Generated on Thu Mar 22 10:39:49 2012 for Gecode by doxygen 1.6.3

Connection constraints to integer variables
[Using finite integer sets]

Functions

void Gecode::min (Home home, SetVar s, IntVar x)
 Post propagator that propagates that x is the minimal element of s, and that s is not empty.
void Gecode::notMin (Home home, SetVar s, IntVar x)
 Post propagator that propagates that x is not the minimal element of s.
void Gecode::min (Home home, SetVar s, IntVar x, BoolVar b)
 Post reified propagator for b iff x is the minimal element of s.
void Gecode::max (Home home, SetVar s, IntVar x)
 Post propagator that propagates that x is the maximal element of s, and that s is not empty.
void Gecode::notMax (Home home, SetVar s, IntVar x)
 Post propagator that propagates that x is not the maximal element of s.
void Gecode::max (Home home, SetVar s, IntVar x, BoolVar b)
 Post reified propagator for b iff x is the maximal element of s.
void Gecode::channelSorted (Home home, const IntVarArgs &x, SetVar y)
 Post propagator for $\{x_0,\dots,x_{n-1}\}=y$ and $x_i<x_{i+1}$.
void Gecode::channel (Home home, const IntVarArgs &x, const SetVarArgs &y)
 Post propagator for $x_i=j \Leftrightarrow i\in y_j$.
void Gecode::channel (Home home, const BoolVarArgs &x, SetVar y)
 Post propagator for $x_i=1 \Leftrightarrow i\in y$.
void Gecode::cardinality (Home home, SetVar s, IntVar x)
 Post propagator for $ |s|=x $.
void Gecode::weights (Home home, IntSharedArray elements, IntSharedArray weights, SetVar x, IntVar y)
 Post propagator for $y = \mathrm{weight}(x)$.

Function Documentation

void Gecode::min ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that propagates that x is the minimal element of s, and that s is not empty.

void Gecode::notMin ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that propagates that x is not the minimal element of s.

void Gecode::min ( Home  home,
SetVar  s,
IntVar  x,
BoolVar  b 
)

Post reified propagator for b iff x is the minimal element of s.

void Gecode::max ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that propagates that x is the maximal element of s, and that s is not empty.

void Gecode::notMax ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator that propagates that x is not the maximal element of s.

void Gecode::max ( Home  home,
SetVar  s,
IntVar  x,
BoolVar  b 
)

Post reified propagator for b iff x is the maximal element of s.

void Gecode::channelSorted ( Home  home,
const IntVarArgs &  x,
SetVar  y 
)

Post propagator for $\{x_0,\dots,x_{n-1}\}=y$ and $x_i<x_{i+1}$.

void Gecode::channel ( Home  home,
const IntVarArgs &  x,
const SetVarArgs &  y 
)

Post propagator for $x_i=j \Leftrightarrow i\in y_j$.

void Gecode::channel ( Home  home,
const BoolVarArgs &  x,
SetVar  y 
)

Post propagator for $x_i=1 \Leftrightarrow i\in y$.

void Gecode::cardinality ( Home  home,
SetVar  s,
IntVar  x 
)

Post propagator for $ |s|=x $.

void Gecode::weights ( Home  home,
IntSharedArray  elements,
IntSharedArray  weights,
SetVar  x,
IntVar  y 
)

Post propagator for $y = \mathrm{weight}(x)$.

The weights are given as pairs of elements and their weight: $\mathrm{weight}(\mathrm{elements}_i) = \mathrm{weights}_i$

The upper bound of x is constrained to contain only elements from elements. The weight of a set is the sum of the weights of its elements.