Generated on Sun Feb 17 15:24:48 2019 for Gecode by doxygen 1.6.3

Simple relation constraints over float variables
[Using float variables and constraints]

Functions

void Gecode::rel (Home home, FloatVar x0, FloatRelType frt, FloatVar x1)
 Post propagator for $ x_0 \sim_{frt} x_1$.
void Gecode::rel (Home home, FloatVar x, FloatRelType frt, FloatVal c)
 Propagates $ x \sim_{frt} c$.
void Gecode::rel (Home home, FloatVar x, FloatRelType frt, FloatVal c, Reify r)
 Post propagator for $(x \sim_{frt} c)\equiv r$.
void Gecode::rel (Home home, FloatVar x0, FloatRelType frt, FloatVar x1, Reify r)
 Post propagator for $(x_0 \sim_{frt} x_1)\equiv r$.
void Gecode::rel (Home home, const FloatVarArgs &x, FloatRelType frt, FloatVal c)
 Propagates $ x_i \sim_{frt} c $ for all $0\leq i<|x|$.
void Gecode::rel (Home home, const FloatVarArgs &x, FloatRelType frt, FloatVar y)
 Propagates $ x_i \sim_{frt} y $ for all $0\leq i<|x|$.
void Gecode::ite (Home home, BoolVar b, FloatVar x, FloatVar y, FloatVar z)
 Post propagator for if-then-else constraint.

Function Documentation

void Gecode::rel ( Home  home,
FloatVar  x0,
FloatRelType  frt,
FloatVar  x1 
)

Post propagator for $ x_0 \sim_{frt} x_1$.

void Gecode::rel ( Home  home,
FloatVar  x0,
FloatRelType  frt,
FloatVal  n 
)

Propagates $ x \sim_{frt} c$.

void Gecode::rel ( Home  home,
FloatVar  x,
FloatRelType  frt,
FloatVal  n,
Reify  r 
)

Post propagator for $(x \sim_{frt} c)\equiv r$.

void Gecode::rel ( Home  home,
FloatVar  x0,
FloatRelType  frt,
FloatVar  x1,
Reify  r 
)

Post propagator for $(x_0 \sim_{frt} x_1)\equiv r$.

void Gecode::rel ( Home  home,
const FloatVarArgs &  x,
FloatRelType  frt,
FloatVal  c 
)

Propagates $ x_i \sim_{frt} c $ for all $0\leq i<|x|$.

void Gecode::rel ( Home  home,
const FloatVarArgs &  x,
FloatRelType  frt,
FloatVar  y 
)

Propagates $ x_i \sim_{frt} y $ for all $0\leq i<|x|$.

void Gecode::ite ( Home  home,
BoolVar  b,
FloatVar  x,
FloatVar  y,
FloatVar  z 
)

Post propagator for if-then-else constraint.

Posts propagator for $ z = b ? x : y $