Generated on Thu Apr 11 13:59:25 2019 for Gecode by doxygen 1.6.3

dom.cpp File Reference

#include <gecode/int/dom.hh>
#include <gecode/int.hh>
#include <gecode/int/rel.hh>

Go to the source code of this file.

Namespaces

namespace  Gecode
 

Gecode toplevel namespace


Functions

void Gecode::dom (Home home, IntVar x, int n, IntPropLevel ipl=IPL_DEF)
 Propagates $x=n$.
void Gecode::dom (Home home, const IntVarArgs &x, int n, IntPropLevel ipl=IPL_DEF)
 Propagates $ x_i=n$ for all $0\leq i<|x|$.
void Gecode::dom (Home home, IntVar x, int l, int m, IntPropLevel ipl=IPL_DEF)
 Propagates $ l\leq x\leq m$.
void Gecode::dom (Home home, const IntVarArgs &x, int l, int m, IntPropLevel ipl=IPL_DEF)
 Propagates $ l\leq x_i\leq m$ for all $0\leq i<|x|$.
void Gecode::dom (Home home, IntVar x, const IntSet &s, IntPropLevel ipl=IPL_DEF)
 Propagates $ x\in s $.
void Gecode::dom (Home home, const IntVarArgs &x, const IntSet &s, IntPropLevel ipl=IPL_DEF)
 Propagates $ x_i\in s$ for all $0\leq i<|x|$.
void Gecode::dom (Home home, IntVar x, int n, Reify r, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ (x=n) \equiv r$.
void Gecode::dom (Home home, IntVar x, int l, int m, Reify r, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ (l\leq x \leq m) \equiv r$.
void Gecode::dom (Home home, IntVar x, const IntSet &s, Reify r, IntPropLevel ipl=IPL_DEF)
 Post domain consistent propagator for $ (x \in s) \equiv r$.
void Gecode::dom (Home home, IntVar x, IntVar d, IntPropLevel ipl=IPL_DEF)
 Constrain domain of x according to domain of d.
void Gecode::dom (Home home, BoolVar x, BoolVar d, IntPropLevel ipl=IPL_DEF)
 Constrain domain of x according to domain of d.
void Gecode::dom (Home home, const IntVarArgs &x, const IntVarArgs &d, IntPropLevel ipl=IPL_DEF)
 Constrain domain of $ x_i $ according to domain of $ d_i $ for all $0\leq i<|x|$.
void Gecode::dom (Home home, const BoolVarArgs &x, const BoolVarArgs &d, IntPropLevel ipl=IPL_DEF)
 Constrain domain of $ x_i $ according to domain of $ d_i $ for all $0\leq i<|x|$.