, int h, BoolVar z, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ a_{x+w\cdot y}=z$.

Typedef Documentation

typedef SharedArray<int> Gecode::IntSharedArray

Arrays of integers that can be shared among several element constraints.

Definition at line 1476 of file int.hh.


Function Documentation

void Gecode::element ( Home  home,
IntSharedArray  n,
IntVar  x0,
IntVar  x1,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $ n_{x_0}=x_1$.

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

void Gecode::element ( Home  home,
IntSharedArray  n,
IntVar  x0,
BoolVar  x1,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $ n_{x_0}=x_1$.

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

void Gecode::element ( Home  home,
IntSharedArray  n,
IntVar  x0,
int  x1,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $ n_{x_0}=x_1$.

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

void Gecode::element ( Home  home,
const IntVarArgs &  x,
IntVar  y0,
IntVar  y1,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $ x_{y_0}=y_1$.

Supports both bounds (ipl = IPL_BND) and domain consistency (ipl = IPL_DOM, default).

void Gecode::element ( Home  home,
const IntVarArgs &  x,
IntVar  y0,
int  y1,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $ x_{y_0}=y_1$.

Supports both bounds (ipl = IPL_BND) and domain consistency (ipl = IPL_DOM, default).

void Gecode::element ( Home  home,
const BoolVarArgs &  c,
IntVar  x0,
BoolVar  x1,
IntPropLevel   
)

Post domain consistent propagator for $ x_{y_0}=y_1$.

void Gecode::element ( Home  home,
const BoolVarArgs &  c,
IntVar  x0,
int  x1,
IntPropLevel   
)

Post domain consistent propagator for $ x_{y_0}=y_1$.

void Gecode::element ( Home  home,
IntSharedArray  a,
IntVar  x,
int  w,
IntVar  y,
int  h,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $ a_{x+w\cdot y}=z$.

If a is regarded as a two-dimensional array in row-major order of width w and height h, then z is constrained to be the element in column x and row y.

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

Throws an exception of type Int::ArgumentSizeMismatch, if $ w\cdot h\neq|a|$.

void Gecode::element ( Home  home,
IntSharedArray  a,
IntVar  x,
int  w,
IntVar  y,
int  h,
BoolVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $ a_{x+w\cdot y}=z$.

If a is regarded as a two-dimensional array in row-major order of width w and height h, then z is constrained to be the element in column x and row y.

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

Throws an exception of type Int::ArgumentSizeMismatch, if $ w\cdot h\neq|a|$.

void Gecode::element ( Home  home,
const IntVarArgs &  a,
IntVar  x,
int  w,
IntVar  y,
int  h,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $ a_{x+w\cdot y}=z$.

If a is regarded as a two-dimensional array in row-major order of width w and height h, then z is constrained to be the element in column x and row y.

Supports both bounds (ipl = IPL_BND) and domain consistency (ipl = IPL_DOM, default).

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

Throws an exception of type Int::ArgumentSizeMismatch, if $ w\cdot h\neq|a|$.

void Gecode::element ( Home  home,
const BoolVarArgs &  a,
IntVar  x,
int  w,
IntVar  y,
int  h,
BoolVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post domain consistent propagator for $ a_{x+w\cdot y}=z$.

If a is regarded as a two-dimensional array in row-major order of width w and height h, then z is constrained to be the element in column x and row y.

Throws an exception of type Int::OutOfLimits, if the integers in n exceed the limits in Int::Limits.

Throws an exception of type Int::ArgumentSizeMismatch, if $ w\cdot h\neq|a|$.