Generated on Sun Feb 17 15:24:48 2019 for Gecode by doxygen 1.6.3

Graph constraints
[Using integer variables and constraints]

Functions

void Gecode::circuit (Home home, const IntVarArgs &x, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a circuit.
void Gecode::circuit (Home home, int offset, const IntVarArgs &x, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a circuit.
void Gecode::circuit (Home home, const IntArgs &c, const IntVarArgs &x, const IntVarArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a circuit with costs y and z.
void Gecode::circuit (Home home, const IntArgs &c, int offset, const IntVarArgs &x, const IntVarArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a circuit with costs y and z.
void Gecode::circuit (Home home, const IntArgs &c, const IntVarArgs &x, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a circuit with cost z.
void Gecode::circuit (Home home, const IntArgs &c, int offset, const IntVarArgs &x, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a circuit with cost z.
void Gecode::path (Home home, const IntVarArgs &x, IntVar s, IntVar e, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a Hamiltonian path.
void Gecode::path (Home home, int offset, const IntVarArgs &x, IntVar s, IntVar e, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a Hamiltonian path.
void Gecode::path (Home home, const IntArgs &c, const IntVarArgs &x, IntVar s, IntVar e, const IntVarArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a Hamiltonian path with costs y and z.
void Gecode::path (Home home, const IntArgs &c, int offset, const IntVarArgs &x, IntVar s, IntVar e, const IntVarArgs &y, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a Hamiltonian path with costs y and z.
void Gecode::path (Home home, const IntArgs &c, const IntVarArgs &x, IntVar s, IntVar e, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a Hamiltonian path with cost z.
void Gecode::path (Home home, const IntArgs &c, int offset, const IntVarArgs &x, IntVar s, IntVar e, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator such that x forms a Hamiltonian path with cost z.

Function Documentation

void Gecode::circuit ( Home  home,
const IntVarArgs &  x,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a circuit.

x forms a circuit if the graph with edges $i\to j$ where $x_i=j$ has a single cycle covering all nodes.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x.

Throws the following exceptions:

void Gecode::circuit ( Home  home,
int  offset,
const IntVarArgs &  x,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a circuit.

x forms a circuit if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ has a single cycle covering all nodes.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x.

Throws the following exceptions:

void Gecode::circuit ( Home  home,
const IntArgs &  c,
const IntVarArgs &  x,
const IntVarArgs &  y,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a circuit with costs y and z.

x forms a circuit if the graph with edges $i\to j$ where $x_i=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

void Gecode::circuit ( Home  home,
const IntArgs &  c,
int  offset,
const IntVarArgs &  x,
const IntVarArgs &  y,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a circuit with costs y and z.

x forms a circuit if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

void Gecode::circuit ( Home  home,
const IntArgs &  c,
const IntVarArgs &  x,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a circuit with cost z.

x forms a circuit if the graph with edges $i\to j$ where $x_i=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

void Gecode::circuit ( Home  home,
const IntArgs &  c,
int  offset,
const IntVarArgs &  x,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a circuit with cost z.

x forms a circuit if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

void Gecode::path ( Home  home,
const IntVarArgs &  x,
IntVar  s,
IntVar  e,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a Hamiltonian path.

x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_i=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|$.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x.

Throws the following exceptions:

void Gecode::path ( Home  home,
int  offset,
const IntVarArgs &  x,
IntVar  s,
IntVar  e,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a Hamiltonian path.

x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|+\text{offset}$.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x.

Throws the following exceptions:

void Gecode::path ( Home  home,
const IntArgs &  c,
const IntVarArgs &  x,
IntVar  s,
IntVar  e,
const IntVarArgs &  y,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a Hamiltonian path with costs y and z.

x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_i=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire path. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

  • Int::ArgumentSame, if x contains the same unassigned variable multiply.
  • Int::TooFewArguments, if x has no elements.
  • Int::ArgumentSizeMismacth, if x and y do not have the same size or if $|x|\times|x|\neq|c|$.
void Gecode::path ( Home  home,
const IntArgs &  c,
int  offset,
const IntVarArgs &  x,
IntVar  s,
IntVar  e,
const IntVarArgs &  y,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a Hamiltonian path with costs y and z.

x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|+\text{offset}$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire path. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

void Gecode::path ( Home  home,
const IntArgs &  c,
const IntVarArgs &  x,
IntVar  s,
IntVar  e,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a Hamiltonian path with cost z.

x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_i=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire path.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions:

void Gecode::path ( Home  home,
const IntArgs &  c,
int  offset,
const IntVarArgs &  x,
IntVar  s,
IntVar  e,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator such that x forms a Hamiltonian path with cost z.

x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|+\text{offset}$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit.

Supports domain (ipl = IPL_DOM) and value propagation (all other values for ipl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.

Throws the following exceptions: