Generated on Sun Feb 17 15:24:49 2019 for Gecode by doxygen 1.6.3

Connection constraints to integer variables
[Using integer set variables and constraints]

Functions

void Gecode::min (Home home, SetVar s, IntVar x)
 Post propagator that x is the minimal element of s and that s is not empty.
void Gecode::notMin (Home home, SetVar s, IntVar x)
 Post propagator that x is not the minimal element of s.
void Gecode::min (Home home, SetVar s, IntVar x, Reify r)
 Post reified propagator for b iff x is the minimal element of s.
void Gecode::max (Home home, SetVar s, IntVar x)
 Post propagator that x is the maximal element of s and that s is not empty.
void Gecode::notMax (Home home, SetVar s, IntVar x)
 Post propagator that x is not the maximal element of s.
void Gecode::max (Home home, SetVar s, IntVar x, Reify r)
 Post reified propagator for b iff x is the maximal element of s.
void Gecode::cardinality (Home home, SetVar s, IntVar x)
 Post propagator for $ |s|=x $.
void Gecode::cardinality (Home home, SetVar s, IntVar x, Reify r)
 Post reified propagator for $ |s|=x \equiv r$.
void Gecode::weights (Home home, IntSharedArray elements, IntSharedArray weights, SetVar x, IntVar y)
 Post propagator for $y = \mathrm{weight}(x)$.

Function Documentation

void Gecode::min ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that x is the minimal element of s and that s is not empty.

void Gecode::notMin ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that x is not the minimal element of s.

void Gecode::min ( Home  home,
SetVar  s,
IntVar  x,
Reify  r 
)

Post reified propagator for b iff x is the minimal element of s.

void Gecode::max ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that x is the maximal element of s and that s is not empty.

void Gecode::notMax ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that x is not the maximal element of s.

void Gecode::max ( Home  home,
SetVar  s,
IntVar  x,
Reify  r 
)

Post reified propagator for b iff x is the maximal element of s.

void Gecode::cardinality ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator for $ |s|=x $.

void Gecode::cardinality ( Home  home,
SetVar  s,
IntVar  x,
Reify  r 
)

Post reified propagator for $ |s|=x \equiv r$.

void Gecode::weights ( Home  home,
IntSharedArray  elements,
IntSharedArray  weights,
SetVar  x,
IntVar  y 
)

Post propagator for $y = \mathrm{weight}(x)$.

The weights are given as pairs of elements and their weight: $\mathrm{weight}(\mathrm{elements}_i) = \mathrm{weights}_i$

The upper bound of x is constrained to contain only elements from elements. The weight of a set is the sum of the weights of its elements.