Generated on Sun Feb 17 15:24:48 2019 for Gecode by doxygen 1.6.3

Counting constraints
[Using integer variables and constraints]

Functions

void Gecode::count (Home home, const IntVarArgs &x, int n, IntRelType irt, int m, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\sim_{irt} m$.
void Gecode::count (Home home, const IntVarArgs &x, const IntSet &y, IntRelType irt, int m, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i\in y\}\sim_{irt} m$.
void Gecode::count (Home home, const IntVarArgs &x, IntVar y, IntRelType irt, int m, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\sim_{irt} m$.
void Gecode::count (Home home, const IntVarArgs &x, const IntArgs &y, IntRelType irt, int m, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\sim_{irt} m$.
void Gecode::count (Home home, const IntVarArgs &x, int n, IntRelType irt, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\sim_{irt} z$.
void Gecode::count (Home home, const IntVarArgs &x, const IntSet &y, IntRelType irt, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i\in y\}\sim_{irt} z$.
void Gecode::count (Home home, const IntVarArgs &x, IntVar y, IntRelType irt, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\sim_{irt} z$.
void Gecode::count (Home home, const IntVarArgs &x, const IntArgs &y, IntRelType irt, IntVar z, IntPropLevel ipl=IPL_DEF)
 Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\sim_{irt} z$.
void Gecode::count (Home home, const IntVarArgs &x, const IntVarArgs &c, IntPropLevel ipl=IPL_DEF)
 Posts a global count (cardinality) constraint.
void Gecode::count (Home home, const IntVarArgs &x, const IntSetArgs &c, IntPropLevel ipl=IPL_DEF)
 Posts a global count (cardinality) constraint.
void Gecode::count (Home home, const IntVarArgs &x, const IntVarArgs &c, const IntArgs &v, IntPropLevel ipl=IPL_DEF)
 Posts a global count (cardinality) constraint.
void Gecode::count (Home home, const IntVarArgs &x, const IntSetArgs &c, const IntArgs &v, IntPropLevel ipl=IPL_DEF)
 Posts a global count (cardinality) constraint.
void Gecode::count (Home home, const IntVarArgs &x, const IntSet &c, const IntArgs &v, IntPropLevel ipl=IPL_DEF)
 Posts a global count (cardinality) constraint.

Detailed Description

Note:
Domain consistency on the extended cardinality variables of the Global Cardinality Propagator is only obtained if they are bounds consistent, otherwise the problem of enforcing domain consistency on the cardinality variables is NP-complete as proved by Qumiper et. al. in ''Improved Algorithms for the Global Cardinality Constraint''.

Function Documentation

void Gecode::count ( Home  home,
const IntVarArgs &  x,
int  n,
IntRelType  irt,
int  m,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\sim_{irt} m$.

Performs domain propagation but is not domain consistent.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntSet &  y,
IntRelType  irt,
int  m,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i\in y\}\sim_{irt} m$.

Performs domain propagation but is not domain consistent.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
IntVar  y,
IntRelType  irt,
int  m,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\sim_{irt} m$.

Performs domain propagation (ipl = IPL_DOM, default) and slightly less domain propagation (all other values for ipl), where y is not pruned. Note that in both cases propagation is not domain consistent.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntArgs &  y,
IntRelType  irt,
int  m,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\sim_{irt} m$.

Performs domain propagation but is not domain consistent.

Throws an exception of type Int::ArgumentSizeMismatch, if x and y are of different size.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
int  n,
IntRelType  irt,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=n\}\sim_{irt} z$.

Performs domain propagation but is not domain consistent.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntSet &  y,
IntRelType  irt,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i\in y\}\sim_{irt} z$.

Performs domain propagation but is not domain consistent.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
IntVar  y,
IntRelType  irt,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y\}\sim_{irt} z$.

Performs domain propagation (ipl = IPL_DOM, default) and slightly less domain propagation (all other values for ipl), where y is not pruned. Note that in both cases propagation is not domain consistent.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntArgs &  y,
IntRelType  irt,
IntVar  z,
IntPropLevel  ipl = IPL_DEF 
)

Post propagator for $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=y_i\}\sim_{irt} z$.

Performs domain propagation but is not domain consistent.

Throws an exception of type Int::ArgumentSizeMismatch, if x and y are of different size.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntVarArgs &  c,
IntPropLevel  ipl = IPL_DEF 
)

Posts a global count (cardinality) constraint.

Posts the constraint that $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=j\}=c_j$ and $ \bigcup_i \{x_i\} \subseteq \{0,\ldots,|c|-1\}$ (no other value occurs).

Supports value (ipl = IPL_VAL, default), bounds (ipl = IPL_BND), and domain consistency (ipl = IPL_DOM).

Throws an exception of type Int::ArgumentSame, if x contains the same unassigned variable multiply.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntSetArgs &  c,
IntPropLevel  ipl = IPL_DEF 
)

Posts a global count (cardinality) constraint.

Posts the constraint that $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=j\}\in c_j$ and $ \bigcup_i \{x_i\} \subseteq \{0,\ldots,|c|-1\}$ (no other value occurs).

Supports value (ipl = IPL_VAL, default), bounds (ipl = IPL_BND), and domain consistency (ipl = IPL_DOM).

Throws an exception of type Int::ArgumentSame, if x contains the same unassigned variable multiply.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntVarArgs &  c,
const IntArgs &  v,
IntPropLevel  ipl = IPL_DEF 
)

Posts a global count (cardinality) constraint.

Posts the constraint that $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=v_j\}=c_j$ and $ \bigcup_i \{x_i\} \subseteq \bigcup_j \{v_j\}$ (no other value occurs).

Supports value (ipl = IPL_VAL, default), bounds (ipl = IPL_BND), and domain consistency (ipl = IPL_DOM).

Throws an exception of type Int::ArgumentSame, if x contains the same unassigned variable multiply.

Throws an exception of type Int::ArgumentSizeMismatch, if c and v are of different size.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntSetArgs &  c,
const IntArgs &  v,
IntPropLevel  ipl = IPL_DEF 
)

Posts a global count (cardinality) constraint.

Posts the constraint that $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=v_j\}\in c_j$ and $ \bigcup_i \{x_i\} \subseteq \bigcup_j \{v_j\}$ (no other value occurs).

Supports value (ipl = IPL_VAL, default), bounds (ipl = IPL_BND), and domain consistency (ipl = IPL_DOM).

Throws an exception of type Int::ArgumentSame, if x contains the same unassigned variable multiply.

Throws an exception of type Int::ArgumentSizeMismatch, if c and v are of different size.

void Gecode::count ( Home  home,
const IntVarArgs &  x,
const IntSet &  c,
const IntArgs &  v,
IntPropLevel  ipl = IPL_DEF 
)

Posts a global count (cardinality) constraint.

Posts the constraint that $\#\{i\in\{0,\ldots,|x|-1\}\;|\;x_i=v_j\}\in c$ and $ \bigcup_i \{x_i\} \subseteq \bigcup_j \{v_j\}$ (no other value occurs).

Supports value (ipl = IPL_VAL, default), bounds (ipl = IPL_BND), and domain consistency (ipl = IPL_DOM).

Throws an exception of type Int::ArgumentSame, if x contains the same unassigned variable multiply.

Throws an exception of type Int::ArgumentSizeMismatch, if c and v are of different size.