
Views and Iterators for Generic Constraint
Implementations

Christian Schulte1 and Guido Tack2

1 ICT, KTH - Royal Institute of Technology, Sweden,schulte@imit.kth.se
2 PS Lab, Saarland University, Saarbrücken, Germany,tack@ps.uni-sb.de

Abstract. This paper introduces an architecture for generic constraint imple-
mentations based on variable views and range iterators. Views allow, for example,
to scale, translate, and negate variables. The paper shows how to make constraint
implementations generic and how to reuse a single generic implementation with
different views for different constraints. A wide range of applicationsof views
exemplifies their usefulness and their potential for simplifying constraint imple-
mentations. We introduce domain operations compatible with views based on
range iterators. The paper evaluates the applicability of the approach as well as
different implementation techniques for the presented architecture.

1 Introduction

A challenging aspect in developing and extending a constraint programming system is
implementing acomprehensiveset of constraints. Ideally, a system should provide sim-
ple, expressive, and efficient abstractions that ease development and reuse of constraint
implementations.

This paper contributes a new architecture based on variableviews and range itera-
tors. The architecture comprises an additional level of abstraction to decouple variable
implementations from constraint implementations, the propagators. Propagators com-
pute generically with variable views instead of variables.

A view of a variable presents an adaptor that performs transformations while ac-
cessing the variable it abstracts over. Views support operations like scaling, translation,
and negation of variables. Views also abstract over the underlying data structure used
for storing the variable domain. That way, cross-domain views can for example enable
propagators for finite set constraints to operate on finite domain variables.

This simple layer of abstraction allows one propagator to beinstantiated multiple
times, with different views. For example, a simple generic propagator for linear equal-
ity ∑k

i=1xi = c can be used with a scale-viewxi = ai · yi to obtain an implementation
of ∑k

i=1ai · yi = c. Or a negated Boolean view can be used to derive an implementa-
tion of Boolean disjunction from a propagator for conjunction. As a final example, a
cross-domain view of a finite domain variable as a singleton set, together with a subset
propagator, yields a propagator forx ∈ s. Variable views thus assist in implementing
propagators on a higher level of abstraction.

Range iterators support powerful and efficient domain operations on variables and
variable views. The operations can access and modify multiple values of a variable

domain simultaneously. Range iterators are efficient as they help avoiding temporary
data structures. They simplify propagators by serving as adaptors between variables
and propagator data structures.

The architecture is carefully separated from its implementation. Two different im-
plementation approaches are presented and evaluated. An implementation using para-
metric polymorphism (such as templates in C++) is shown to not incur any runtime cost.
The architecture can be used for arbitrary constraint programming systems and has been
fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constraint
programming systems. Sect. 3 introduces variable views andexemplifies their use.
Sect. 4 presents Boolean views of finite domain variables anddiscusses pairs of sym-
metric propagators. Sect. 5 introduces iterator-based domain operations that are applied
to views in the following section. Variable views for set constraints are discussed in
Sect. 7. In Sect. 8 implementation approaches for views and iterators are presented,
followed by their evaluation in Sect. 9. The last section concludes and discusses future
work.

2 Constraint Programming Systems

This section introduces the model for finite domain constraint programming systems
considered in this paper and relates it to existing systems.

Variables and propagators.Finite domain constraint programming systems offer ser-
vices to support constraint propagation and search. In thispaper we are only concerned
with variables used for constraint propagation. We assume that a constraint is imple-
mented by apropagator. A propagator maintains a collection of variables and performs
constraint propagation by executing operations on them. Inthe following we consider
finite domain variables and propagators. A finite domain variablex has an associated
domaindom(x) being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directly but use operations pro-
vided by the variable. These operations return informationabout the domain or update
the domain. In addition, they handle failure (the domain becomes empty) and control
propagation.

Value operations.A value operationon a variable involves a single integer as result
or argument. We assume that a variablex with D = dom(x) provides the following
value operations:x.getmin() returns minD, x.getmax() returns maxD, x.adjmin(n)
updates dom(x) to {m∈ D |m≥ n}, x.adjmax(n) updates dom(x) to {m∈ D |m≤ n},
andx.excval(n) updates dom(x) to {m∈ D |m 6= n}. These operations are typical for
finite domain constraint programming systems like Choco [6], ILOG Solver [9, 11, 4],
Eclipse [1], Mozart [8], and Sicstus [5]. Some systems provide additional operations
such as for assigning values.

Domain operations.A domain operationsupports simultaneous access or update of
multiple values of a variable domain. In many systems this isprovided by supporting
an abstract set-datatype for variable domains, as for example in Choco [6], Eclipse [1],
Mozart [8], and Sicstus [5]. ILOG Solver [9, 11, 4] only allows access by iterating over
the values of a variable domain.

Range sequences.Range notation[n .. m] is used for the set of integers{l ∈ Z | n≤ l ≤
m}. A range sequenceranges(I) for a finite integer setI ⊆ Z is the shortest sequence
s= 〈[n1 .. m1] , . . . , [nk .. mk]〉 such thatI is covered (set(s) = I , where set(s) is defined
as

⋃k
i=1 [ni .. mi]) and the ranges are ordered by their smallest elements (ni ≤ ni+1 for

1≤ i < k). The above range sequence is also written as〈[ni .. mi]〉
k
i=1. Clearly, a range

sequence is unique, none of its ranges is empty, andmi +1 < ni+1 for 1≤ i < k.

3 Variable Views with Value Operations

This section introduces variable views with value operations. The full design with do-
main operations and a discussion of their properties follows in Sect. 6.

Example 1 (Smart n-Queens).Consider the well-known finite domain constraint model
for n-Queens using three alldifferent constraints: each queen is represented by a variable
xi (0≤ i < n) with domain{0, . . . ,n−1}. The constraints state that the values of allxi ,
the values of allxi− i, and the values of allxi + i must be pairwise different for 0≤ i < n.

If the used constraint programming system lacks versions ofalldifferent supporting
that the values ofxi +ci are different, the user must resort to using additional variables
yi and constraintsyi = xi + ci and the single constraint that theyi are different. This
approach is clearly not very efficient: it triples the numberof variables and requires
additional 2n binary constraints.

Systems with this extension of alldifferent must implementtwo very similar ver-
sions of the same propagator. This is tedious and increases the amount of code that
requires maintenance. In the following we make propagatorsgeneric: the same propa-
gator can be reused for several variants.

To make a propagator generic, all its operations on variables are replaced by oper-
ations on variable views. Avariable view(view for short) implements the same opera-
tions as a variable. A view stores a reference to a variable. Invoking an operation on the
view executes the appropriate operation on the view’s variable. Multiple variants of a
propagator can be obtained by instantiating the single generic propagator with multiple
different variable views.

Offset-views.For anoffset-view v= voffset(x,c) for a variablex and an integerc, per-
forming an operation onv results in performing an operation onx+ c. The operations
on the offset-view are:

v.getmin() := x.getmin()+c v.getmax() := x.getmax()+c
v.adjmin(n) := x.adjmin(n−c) v.adjmax(n) := x.adjmax(n−c)
v.excval(n) := x.excval(n−c)

To obtain both alldifferent propagators required by Example 1, also anidentity-view
is needed. An operation on an identity-view vid(x) for a variablex performs the same
operation onx. That is, identity-views turn variables into views to comply with propaga-
tors now computing with views. In an implementation language that supports subtyping,
variables can themselves be regarded as views, eliminatingthe need for identity views.

Obtaining the two variants of alldifferent is straightforward: the propagator is made
generic with respect to which view it uses. Using the propagator with both an identity-
view and an offset-view yields the required propagators.

Offset-views can also be used to obtain propagators for strict inequalities from
propagators for the non-strict constraints. For instance,x < y can be implemented as
x≤ voffset(y,−1).

Sect. 8 discusses how views can be implemented whereas this section focuses on
the architecture only. However, to give some intuition, in C++ for example, propagators
can be made generic by implementing them as templates with the used view as tem-
plate argument. Instantiating the generic propagator thenamounts to instantiating the
corresponding template with a particular view.

Views are orthogonal to the propagator. In the above example, offset-views can be
used for any implementation of alldifferent using value operations. This includes the
naive version propagating when variables become assigned or the bounds-consistent
version [10].

Scale-views.In the above example, views allow to reuse the same propagator for vari-
ants of a constraint, avoiding duplication of code and effort. In the following, views can
also simplify the implementation of propagators.

Example 2 (Linear inequalities).A common constraint is linear inequality∑n
i=1ai ·xi ≤

c (equality and disequality is similar) with integersai and c and variablesxi . In the
following we restrict theai to be positive.

A typical bounds-propagator executes for 1≤ j ≤ n:

x j .adjmax(⌊(c− l j)/a j⌋) with l j = ∑n
i=1,i 6= j ai ·xi .getmin()

Quite often, models feature the special caseai = 1 for 1≤ i ≤ n. For this case, it is
sufficient to execute for 1≤ j ≤ n:

x j .adjmax(c− l j) with l j = ∑n
i=1,i 6= j xi .getmin()

As this case is common, a system should optimize it. An optimized version requires
less space (noai required) and less time (no multiplication, division, and rounding).
But, a more interesting question is: can one just implement the simple propagator and
get the full version by using views?

With scale-views, the simple implementation can be used in both cases. Ascale-
view v= vscale(a,x) for a positive integera > 0 and a variablex defines operations for
a·x:

v.getmin() := a·x.getmin() v.getmax() := a·x.getmax()
v.adjmin(n) := x.adjmin(⌈n/a⌉) v.adjmax(n) := x.adjmax(⌊n/a⌋)
v.excval(n) := if n moda = 0 then x.excval(n/a)

From the simpler implementation the special case (identity-views) and the general
case (scale-views) can be obtained. Multiplication, division, and rounding is separated
from actually propagating the inequality constraint. Views hence support separation of
concerns and can simplify the implementation of propagators. In particular, multiplica-
tion, division, and rounding need to be implemented only once for the scale-view: any
generic propagator can use scale-views.

Minus-views.Another common optimization is to implement binary and ternary vari-
ants of commonly used constraints. This optimization reduces the overhead with respect
to both time and memory as no array is needed.

Example 3 (Binary linear inequality).Consider a propagator forv1+v2≤ c with views
v1 andv2 propagating as described in Example 2. With scale-viewsv1 = vscale(a1,x1)
andv2 = vscale(a2,x2) the propagator also implementsa1 · x1 + a2 · x2 ≤ c provided
that a1,a2 > 0. However,x1− x2 ≤ c cannot be obtained with scale-views. Even if
scale-views allowed negative constants, it would be inefficient to multiply, divide, and
round to just achieve negation.

A minus-view v= vminus(x) for a variablex provides operations such thatv behaves
as−x. Its operations reflect that the smallest possible value forx is the largest possible
value for−x and vice versa:

v.getmin() :=−x.getmax() v.getmax() :=−x.getmin()
v.adjmin(n) := x.adjmax(−n) v.adjmax(n) := x.adjmin(−n)
v.excval(n) := x.excval(−n)

With minus-views,x1−x2≤ c can be obtained from an implementation ofv1+v2≤
c with v1 = vid(x1) andv2 = vminus(x2). With an offset-view it is actually sufficient
to implementv1 + v2 ≤ 0. Thenx1 + x2 ≤ c can be implemented by an identity-view
vid(x1) for v1 and an offset-view voffset(x2,−c) for v2. But again, given justv1+v2≤ 0,
an implementation forx1−x2≤ c with c 6= 0 cannot be obtained.

Minus-views implement the inverse for finite domain variables, thus all propagators
that are symmetric with respect to the sign of their arguments can take advantage of
minus views. An example for a pair of symmetric propagators on finite domain vari-
ables is minimum and maximum: max(x1, . . . ,xn) can be obtained from a the minimum
propagator with min(vminus(x1), . . . ,vminus(xn)). We will come back to inverse views
in the sections about Boolean and set constraints.

Derived views.It is unnecessarily restrictive to define views in terms of variables. The
actual requirement for a view is that its variable provides the same operations. It is
straightforward to make views generic themselves: views can be defined in terms of
other views. The only exception are identity-views as they serve the very purpose of
casting a variable into a view. Views such as offset, scale, and minus are calledderived
views: they are derived from some other view.

With derived views being defined in terms of views, the first step to use a derived
view is to turn a variable into a view by an identity-view. Forexample, a minus-
view v for the variablex is obtained from a minus-view and an identity-view:v =
vminus(vid(x)).

Example 4 (Binary linear inequality reconsidered).Using offset-views, minus-views,
and scale-views, all possible variants of binary linear inequalities can now be obtained
from a propagator forv1 + v2 ≤ 0. For example,a · x1− x2 ≤ c with a > 0 can be
obtained withv1 = vscale(a,vid(x1)) and v2 = vminus(voffset(vid(x2),c)) or v2 =
voffset(vminus(vid(x2)),−c).

Scale-views reconsidered.The coefficient of a scale-view is restricted to be positive.
Allowing arbitrary non-zero constantsa in a scale-views= vscale(a,x) requires to take
the signedness ofa into account. This can be seen for the following two operations (the
others are similar):

s.getmin() := if a < 0 then a·x.getmax() else a·x.getmin()
s.adjmax(n) := if a < 0 then x.adjmin(⌈n/a⌉) else x.adjmax(⌊n/a⌋)

This extension might be inefficient. Consider Example 2: inside the loop imple-
menting propagation on all views, the decision whether the coefficient in question is
positive or negative must be made. For modern computers, conditionals — in particu-
lar in tight loops — can reduce performance considerably. A more efficient way is to
restrict scale-views to positive coefficients and use an additional minus-view for cases
where negative coefficients are required.

Example 5 (Linear inequalities reconsidered).An efficient way to implement a propa-
gator for linear inequality distinguishes positive and negative variables as in∑n

i=1xi +

∑m
i=1−yi ≤ c.

The propagator is simple: it consists of two parts, one for the xi and one for theyi .
Both parts share the same implementation used with different views. To propagate to
thexi , identity-views are used. To propagate to theyi , minus-views are used. Arbitrary
coefficients are obtained from scale-views as shown above.

The example shows that it can be useful to make parts of a propagator generic
and reuse these parts with different views. Puget presents in [10] an algorithm for the
bounds-consistent alldifferent. The paper presents only an algorithm for adjusting the
upper bounds of the variablesxi and states that the lower bounds can be adjusted by
using the same algorithm on variablesyi whereyi =−xi . With views, this technique for
simplifying the presentation of an algorithm readily carries over to its implementation:
the implementation can be reused together with minus-views.

Constant-views.Derived views exploit that views do not need to be implemented in
terms of variables. This can be taken to the extreme in that a view has no access at all to
a variable. A constant-viewv = vcon(c) for an integerc provides operations such that
v behaves as a variablex being equal toc:

v.getmin() := c v.getmax() := c
v.adjmin(n) := if n > c then fail v.adjmax(n) := if n < c then fail
v.excval(n) := if n = c then fail

Example 6 (Ternary linear inequalities).Another optimization for linear constraints
are ternary variants. Given a propagator forv1 +v2 +v3 ≤ c and using a constant-view
vcon(0) for one of the viewsvi , all binary variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over to linear equalities and dise-
qualities), views support many optimized special cases from just two implementations
(the generaln-ary case and the ternary case). These implementations are simple as they
do not need to consider coefficients.

4 Boolean Views

Constraints on 0/1 variables are a special case of finite domain constraints. However,
specialized propagators can take advantage of the more precise knowledge about the
domain.

A Boolean-viewof a finite domain variable extends the variable’s interfacewith
operations for testing its value (x.zero(), x.one(), x.none()) and assigning the variable
(x.assign one(), x.assign zero()). Propagators specialized for Boolean-views, such
as equality (b1 = b2), conjunction ((b1∧b2)⇔ b3), and equivalence ((b1 = b2)⇔ b3),
can be implemented in a straightforward way using this interface.

Symmetric Boolean propagators.The inverse of a Boolean is its logical negation, im-
plemented by anegated Boolean-view. The operations for a negated Boolean-view
v = vneg(x) are straightforward:

v.zero() := x.one() v.one() := x.zero()
v.none() := x.none()
v.assign one() := x.assign zero() v.assign zero() := x.assign one()

Example 7 (Ternary disjunction).Boolean disjunction(x∨y)⇔ zcan be implemented
as(¬x∧¬y)⇔ ¬z. This translates directly to an instance of the Boolean conjunction
propagator. Similarly, other Boolean propagators such as exclusive or and implication
can be derived.

5 Domain Operations and Range Iterators

Today’s constraint programming systems support domain operations either only for ac-
cess or by means of an explicitly represented abstract datatype. In this paper, we propose
domain operations based on range iterators. These operations are shown to be simple,
expressive, and efficient. Additionally, range iterators are essential for views as pre-
sented in Sect. 6.

Range iterators.A range iterator r for a range sequences= 〈[ni .. mi]〉
k
i=1 allows to

iterate overs: each of the[ni .. mi] can be obtained in sequential order but only one at
a time. A range iteratorr provides the following operations:r.done() tests whether all
ranges have been iterated,r.next() moves to the next range, andr.min() andr.max()
return the minimum and maximum value for the current range. By set(r) we refer to the
set defined by an iteratorr (which must coincide with set(s)).

A possible implementation of a range iteratorr for s maintains an indexir which is
initially ir = 1, the operations can then be defined as:

r.done() := ir > k r.next() := (ir ← ir +1)
r.min() := nir r.max() := mir

A range iterator hides its implementation. Iteration can beby position as above, but
it can also be by traversing a list. The latter is particularly interesting if variable domains
are implemented as lists of ranges themselves.

Iterators are consumed by iteration. Hence, if the same sequence needs to be iterated
twice, a fresh iterator is needed. If iteration is cheap, a reset-operation for an iterator
can be provided so that multiple iterations are supported bythe same iterator. For more
expensive iterators, a solution is discussed later.

Domain operations.Variables are extended with operations to access and modifytheir
domains with range iterators. For a variablex, the operationx.getdom() returns a range
iterator for ranges(dom(x)). For a range iteratorr the operationx.setdom(r) updates
dom(x) to set(r) provided that set(r) ⊆ dom(x). The responsibility for ensuring that
set(r) ⊆ dom(x) is left to the programmer and hence requires careful consideration.
Later richer (and safe) domain operations are introduced. The operationx.setdom(r) is
genericwith respect tor: any range iterator can be used.

Domain operations can offer a substantial improvement overvalue operations, if
many values need to be removed from a variable domain simultaneously. Assume a typ-
ical implementation of a variable domainD which organizes ranges(D) = 〈[ni .. mi]〉

k
i=1

as a linked-list. Removing a single element fromD takesO(k) time and might increase
the length of the linked-list by one (introducing an additional hole). Hence, in the worst
case, removingl elements takesO(l(k+ l)) time. With domain operations based on it-
erators, removal takesO(k+ l) time, as the update can be implemented as one linear
pass over the linked list.

Range iterators serve as simplistic abstract datatype to describe finite sets of inte-
gers. However, they provide some essential advantages overan explicit set represen-
tation. First, any range iterator regardless of its implementation can be used to update
the domain of a variable. This turns out to allow for simple, efficient, and expressive
updates of variable domains. Second, no costly memory management is required to
maintain a range iterator as it provides access to only one range at a time. Third, itera-
tors are essential in providing domain operations on variable views as will be discussed
in Sect. 6.

Intersection iterators.Let us consider intersection as an example for computing with
range iterators. Intersection is computed by an intersection iteratorr = iinter(a,b), tak-
ing two range iteratorsa andb as input where set(r) = set(a)∩set(b). The intersection
iterator maintains integersn andm for storing the smallest and largest value of its cur-
rent range. When initialized, the operationr.next() is executed once. The operations
are shown in Figure 1.

Therepeat-loop iteratesa andb until their ranges overlap. The tests whethera or
b are done ensure that no operation is performed on a done iterator. The remainder
computes the resulting range and prepares for computing a next range.

The iteratorsa andb can be arbitrary iterators (again, the intersection iterator is
generic), so it is easy to obtain an iterator that computes the intersection of three iter-
ators by using two intersection iterators. Intersection isbut one example for a generic

r.done() := a.done()∨b.done()
r.min() := n
r.max() := m
r.next() := if a.done()∨b.done() then return

repeat
while ¬a.done()∧ (a.max() < b.min()) do a.next()
if a.done() then return
while ¬b.done()∧ (b.max() < a.min()) do b.next()
if b.done() then return

until a.max()≥ b.min()
n←max(a.min(),b.min()); m←min(a.max(),b.max())
if a.max() < b.max() then a.next() else b.next()

Fig. 1. Operations of an intersection iterator

iterator, other useful iterators are for example: iunion(a,b) for iterating the union ofa
andb, iminus(a,b) for iterating the set difference ofa andb, and icompl(a) for iterating
the complement ofa with respect to some fixed universe.

Example 8 (Propagating equality).Consider a propagator that implements domain-
consistent equality:x = y (assuming thatx and y are variables, views are discussed
later). The propagator can be implemented as follows: get range iterators forx andy by
rx = x.getdom() andry = y.getdom(), create an intersection iteratorri = iinter(rx, ry),
update one of the variable domains byx.setdom(ri), and copy the domain fromx to y
by y.setdom(x.getdom()).

Cache-iterators. The above example suggests that for some propagators it is better
to actually create an intermediate representation of the range sequence computed by
an iterator. The intermediate representation can be reusedas often as needed. This is
achieved by acache-iterator: it takes an arbitrary range iterator as input, iterates it
completely, and stores the obtained ranges in an array. Its actual operations then use the
array. The cache-iterator also implements a reset operation as discussed above. By this,
the possibly costly input iterator is used only once, while the cache-iterator can be used
as often as needed.

Richer domain operations.With the help of iterators, richer domain operations are
effortless. For a variablex and a range iteratorr, the operationx.adjdom(r) replaces
dom(x) by dom(x)∩set(r), whereasx.excdom(r) replaces dom(x) by dom(x)\set(r):

x.adjdom(r) := x.setdom(iinter(x.getdom(), r))
x.excdom(r) := x.setdom(iminus(x.getdom(), r))

Value versus range iterators.Another design choice is to base domain operations on
value iterators: iterate values rather than ranges of a set.This is not efficient: a value
sequence is considerably longer than a range sequence (in particular for the common
case of a singleton range sequence).

For implementing propagators, however, it can be simpler toiterate values. This can
be achieved by a range-to-value iterator. A value iteratorv has the operationsv.done(),
v.next(), andv.val() to access the current value. A range-to-value iterator takes a
range iterator as input and returns a value iterator iterating the values of the range se-
quence. The inverse is a value-to-range iterator: it takes as input a value iterator and
returns the corresponding range iterator.

Iterators as adaptors.Global constraints are typically implemented by a propagator
computing over some involved data structure, such as for example a variable-value
graph for domain-consistent alldifferent [12]. After propagation, the new variable do-
mains must be transferred from the data structure to the variables. This can be achieved
by using a range or value iterator as adaptor. The adaptor operates on the data structure
and iterates the range or value sequence for a particular variable. The iterator then can
be passed to the appropriate domain operation.

6 Variable Views with Domain Operations

This section discusses domain operations for variable views using iterators.

Identity and constant views.Domain operations for identity-views and constant-views
are straightforward. The domain operations for an identity-view v = vid(x) use the do-
main operations onx: v.getdom() := x.getdom() andv.setdom(r) := x.setdom(r). For
a constant-viewv= vcon(c), the operationv.getdom() returns an iterator for the single-
ton range sequence〈[c .. c]〉. The operationv.setdom(r) just checks whether the range
sequence ofr is empty.

Derived views.Domain operations for an offset-view voffset(v,c) are provided by an
offset-iterator. The operations of an offset-iteratoro for a range iteratorr and an integer
c (created by ioffset(r,c)) are as follows:

o.min() := r.min()+c o.max() := r.max()+c
o.done() := r.done() o.next() := r.next()

The domain operations for an offset viewv = voffset(x,c) are as follows:
v.getdom() := ioffset(x.getdom(),c) v.setdom(r) := x.setdom(ioffset(r,−c))

For minus-views we just give the range sequence as iterationis obvious. For a given
range sequence〈[ni .. mi]〉

k
i=1, the negative sequence is obtained by reversal and sign

change as〈[−mk−i+1 .. −nk−i+1]〉
k
i=1. The same iterator for this sequence can be used

both forsetdom andgetdom operations. Note that the iterator is quite complicated as
it changes direction of the range sequence, possible implementations are discussed in
Sect. 8.

Assume a scale-views = vscale(a,v) with a > 0 and〈[ni .. mi]〉
k
i=1 being a range

sequence forv. If a = 1, the range sequence remains unchanged. Otherwise, the cor-
responding range sequence fors is 〈{a · n1},{a · (n1 + 1)}, . . . ,{a ·m1}, . . . ,{a · nk},
{a· (nk +1)}, . . . ,{a·mk}〉.

Assume that〈[ni .. mi]〉
k
i=1 is a range sequence fors. Then for 1≤ i ≤ k the ranges

[⌈ni/a⌉ .. ⌊mi/a⌋] correspond to the required variable domain forv, however they do not
necessarily form a range sequence as the ranges might be empty, overlapping, or adja-
cent. Iterating the range sequence is simple by skipping empty ranges and conjoining
overlapping or adjacent ranges.

Consistency.An important issue is how views affect the consistency of a propagator.
Let us first consider all views except scale-views. These views compute bijections on the
values as well as on the ranges of a domainD. A bounds (domain) consistent propagator
for a constraintC with variablesx1, . . . ,xn establishes bounds (domain) consistency for
the constraintC with all the variables replaced byvk(xk) (if vk computes the view ofxk).

Scale-views only compute bijections on values: a range doesnot remain a range
after multiplication. This implies that bounds consistentpropagators do not establish
bounds consistency on scale-views. Consider for example a bounds consistent propa-
gator for alldifferent. Withx,y,z∈ {1,2}, alldifferent(4x,4y,4z) cannot detect failure,
while alldifferent(x,y,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

7 Views for Set Constraints

Views and iterators readily carry over to other constraint domains. This section shows
how to apply them to finite sets.

Finite sets.Most systems approximate the domain of a finite set variable by a greatest
lower and least upper bound [3]: dom(x) = (glb(x), lub(x)). The fundamental operations
are similar to domain operations on finite domain variables:x.getglb() returns glb(x),
x.getlub() returns lub(x), x.adjglb(D) updates dom(x) to (glb(x)∪D, lub(x)), and
x.adjlub(D) updates dom(x) to (glb(x), lub(x)∩D).

All these operations take sets as arguments or return them. As the abstract datatype
we use for representing sets is an iterator, iterators play the central role here. In fact,
range iterators provide exactly the operations that set propagators need: union, intersec-
tion, and complement. Most propagators thus do not require temporary data structures.

As for finite domain variables, set propagators now operate on set views. The ob-
vious views for set variables are the identity view and constant-views – like the empty
set, the universe, or some arbitrary set. Constant-views again help derive binary propa-
gators from ternary ones. For example,s1∩s2 = s3 implements set disjointness ifs3 is
the constant empty set.

Symmetric set constraints.The inverse of a set variable is its complement. Acomple-
ment view v= vcompl(x) of a set viewx can be easily derived using the iterators already
introduced:

v.getglb() := icompl(x.getlub()) v.getlub() := icompl(x.getglb())
v.adjglb(D) := x.adjlub(icompl(D)) v.adjlub(D) := x.adjglb(icompl(D))

The propagators for symmetric constraints over Boolean views readily carry over to
sets:x1 = x2∪x3 can be implemented as vcompl(x1) = vcompl(x2)∩vcompl(x3), and
s1 = s2\s3 is equivalent tos1 = s2∩vcompl(s3).

Cross-domain views.With finite domain and set constraints in a single system, cross-
domain views come into play. The most obvious cross-domain view is a finite domain
variable viewed as singleton set. Using generic propagators, this immediately leads to
domain-connecting constraints.

Cross-domain views can support more than one implementation for the same vari-
able type. Set variables, for example, can be implemented with lower and upper bounds
or with their full domain using ROBDDs [7]. A cross-domain view allows lower/upper
bound propagators to operate on ROBDD-based sets, reusing propagators for which no
efficient BDD representation exists.

Finite domain constraints from set propagators.Singleton-views can also be used to
derive pure finite domain constraints from set propagators.For example, the constraint
same([x1, . . . ,xn], [y1, . . . ,ym]) states that the two sequences of finite domain variables
take the same values. Using singleton views,

⋃n
i=1{xi} =

⋃m
j=1{y j} yields an imple-

mentation for this constraint. Ifm= n, and all variables must take different values, a
disjoint union can be used instead.

8 Implementation

The presented architecture can be implemented as an orthogonal layer of abstraction for
any constraint programming system. This section presents the fundamental mechanisms
necessary for iterators and views.

Polymorphism. The implementation of generic propagators, views, and iterators re-
quirespolymorphism: propagators operate on different views, domain operations and it-
erators on different iterators. Both subtype polymorphism(through inheritance in Java,
inheritance and virtual methods in C++) and parametric polymorphism (through tem-
plates in C++, generics in Java, polymorphic functions in ML or Haskell) can be used.

In C++, parametric polymorphism through templates is resolved atcompile-time, and
the generated code is monomorphic. This enables the compiler to perform aggressive
optimizations, in particular inlining. The hope is that theadditional layer of abstraction
can be optimized away entirely. Some ML compilers also applymonomorphization,
so similar results could be achieved. Java generics are compiled into casts and virtual
method calls, any optimization is left to the just-in-time compiler.

Achieving high efficiency in C++ with templates sacrifices expressiveness. Instantia-
tion canonly happen at compile-time. Hence, either C++ must be used for modeling, or
all potentially required propagator variants must be provided by explicit instantiation.
Thechoicewhich propagator to use can however be made at runtime: for linear equa-
tions, for instance, we can test if all coefficients are units, or all are positive, and post
the respective optimized propagators. In Gecode, we currently only use template-based
polymorphism.

For the instantiation of templates as well as for inlining, the code that is instantiated
or inlined must be available at compile time of the code that uses it. This is why most
of the actual code in Gecode resides in C++ header files, slowing down compilation of
the system. On the interface level however, no templates areused, such that the header
files needed forusingthe library are reasonably small.

System requirements.Variable views and range iterators can be added as an orthogonal
extension to existing systems. While value operations are not critical as discussed in
Sect. 2, depending on which domain operations a system provides, efficiency can differ.
In the worst case, domain operations need to be translated into value operations. This
would decrease efficiency considerably, however intermediate computations on range
iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range sequences required for the
minus-iterator. One approach to implement reversal is to extend all iterators such that
they can iterate both backwards and forwards. Another approach is similar to a cache-
iterator: store the ranges generated from the input iterator in an array and iterate in
reverse order from the array. In Gecode, we have chosen so farthe latter approach due to
its simplicity. We are going to explore also the former approach: as variable domains in
Gecode are provided as doubly-linked lists, iteration in both directions can be provided
efficiently.

9 Analysis and Evaluation

This section analyzes the impact different implementations of iterators and views have
on efficiency. Two aspects are evaluated: compile-time polymorphism versus run-time
polymorphism, and iterators versus temporary data structures.

The experiments use the Gecode C++ (version 1.0.0) constraint programming li-
brary [2]. All tests were carried out on a Intel Pentium IV with 2.8GHz and 1GB of
RAM, using Linux and the GNU C++ compiler, version 3.4.3. Runtimes are the average
of 20 runs, with a coefficient of deviation less than 2% for allbenchmarks. Gecode is
competitive in efficiency with state-of-the art systems, a comparison is available on the
Gecode web pages [2].

The optimizedcolumn in Table 1 gives the time in milliseconds of the optimized
system, the other columns are relative tooptimized. The examples used are standard
benchmarks, the first group using only finite domain constraints, the second group using
mainly set constraints.

Code inspection.A thorough inspection of the code generated by the GNU C++ compiler
and the Microsoft Visual C++ compiler shows that they actually perform the optimiza-
tions we consider essential. Operations on both views and iterators are inlined entirely
and thus implemented in the most efficient way. The abstractions do not impose a run-
time penalty (compared to a system without views and iterators).

Templates versus virtual methods.As the previous section suggested, in C++, compile-
time polymorphism using templates is far more efficient thanvirtual method calls. To
evaluate this, we changed the basic operations of finite domain views such that they
cannot be inlined. The required changes are rather involved, so we did not try the same
for iterators and set views. An implementation based on virtual methods will typically
exhibit an even higher overhead. Table 1 shows the results incolumnno-inline. Function
calls that are not inlined cause a runtime overhead between 29% and 58%.

Table 1. Runtime comparison

Benchmark optimizedno-inline temporary
time in ms relative %

Alpha 122.85 141.30 103.70
Donald 0.64 155.60 114.70
Golomb 10 (bound) 1 260.50 158.20 101.10
Golomb 10 (domain) 2 064.00 129.70 100.00
Magic Sequence 500 192.38 129.80 101.40
Magic Square 6 0.88 133.40 105.20
Partition 32 6 930,00 135.50 101.40
Photo 143.15 131.30 99.60
Queens 100 1.90 132.20 99.30
Crew 3.38 — 191.10
Golf 8-4-9 498.00 — 271.40
Hamming 20-3-32 1 496.00 — 200.70
Steiner 9 124.08 — 191.00

Temporary data structures.One important claim is that iterators are advantageous be-
cause they avoid temporary data structures. Table 1 shows incolumn temporarythat
computing temporary data structures has limited impact (about 3%) on finite domain
variables, but considerable impact for set constraints (upto 171% overhead). Tempo-
rary data structures have been emulated by wrapping all iterators in a cache-iterator as
described in Sect. 5.

Applicability. Deriving several instances from a single propagator implementation sig-
nificantly reduces the overall amount of code that needs to bewritten. In Gecode, 31
finite domain propagators are instantiated from 12 generic propagators, 9 Boolean prop-
agators from 4 generic propagators, and 22 set propagators from 9 generic propagators.
The generic propagators make up approximately 3800 lines ofsources code, saving
approximately 4800 lines of code to be written, tested, and maintained.

Obviously, views and iterators are no silver bullet. The mechanism only yields effi-
cient propagators if the compiler can generate the code thatwould otherwise have been
hand-written. If, for example, set complement views are used extensively, the overhead
compared to a hand-written propagator can become prohibitive.

10 Conclusion and Future Work

The paper has introduced an architecture decoupling propagators from variables based
on views and range iterators. We have argued how to make propagators generic, simpler,
and reusable with views for different constraints. We have introduced range iterators as
abstractions for efficient domain operations compatible with views. The architecture
has been shown to be applicable to many finite domain and finiteset constraints. Using
parametric polymorphism for views and iterators leads to anefficient implementation
that incurs no runtime cost.

Future work. An obvious route for future work is to explore richer variable views.
Possible candidates are sums and products of variables going beyond a single variable
per view: the challenge here will be to provide efficient range iterators.

This paper explores views only for implementation purposes. A related question
is whether views can also be useful for modeling or for automatic transformation of
models.

Acknowledgements Christian Schulte is partially funded by the Swedish Research
Council (VR) under grant 621-2004-4953. Guido Tack is partially funded by DAAD
travel grant D/05/26003. Thanks to Patrick Pekczynski for help with the benchmarks,
and to Mikael Lagerkvist for helpful comments. We thank the anonymous reviewers, of
this paper and of a previous version, for their constructivecomments.

References

1. Pascal Brisset, Hani El Sakkout, Thom Frühwirth, Warwick Harvey, Micha Meier, Stefano
Novello, Thierry Le Provost, Joachim Schimpf, and Mark Wallace. ECLiPSe Constraint
Library Manual 5.8. User manual, IC Parc, London, UK, February2005.

2. Gecode: Generic constraint development environment, 2005. Available as an open-source
library fromwww.gecode.org.

3. Carmen Gervet. Interval propagation to reason about sets: Definition and implementation of
a practical language.Constraints, 1(3):191–244, 1997.

4. ILOG S.A. ILOG Solver 5.0: Reference Manual. Gentilly, France, August 2000.
5. Intelligent Systems Laboratory. SICStus Prolog user’s manual, 3.12.1. Technical report,

Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Sweden,April 2005.
6. François Laburthe. CHOCO: implementing a CP kernel. In Nicolas Beldiceanu, Warwick

Harvey, Martin Henz, François Laburthe, Eric Monfroy, Tobias Müller, Laurent Perron, and
Christian Schulte, editors,Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000, number TRA9/00, pages
71–85, 55 Science Drive 2, Singapore 117599, September 2000.

7. Vitaly Lagoon and Peter J. Stuckey. Set domain propagation using ROBDDs. In Mark
Wallace, editor,Tenth International Conference on Principles and Practice of Constraint
Programming, volume 3258 ofLecture Notes in Computer Science, pages 347–361, Toronto,
Canada, September 2004. Springer-Verlag.

8. Tobias M̈uller. Constraint Propagation in Mozart. Doctoral dissertation, Universität des
Saarlandes, Fakultät für Mathematik und Informatik, Fachrichtung Informatik, Im Stadtwald,
66041 Saarbr̈ucken, Germany, 2001.

9. Jean-François Puget. A C++ implementation of CLP. InProceedings of the Second Singapore
International Conference on Intelligent Systems (SPICIS), pages B256–B261, Singapore,
November 1994.

10. Jean-François Puget. A fast algorithm for the bound consistencyof alldiff constraints. In
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), pages
359–366, Madison, WI, USA, July 1998. AAAI Press/The MIT Press.

11. Jean-François Puget and Michel Leconte. Beyond the glass box: Constraints as objects.
In John Lloyd, editor,Proceedings of the International Symposium on Logic Programming,
pages 513–527, Portland, OR, USA, December 1995. The MIT Press.

12. Jean-Charles Ŕegin. A filtering algorithm for constraints of difference in CSPs. InProceed-
ings of the Twelfth National Conference on Artificial Intelligence, pages 362–367, Seattle,
WA, USA, 1994. AAAI Press.

