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On two occasions I have been asked,
’Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right an-
swers come out?’ ... I am not able rightly
to apprehend the kind of confusion of
ideas that could provoke such a question.

Passages from the Life of a Philosopher
Charles Babbage
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Abstract

This thesis explores three new techniques for increasing the efficiency
of constraint propagation: support for incremental propagation, im-
proved representation of constraints, and abstractions to simplify prop-
agation.

Support for incremental propagation is added to a propagator-
centered propagation system by adding a new intermediate layer of
abstraction, advisors, that capture the essential aspects of a variable-
centered system. Advisors are used to give propagators a detailed view
of the dynamic changes between propagator runs. Advisors enable the
implementation of optimal algorithms for important constraints such
as extensional constraints and Boolean linear in-equations, which is
not possible in a propagator-centered system lacking advisors.

Using Multivalued Decision Diagrams (MDD) as the representa-
tion for extensional constraints is shown to be useful for several rea-
sons. Classical operations on MDDs can be used to optimize the rep-
resentation, and thus speeding up the propagation. In particular, the
reduction operation is stronger than the use of DFA minimization for
the regular constraint. The use of MDDs is contrasted and compared
to a recent proposal where tables are compressed.

Abstractions for constraint programs try to capture small and es-
sential features of a model. These features may be much cheaper to
propagate than the unabstracted program. The potential for abstrac-
tion is explored using several examples.

These three techniques work on different levels. Support for in-
cremental propagation is essential for the efficient implementation of
some constraints, so that the algorithms have the right complexity. On
a higher level, the question of representation looks at what a propaga-
tor should use for propagation. Finally, the question of abstraction can
potentially look at several propagators, to find cases where abstractions
might be fruitful.

An essential feature of this thesis is an novel model for general
placement constraints that uses regular expressions. The model is very
versatile and can be used for several different kinds of placement prob-
lems. The model applied to the classic pentominoes puzzle will be used
through-out the thesis as an example and for experiments.
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Sammanfattning

Den här avhandlingen utforskar tre nya tekniker för att öka effektivi-
teten av villkorspropagering: stöd för inkrementell propagering, val av
representation för villkor, samt abstraktion för att förenkla propage-
ring.

Ett propageringssystem organiserat efter propagerare utökas med
stöd för inkrementell propagering genom att lägga till ett nytt ab-
straktionslager: rådgivare. Detta lager fångar de essentiella aspekterna
hos system organiserade efter variabler. Rådgivare används för att ge
propagerare detaljerad information om de dynamiska ändringarna i
variabler mellan körningar av propageraren. Utökningen innebär att
det går att implementera optimala algoritmer för vissa viktiga villkor
såsom tabellvillkor och Boolska linjära olikheter, något som inte är
möjligt i ett system propagator-organiserat system utan rådgivare.

Användandet av MDDer (Multivalued Decision Diagram) som re-
presentation för tabellvillkor visas vara användbart i flera avseenden.
Klassiska MDD-operationer kan användas för att optimera represen-
tationen, vilket leder till snabbare propagering. Specifikt så är reduk-
tionsoperationen kraftfullare än användandet av DFA-minimering för
reguljära villkor. MDD-representationen jämförs också med ett nyligen
framlagt förslag för komprimerade tabeller.

Abstraktioner för villkorsprogram försöker fånga små men vikti-
ga egenskaper i modeller.Sådana egenskaper kan vara mycket enklare
att propagera än den konkreta modellen. Potentialen för abstraktioner
undersöks för några exempel.

Dessa tre tekniker fungerar på olika nivåer. Stöd för inkrementell
propagering är nödvändigt för att kunna implementera vissa villkor
effektivt med rätt komplexitet. Valet av representation för villkor är på
en högre nivå, då det gäller att se vilka algoritmer som skall användas
för ett villkor. Slutligen så måste flera villkor i en modell studeras för
att finna rätt typ av abstraktioner.

Ett utmärkande drag för den här avhandlingen är en ny modell för
generella placeringsvillkor som använder reguljära uttryck. Modellen är
mångsidig och kan användas för flera olika typer av placeringsproblem.
Modellen specialiserad för pentominopussel används genomgående som
exempel och för experiment.
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Chapter 1

Introduction

Constraint programming is a method for modeling and solving combina-
torial (optimization) problems such as scheduling, rostering, routing, and
sequencing. Typical uses might be for scheduling the dispatch of vehicles for
a transport firm, finding a roster for nurses working at a hospital, or finding
appropriate test case vectors for testing an integrated circuit. Constraint
programming is a key method for solving these types of hard, typically NP-
complete, problems in real life applications.

Modeling problems with constraint programming is done by defining the
variables of the problem and the relations, called constraints, that must hold
between these variables for them to represent a solution. A key feature is
that variables have finite domains of possible values they can take.

Given a model of a problem, a constraint programming system can be
used to solve the problem. The two main parts of the solving process are in-
ference and search. Inference in constraint programming is called constraint
propagation, or propagation for short. Propagation removes values for the
variables that do not occur in any solution to a constraint. The process of
repeated propagation steps for the constraints is guaranteed to eventually
reach a fix-point. Propagation is typically not enough to find the solution of
a problem: search must be used. To search for a solution, a guess is made
that decomposes the problem into two or more disjoint sub-problems. The
method of repeated propagation and heuristic decomposition continues re-
cursively for the newly created sub-problems. The order of exploration will
typically be depth first to limit the memory requirements.

1
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Constraint programming systems are readily available for specifying and
solving combinatorial models. For implementing propagation, components
called propagators are used as implementations of constraints. A propagator
encapsulates some inference method and operates on some set of variables.
An important feature of propagators is independence from any other prop-
agator in the system; communication between propagators is done solely
by shrinking the domains of the variables. Propagation is a cornerstone of
constraint programming in two senses: without propagation the constraint
programming process would reduce to generate-and-test; most of the time
spent solving a problem will be spent in propagation.

This thesis presents three new techniques for improving the efficiency of prop-
agation. The techniques are concerned with the implementation of efficient
incremental propagators, what representation of a constraint a propagator
should use, and using abstractions of problems for more efficient propagation.

In the following section, a small example is presented where a Sudoku puzzle
is solved with constraint programming. In the final section of the chapter,
further details of this thesis are presented, including the contributions of the
thesis.

1.1 Solving Sudoku with Constraint Programming

As a simple example, consider the popular Sudoku puzzle. In this puzzle, the
object is to find values between one and nine for the squares in a 9 by 9 grid.
The values must be placed so that all the values appear in each row, column,
and major 3 by 3 block. An instance of the puzzle is a grid with some of
the values already filled in, as is shown in Figure 1.1. One way to model the
Sudoku puzzle with constraint programming, is to define a variable for each
square with the initial domain of {1..9}. For the squares that are pre-filled,
the other values are removed from the initial domain. The rules of the puzzle
directly correspond to the constraints that must be satisfied in a solution.

To solve a model of a Sudoku instance, a constraint programming system
is used. The system will have a set of variable types, constraints, heuristics,
and search methods. Almost all systems have finite domain integer vari-
ables, so the variables from the model can be used directly. A very common
constraint called all-different, enforcing that a set of variables must be
pair-wise distinct, can be used to implement the rules for the rows, columns,
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Figure 1.1: A Sudoku instance

and blocks. If all-different is not available then the constraint can be
replaced by a set of not-equals constraints, one for each pair of variables in
the original constraint. A typical heuristic used for decomposing a problem
is called first fail, and works by taking the variable with the least amount
of values left, and trying whether the variable can or can not be assigned to
one of its still possible values. The typical search method used is depth first
exploration.

Implementing the model in a constraint programming system such as
Gecode [20] (see also Section 2.3), is straight-forward. The complete pro-
gram for solving the puzzle takes less than 70 lines of C++ code. Since the
all-different constraint is available (in Gecode called distinct), a total
of 27 constraints are needed. Solving a 9 by 9 Sudoku instance takes a frac-
tion of a millisecond on a modern computer. The search tree explored can
be seen in Figure 1.4.

If stronger propagation is used, then the search tree will be smaller, in
this case just a single node (as seen in Figure 1.5). Stronger propagation is in-
voked by adding the parameter ICL_DOM to the calls to distinct. For example,
the call distinct(this, m.row(i)) becomes distinct(this, m.row(i),

ICL_DOM) instead. The reduction on search-tree size will in this case be bal-
anced out by the increase in propagation time. In general a trade-off must
be made between the level of effort spent on propagation and the potential
reduction in search.
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1 #include "gecode/int.hh"

2 #include "gecode/search.hh"

3 #include "gecode/minimodel.hh"

4 #include <iostream>

5 using namespace Gecode;

6

7 /// Sudoku model.

8 class Sudoku : public Space {

9 public:

10 /// Values for the fields

11 IntVarArray x;

12 /// Model set-up

13 Sudoku(const int instance[9][9])

14 : x(this, 9*9, 1, 9) {

15 /// Access the x-array as a 9 by 9 matrix

16 Matrix<IntVarArray> m(x, 9, 9);

17

18 // Constraints for rows and columns

19 for (int i=0; i<9; i++) {

20 distinct(this, m.row(i));

21 distinct(this, m.col(i));

22 }

23

24 // Constraints for squares

25 for (int i=0; i<9; i+=3)

26 for (int j=0; j<9; j+=3)

27 distinct(this, m.slice(i, i+3, j, j+3));

28

29 // Fill-in predefined fields

30 for (int i=0; i<9; i++)

31 for (int j=0; j<9; j++)

32 if (int v = instance[i][j])

33 rel(this, m(i,j), IRT_EQ, v);

Figure 1.2: A C++ program for solving a Sudoku puzzle.
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34 // Decomposition heuristic

35 branch(this, x, INT_VAR_SIZE_MIN, INT_VAL_SPLIT_MIN);

36 }

37

38 /// Constructor for cloning

39 Sudoku(bool share, Sudoku& s) : Space(share, s) {

40 x.update(this, share, s.x);

41 }

42 /// Perform copying during cloning

43 virtual Space* copy(bool share) {

44 return new Sudoku(share,*this);

45 }

46 };

47

48 int main(int argc, char* argv[]) {

49 int instance[9][9] = {

50 {8, 0, 0, 0, 0, 1, 0, 4, 0},

51 {2 ,0, 6, 0, 9, 0, 0, 1, 0},

52 {0, 0, 9, 0, 0, 6, 0, 8, 0},

53 {1 ,2 ,4, 0, 0, 0, 0, 0, 9},

54 {0, 0, 0, 0, 0, 0, 0, 0, 0},

55 {9 ,0, 0, 0, 0, 0, 8, 2, 4},

56 {0, 5 ,0, 4, 0, 0, 1, 0, 0},

57 {0, 8 ,0, 0, 7, 0, 2, 0, 5},

58 {0, 9 ,0, 5, 0, 0, 0, 0, 7}};

59 Sudoku* root = new Sudoku(instance);

60 Sudoku* sol = dfs(root);

61 std::cout << sol->x << std::endl;

62 delete root; delete sol;

63 return 0;

64 }

Figure 1.3: A C++ program for solving a Sudoku puzzle (continued).
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Figure 1.4: The search tree for the Sudoku instance from Figure 1.1 using
the program from Figure 1.2. A circle represents a node where decomposition
is needed, a square is a failure, and a rhombus form is a solution.

Figure 1.5: The search tree for the Sudoku instance from Figure 1.1 using
the program from Figure 1.2 with stronger propagation. The solution is
found through propagation only.

1.2 This thesis

This thesis explores three new techniques for increasing the efficiency of
constraint propagation: support for incremental propagation in propagator-
centered systems, representation of constraints, and using abstractions to
simplify propagation. This section gives a short overview of each of these
techniques.

Incremental propagation. A constraint programming system can orga-
nize the propagation process based on either modified variables (variable-
centered propagation) or on the actual propagators that need to be executed
(propagator-centered propagation). Variable-centered systems can give de-
tailed modification information (needed for some incremental algorithms)
relatively cheaply, while a propagator-centered system has good properties
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for organizing propagators of vastly different kinds and complexity. Support
for incremental propagation is added to a propagator-centered propagation
system by adding a new intermediate layer of abstraction called advisors,
capturing the essential aspects of a variable-centered system. Advisors are
used to give propagators a detailed view of the dynamic changes between runs
of the propagator. The addition allows the implementation of optimal algo-
rithms for some important constraints such as extensional constraints and
Boolean linear in-equations, which is not possible in a propagator-centered
system lacking advisors.

Constraint representation. The representation of a constraint can have
a huge impact on the effectiveness of propagation. Using Multivalued De-
cision Diagrams (MDD) as the representation for extensional constraints is
shown to be useful for several reasons. Classical operations on MDDs can be
used to optimize the representation, and thus speeding up the propagation.
In particular, the reduction operation is stronger than the use of DFA min-
imization for the regular constraint. The use of MDDs is contrasted and
compared to a recent proposal where tables are compressed.

Abstraction. Abstractions for constraint programs try to capture small
and essential features of a constraint program. These features may be much
cheaper to propagate than the unabstracted program. The potential for
abstraction is explored using several examples.

The three techniques described above work on different levels. Support for
incremental propagation is essential for the efficient implementation of some
constraints, so that the algorithms have the right complexity. On a higher
level, the question of representation looks at what data structure a propa-
gator should use for propagation. Finally, the question of abstraction can
potentially look at several propagators, to find cases where the purposes
of the model for capturing the problem, and the level of detail needed for
efficient propagation differ.

An essential feature of this thesis is an novel model for general placement
constraints that uses regular expressions. The model is very versatile and
can be used for several different kinds of placement problems. The model as
applied to the classic pentominoes puzzle will be used through-out the thesis
as an example and for experiments.
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1.2.1 Contributions

In the following list, the main contributions of this thesis are listed, with
references to the chapters they are described in, as well as the papers that
have been published.

Incremental propagation (Chapter 4) A model and an implementation
of advisors, an addition to propagator centered systems that allow the
same, incremental algorithms as in variable-centered systems. The
addition is show to be worthwhile using both analytical and practical
benchmarks. Advisors have been integrated into the Gecode system,
and are available from version 2.0.0 [20].

Published in [38], joint work with Christian Schulte, KTH. The pre-
sentation here is extended to include a detailed description of variable-
centered versus propagator-centered systems, some new possibilities for
using advisors, and a full model for a realistic constraint programming
systems using views.

Propagator representation (Chapter 5) A new representation for generic
global constraint is proposed based on Multivalued Decision Diagrams.
The properties of the constraint and of the representation is detailed,
and compared with other representations. In particular, the DFA min-
imization used for the regular constraint is shown to be weaker than
MDD reduction.

Manuscript under preparation, joint work with Peter Tiedemann, IT
University, Copenhagen, Denmark.

Abstraction (Chapter 6) The potential for using abstractions of problems
is shown, together with some potential uses of it.

On-going, joint work with Christian Schulte.

Placement problems (Chapter 3, Section 6.1) A general, versatile, effi-
cient, and simple model for placement problems is introduced that
uses regular constraints. The model has been included in Gecode
from version 2.0.0 [20].

Published in [37], joint work with Gilles Pesant, École Polytechnique
de Montréal, Montreal, Canada.



Chapter 2

Constraint Programming

Constraint programming is a method to specify and solve combinatorial
problems. This chapter gives an overview of constraint programming from
both a formal perspective and how a system is implemented. First, the for-
mal model of constraint programming is presented. In Section 2.2 constraint
programming systems are described, since we will need to discuss the exe-
cution properties of a constraint system. Finally, in Section 2.3 the Gecode
system is described.

2.1 Formal model

In the following, a formal model is defined that captures the essential aspects
of constraint programming.

Variables and domains. There is a finite set of variables Var and a finite
set of values Val . A domain d ∈ Dom is a set of values a variable can take,
Dom = P(Val). A store s ∈ Store is a complete mapping from variables to
domains, Store = Var → Dom. An assignment is a store where the range of
the function is restricted to singleton sets ({{v} | v ∈ Val}), instead of the
full set of domains. A pair of a variable x and a value v is called a literal.

Set operations ⋄ are lifted to a pair of stores S1 and S2 in the natural,
point-wise way (S1 ⋄ S2 = λx ∈ Var . S1(x) ⋄ S2(x)). Similarly, set relations
∼ are also lifted to stores (S1 ∼ S2 = ∀x ∈ Var . S1(x) ∼ S2(x)). Both
operations and relations can be restricted to a subset of the variables by
sub-scripting the operation or relation with the set. For example, stores S1

9
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and S2 are equal with respect to a set of variables X ⊆ Var , written as
S1 =X S2, iff ∀x ∈ X.S1(x) = S2(x).

A store S1 is stronger than a store S2, written S1 ≤ S2, if S1 ⊆ S2. A
store S1 is strictly stronger than a store s2, written S1 < S2, if S1 ≤ S2 and
S1 6= S2. The disagreement set dis (S1, S2) of stores S1 and S2 is defined as
{x ∈ Var | S1 6={x} S2}.

A tuple of values over variables x1, . . . , xn can be turned into a store in
the following way.

Store (〈v1, . . . , vn〉) = λx ∈ Var .

{

{vl} if x = xl for some l ∈ {1, . . . , n}
Val otherwise

Constraints. A constraint c ∈ Con over the set of variables var(c) =
{x1, . . . , xn} is defined as the set of assignments that are solutions to the
constraint, Con = P({〈v1, . . . , vn〉 | vi ∈ Val}). A tuple 〈v1, . . . , vn〉 in a
constraint, where var(c) = {x1, . . . , xn}, is called a support for any literal
〈xi, vi〉.

A constraint c can be turned into a store by taking the union of all the
solutions to the constraint, Store (c) =

⋃

t∈c Store (t). In the opposite direc-
tion, a store can be turned into a constraint over variables x = {x1, . . . , xn}
using Cons (s, x) = {〈v1, . . . , vn〉 | ∀i.vi ∈ s(xi)}.

Constraint satisfaction problems. A constraint satisfaction problem
(CSP) is a pair of a set of constraints C and a store S, 〈C, S〉 ∈ P(Con) ×
Store. A tuple 〈v1, . . . , vn〉 in a constraint over variables x1, . . . , xn is valid
under the store S iff ∀i.vi ∈ S(xi). An assignment a is a solution to the CSP
〈C, S〉, both over variables {x1, . . . , xn}, iff the assignment is a solution for
each constraint, ∀c ∈ C. 〈a(x1), . . . , a(xn)〉 ∈ c, and the assignment is valid
for the store, a ⊆ S. The solutions to a CSP, sol(〈C, S〉), is the set of all
assignments that are solutions.

A constraint c is entailed in the store S iff Cons (S, var(c)) ⊆ c. Entailed
constraints can safely be removed from the CSP since they no longer restrict
the set of solutions.
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2.2 Constraint programming systems

To solve a CSP in practice, a constraint programming system is used. A sys-
tem will typically not use the CSP formulation directly: constraints defined
as the set of tuples they accept are exponential in the arity of the constraint.
Instead, when possible intensional components called propagators are used,
where a propagator will implement a constraint. Typical examples are rela-
tions, linear equations, and all-different.

This section describes constraint programming systems. The main com-
ponents are variables and propagators. Additionally, a constraint program-
ming system needs to organize propagation and perform search.

Variables. Variables with finite domains of uninterpreted values are fine
for a formal model, while in practice the set of values will have some meaning.
The most typical set of values is some finite subset of integer. Another type
of value is finite sets of integers, where the domain of a variable will be a set
of sets of values.

Propagators. A propagator is a function p that takes a store s as input
and returns a new store s′. A propagator p must be contracting : p(s) ≤ s
for all stores s. A propagator p must also be monotonic: if s1 ≤ s2 then
p(s1) ≤ p(s2) for all stores s1 and s2. A store s is a fix-point of a propagator
p, if p(s) = s. That a propagator is contracting means that it can only
remove values from a domain. That a propagator is monotonic means that
starting propagation from a larger domain never gives more propagation.

A propagator p that references variables x1, . . . , xn is said to implement
its associated constraint cp. The associated constraint is defined as the set
of assignments that the propagator identifies as solutions:

cp = {〈v1, . . . , vn〉 | p(Store (〈v1, . . . , vn〉)) = Store (〈v1, . . . , vn〉)}

For a given constraint c, any propagator p such that cp = c can be used.
Note that there usually exists many different propagators taht can be used.
The difference is in how much propagation they can perform.

Constraint programs. Analogously to constraint satisfaction problems,
we can combine a store and a set of propagators to form a constraint program
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(CP) 〈P, S〉. The set of solutions to a CP is defined as:

sol(〈P, S〉) = {v = 〈v1, . . . , vn〉 | ∀p ∈ P.p(Store (v)) = Store (v)}

Similar to constraints in a CSP, a propagator is entailed for a store s iff for
all stores S′ ≤ S, it holds that p(S′) = S′. An entailed propagator can be
removed from the system, since it will no longer do any propagation.

Variable dependencies. To manage propagation efficiently, a constraint
programming system needs to know which propagators may affect which
variables, and for which variables a domain change might make a propagator
not be at a fix-point.

A set of variables X ⊆ Var is sufficient for a propagator p, if it satisfies
the following properties. First, no output on other variables is computed,
that is, S =Var−X p(S) for all stores S. Second, no other variables are
considered as input: if S1 =X S2, then p(S1) =X p(S2) for all stores S1, S2.

For each propagator p a sufficient set of variables, its dependencies,
var(p) ⊆ Var is defined. Dependencies are used in propagation as follows:
if a store S is a fix-point of a propagator p, then any store S′ ≤ S with
var(p) ∩ dis (S, S′) = ∅ is also a fix-point of p. To better characterize how
propagators and variables are organized in an implementation, the set of
propagators prop[x] depending on a variable x is defined as p ∈ prop[x] if
and only if x ∈ var(p).

Propagation. Constraint propagation refers to the process of finding the
greatest mutual fix-point (equivalently, the weakest mutual fix-point with
respect to the strenght of stores) of the set of propagators from an initial
store S that propagation starts from. Since propagators are defined to be
monotonic contracting functions, it is guaranteed that there exists a unique
greatest mutual fix-point. The cornerstone of a propagation algorithm is to
maintain some representation of what propagators might not be at fix-point.
There are two main possibilities of what to keep track of, propagators and
variables. Variable-centered propagation is controlled by the set of modified
variables with some additional information (for example, variable and con-
straint in AC3 [41], variable and value in AC4 [43]). Propagator-centered
propagation is controlled by the set of propagators still to be propagated,
see for example [6].
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Propagate(P,s)
begin

N ← P ;
while N 6= ∅ do

remove p from N ;
s′ ← p(s);
N ← N ∪

⋃

x∈dis(s,s′) prop[x];
s← s′;

return d;
end

Algorithm 1: Propagator-centered propagation

Propagate(P,s)
begin

V ← Var ;
while V 6= ∅ do

remove v from V ;
foreach p ∈ prop[v] do

s′ ← p(s);
V ← V ∪ {v | v ∈ dis (s, s′)};
s← s′;

return d;
end

Algorithm 2: Variable-centered propagation

Propagator-centered propagation is shown in Algorithm 1. It is assumed
that all propagators are contained in the set P . The set N contains propaga-
tors not known to be at fix-point. The remove operation is left unspecified,
but a realistic implementation bases the decision on priority or cost, see for
example [52].

Variable-centered propagation is shown in Algorithm 2. The difference
from propagator-centered propagation is that instead of a set of propagators
to run (N in Algorithm 1), a set of variables that have been modified is
used (V in Algorithm 2). It is common that a propagator will in addition
to the store receive the variable that is being propagated (for incremental
propagation), and will not modify that variable.

Algorithms 1 and 2 do not spell out some details. Failure is captured
by computing a failed store (a store s with s(x) = ∅ for some x ∈ Var) by
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propagation. Letting propagators signal failure directly (and thereby abort-
ing the propagation loop directly) is more efficient. A real system should
also pay attention to entailment or idempotency of propagators. Propa-
gation events describing how stores change are discussed in Sect. 4.4. For
a complete discussion of constraint propagation algorithms see [7], and for
the implementation of these algorithms in constraint programming systems
see [51].

Search. Propagation alone is most often not enough to reduce the store to
a single solution. The simplest example is when there might be more than
one solution. In this case, the system must resort to searching for a solution.

When propagation has finished a constraint programming system must
make a heuristic guess. This guess might be a generic procedure (split the
domain of the variable with the fewest values left) or it might be something
problem specific. To represent the choices, new propagators are added to the
system. A set of propagators {p1, . . . , pn} are said to be branching propaga-
tors for a CP 〈P, S〉 if the propagators induce a partition of the solutions to
the CP. Formally, both the following conditions must hold.

sol(〈P, S〉) =
⋃

p∈{p1,...,pn}

sol(〈P ∪ {p}, S〉)

sol(〈P ∪ {p}, S〉) ∩ sol(
〈

P ∪ {p′}, S
〉

) = ∅, ∀p, p′ ∈ {p1, . . . , pn}.p 6= p′

The first property means that the set must not remove any solutions. The
second property ensures that solutions are not duplicated in the branches.
The first property is neccessary for ensuring the soundness of the process.
The second property is neccessary to not do any unneccessary work.

In Algorithm 3 a basic version of depth first search is shown. It uses prop-
agation as a subroutine, and it will return the first solution found. For a real
implementation of search, issues such as interruption, memory management,
stack size, and restartability must be taken into account.

2.3 Gecode

Gecode [20] is an open source constraint programming system that imple-
ments propagator-centered propagation. It is implemented in C++, and fea-
tures: a small, simple, and variable domain agnostic kernel; several vari-
able domains (Booleans, finite domain integers, finite sets of integers, ...);
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DFS(P,s)
begin

s← Propagate(P, s);
choose branching propagators {p1, . . . , pn};
foreach p ∈ {p1, . . . , pn} do

s′ ← DFS(P ∪ {p}, s);
if s 6= ⊥ then

return s′

return ⊥

end

Algorithm 3: Depth first search

many global propagators (all-different, regular, circuit, cumulatives,
global-cardinality, ...); standard search engines (DFS, LDS, and BAB);
a graphical interactive search tool (Gist); as well as many example problems.
The system is used in this thesis for implementation and benchmarking.

The system aims to be open, free, portable, efficient, and accessible.
Gecode is designed to be open for modifications and additions, facilitating
experiments. It is free since it is distributed under the MIT license. The sys-
tem is portable to most major modern platforms and modern C++-compilers.
The efficiency of the system is competitive with leading commercial systems
on equivalent models. The extensive reference documentation makes the
system accessible.

All the above points are important for using the system in the thesis.
An open and accessible system is needed for modifying the architecture as
in Section 4. A free system is needed for reproducibility of the results, and
portability is needed for the same reason. An efficient system makes sure
that improvements shown are not due to built-in inefficiencies that would
disappear in a full system. This last point is very important for showing
that the results are also practically relevant: they are demonstrated in a
real, optimized system.





Chapter 3

Modeling Placement Problems

Solving a problem using constraint programming is a design process. What
variables are needed to represent the problem, what kind of constraints are
needed, and how should these constraints be implemented are some of the
typical questions that arise.

In this section a model for general placement problems is developed.
As a specialization, the model is used to solve the Pentominoes problem.
Pentominoes are the shapes constructed from five equal-sized squares where
the squares form a connected component, giving twelve possible shapes. The
pieces can be rotated and mirrored to obtain symmetrical variants.

In Section 3.1 the regular constraint is described. In the following sec-
tion, a model for general placement constraints is introduced that uses the
regular constraint. In Section 3.3 the model is extended to handle the Pen-
tominoes problem. The final section concludes with an evaluation of the
model.

3.1 The regular constraint

The regular constraint [46] can be used to enforce that a vector of variables
forms a word in a regular language. The constraint was introduced to model
certain common structures in rostering problems, generalizing the pattern

and stretch constraints.
To describe the constraint, some basic knowledge of regular languages

is needed. After that the propagation algorithm for the constraint can be
presented.

17
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Regular languages. A regular expression (RE) is an expression in the
language R := RR | R∗ | R|R | (R) | ǫ | X where X is any value in Val . The
regular expression R1R2 matches anything that matches R1 followed by R1

(concatenation), the expression R∗ matches zero or more Rs (Kleene star),
R1|R2 matches an R1 or an R2 (disjunction), (R) matches R (grouping), ǫ
matches the empty string, and values match themselves. The expression Rn

is a short-hand for the expression R concatenated n times, and the expression
R+ is shorthand for RR∗.

A finite automaton (FA) is a tuple 〈S, T, q, A〉, where S is a set of states,
T ∈ S × Val → P(S) is a transition function, q ∈ S is the start state, and
A ⊆ S is a set of accepting states. An FA matches a string x1, . . . , xn if
there is a sequence of states q1, . . . , qn+1 such that q1 = q, qi+1 ∈ T (qi, xi)
for i = 1, . . . , n, and qn+1 ∈ A.

If the range of the transition function is S instead of P(S), the FA is
a deterministic finite automaton (DFA), otherwise it is a non-deterministic
finite automaton (NFA). DFAs and NFAs can recognize the same languages,
although a DFA might be exponentially bigger [30]. A DFA can be min-
imized cheaply (O(n log n)), while minimization of an NFA is PSPACE-
complete [33] and thus intractable in general. A regular expression can be
translated into either an NFA or a DFA, and both methods are common in
applications where regular expression matching is used.

Propagating a regular constraint. The propagation algorithm for the
regular constraint uses a data structure called a layered graph (LG). The LG
for a regular constraint over variables x1, . . . , xn is constructed by unfold-
ing the DFA 〈{q1, . . . , qm}, T, q, A〉 into a graph

〈

∪n+1
i=1 N i, E

〉

, where layer
N i contains states qi

1, . . . , q
i
m, and edges are between consecutive layers fol-

lowing the DFA transitions, E = {
〈

qi
a, v, qi+1

b

〉

| qb ∈ T (qa, v), v ∈ Val}.
Propagation proceeds by finding the union of paths from q1 to any qi+1

f

where qf ∈ A. The set of paths has an edge between layers i and i+1 iff the
edge value is valid for xi, and the set of values used are the ones supported
for xi.

The sketch in Algorithm 4 shows how the base implementation of the
regular constraint can be done. To improve efficiency, the layered graph is
kept around as state, and updated incrementally each time depending on the
changes in the domains of the variables [46]. A basic upper bound for the
time-complexity of the algorithm is O(|E|).
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Regular(s)
begin

Let LG be the edge-marked graph 〈V, E〉 =
〈

N i
j , ∅

〉

, where

i ∈ {1, . . . , n + 1}, j ∈ {1, . . . , m};
foreach qa, v, qb such that qb ∈ T (qa, v) do

foreach i ∈ {1, . . . , n} do

if v ∈ s(xi) then

E ← E ∪
〈

qi
a, v, qi+1

b

〉

;

Mark all nodes and edges reachable from q1;
Remove edges not leading to a state in {qn+1

k | qk ∈ A};
Remove values from s not support by marked edge in LG;
return s

end

Algorithm 4: The propagation algorithm for regular

The propagation algorithm works for both DFAs and NFAs without any
significant modifications. The reason to use DFAs is mainly that minimiza-
tion is possible, which will remove any redundancies in the DFA and thus
make E smaller. However, if the NFA is smaller than the minimized DFA it
is of course preferable to use the NFA instead.

3.2 Shape Placement as a Regular Expression

Consider placing the shape in Figure 3.1(a) in the 4 by 4 grid shown in
Figure 3.1(b). In order to encode its placement as a string, we cut the
grid into horizontal strips corresponding to the rows and concatenate them
starting with the top strip (Figures 3.1(c) and 3.1(d), we could equivalently
have made vertical strips corresponding to columns). Each square of the
resulting sequence ABC. . . P takes value 1 if the shape overlaps the square
and value 0 otherwise. For example, placing the shape on squares B, C, G,
and K (Figure 3.1(e)) results in the string 0110001000100000. This string
and all other strings corresponding to placing that shape on the grid belong
to the language described by regular expression 0∗110310310∗: first comes
some number of 0’s, then two 1’s in a row (covering squares B and C in our
example placement), then come exactly three 0’s (not covering places D, E,
and F), and so on. The variable number of 0’s at the beginning and at the
end makes the expression match any placement of the shape in the grid.
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Figure 3.1: Placing a shape in a grid.
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There is one problem however, since the regular expression constructed
allows “placing” the shape on squares D, E, I, and M (Figure 3.1(g)). That is,
the shape may wrap around the grid. To prohibit this, we add a new dummy-
column to the grid, so that it looks like the grid in Figure 3.1(h). Squares
Q to T are fixed to zero, and the regular expression for the placement of
the shape is modified to include the extra column, resulting in 0∗110410410∗

matching, for example, the placement in Figure 3.1(i). The language of
that regular expression is now precisely the strings corresponding to possible
placements of the given shape. From now on, we will assume that grids have
an extra column on the right.

3.3 Pentominoes

In this section a model for the classic Pentominoes problem is developed.
Pentominoes are the shapes constructed from five equal-sized squares where
the squares form a connected component. This leads to twelve possible
shapes, as can be seen in Figure 3.2. The pieces are given standard names
inspired by their shape. The pieces can be rotated and mirrored to obtain
symmetrical variants.

There is a long history of using the pentomino pieces as a puzzle. For
example, the pieces can be fitted together to form rectangles of sizes 6× 10,
5 × 12, 4 × 15, and 3 × 20, as well as 8 × 8 with the middle 2 × 2 squares
empty. The latter problem was solved in 1958 by Scott using a backtracking
algorithm, finding all the 65 possible non-symmetrical solutions [55]. In 1965,
Fletcher found the number of non-symmetrical solutions for the rectangles
without empty squares, again using a backtracking algorithm [19]. These
results were obtained using specialized algorithms implemented to solve these
specific problems.

Other sizes of pieces can also be used, and are then called polyominoes.
A very successful game based on polyominoes is Tetris, which is based on
polyominoes composed of four squares (also called tetrominoes). In the fol-
lowing, we will consider placing a general set of polyominoes on a board of
fixed size. The pieces to be placed can be rotated and mirrored.

To model pentominoes, the fact that more than one piece should be
placed needs to be handled. Furthermore, symmetrical versions of pieces
must be allowed.

We associate a distinct variable to each square on the board, whose value
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Figure 3.2: The twelve pentomino pieces

is the number of the piece which is placed over it. For each piece, we define
one regular constraint for placing it on the board.

Rotating pieces. In difference to placing a shape as in the previous sec-
tion, a pentomino piece may be rotated. To handle that, we can use dis-
junctions of regular expressions for all the relevant rotations. Consider the
rotated versions of the piece from Figure 3.2(c) as shown in Figure 3.3. The
regular expression for placing the piece shown in Figure 3.3(a) on a 5 by 5
grid is 0∗10211110∗, and for the piece in Figure 3.3(e) it is 0∗110410410410∗.
To combine the regular expressions for the pieces we can simply use disjunc-
tion of regular expressions, arriving at the expression (0∗110410410410∗)|
(0∗10211110∗). There are 8 symmetries for the pieces in general. The 8
disjuncts for a particular piece might, however, contain less than 8 distinct
expressions. This redundancy is removed when the automaton for the ex-
pression is computed, since it is minimized.

Using disjunctions is naturally not limited to placing symmetrical pieces,
it can also be used for placing alternative shapes or alternative pieces.
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Figure 3.3: Rotations of the L-piece from Figure 3.2.

Placing several pieces. To generalize the above model to several pieces,
we let the variables range from 0 to n, where n is the number of pieces to
place. Given that we place three pieces, and that the above shown piece
is number one, we will replace each 0-expression with the expression ¬1,
indicating all values other than 1. Thus, the original regular expression
becomes (¬1)∗11(¬1)41(¬1)41(¬1)41(¬1)∗. Given that the expressions ¬v
can grow quite large, the number of edges in the DFAs may grow significantly.
The effects of this growth, and a method for dealing with it is discussed in
Section 6.1.

Additionally, the end of line marker gets its own value. This marker is
used only in the places of an expression where an new-line should occur.
Without a special value for the end marker we could not use the model to
place non-contiguous pieces.

Removing board symmetries. Symmetry breaking is important to gain
speed when searching for many (all) solutions. Puzzles of the pentomino
form are often solved to find all possible non-symmetrical arrangements. The
symmetries can be removed by adding a lexicographical constraint between
the board and each one of its symmetrical rotations [23] and mirrorings. This
adds 7 lexicographical constraints to the model for square boards, and 3 for
non-square boards.

Symmetry breaking constraints can slow down searching for a single so-
lution if the branching heuristic and the symmetry breaking is at odds. This
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problem is helped by ensuring that the branching heuristic tries to find the
lexicographically least solution first by ordering the values of the pieces in
accordance with the heuristics choice.

3.4 Evaluation

To evaluate the model the four classic pentomino instances are tested: pack-
ing squares of sizes 20× 3, 15× 4, 12× 5, and 10× 6 with the twelve distinct
pentominoes. The models are solved both for finding a first and all solutions,
with and without symmetries. The branching strategy is to instantiate the
variables from top to bottom, trying to place “harder” pieces first. The order-
ing of the pieces used is LFTWYIZNPUXV, which was chosen by hand. The
experiments were run using Gecode 2.1.1 as the CP system on an Athlon 64
3500+ with 2GB of RAM. All results presented are based on 25 runs, with
a deviation of less than 5%.

The results are shown in Tables 3.1 and 3.2. The results show that the
problem can be solved readily using the simple model described here. The
use of symmetry breaking helps a lot when searching for all solutions, and
even in one case when searching for the first solution. If the ordering in the
symmetry breaking is reversed, the time and number of failures for finding
the first solution is increased substantially.
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Table 3.1: Packing pentominoes, 1st solution. With and without symmetry
breaking. Time is given in milliseconds.

1st, none 1st, sym
Size failures time failures time

20× 3 25 129 25 484 8 697 9 408
15× 4 4 700 4 478 4 700 4 498
12× 5 541 553 541 542
10× 6 893 1 103 893 1 114

Table 3.2: Packing pentominoes, all solutions. With and without symmetry
breaking. Time is given in milliseconds.

all, none all, sym
Size solutions failures time solutions failures time

20× 3 8 35 680 34 989 2 8 740 9 471
15× 4 1 472 649 068 587 144 368 238 743 229 520
12× 5 4 040 2 478 035 2 390 850 1 010 788 310 810 120
10× 6 9 356 5 998 165 6 760 211 2 339 1 837 711 2 206 540





Chapter 4

Propagator Implementation

While incremental propagation for global constraints is recognized to be
important, little research has been devoted to how propagator-centered con-
straint programming systems should support incremental propagation. This
chapter introduces advisors as a simple and efficient, yet widely applicable
method for supporting incremental propagation in a propagator-centered
setting. The chapter presents how advisors can be used for achieving differ-
ent forms of incrementality and evaluates cost and benefit for several global
constraints.

4.1 Introduction

Global constraints are essential in constraint programming as they are useful
for modeling and crucial for efficient and powerful propagation. For many
propagators implementing global constraints, incrementality is important for
efficiency.

The key features to support incremental propagation are state for prop-
agators (to store data structures for incremental propagation) and modifi-
cation information (which variables have been modified and how have their
domains changed). Without state, incrementality is impossible. Without
modification information, the asymptotic complexity of a propagator is at
least linear in the number of variables: a propagator must scan all its vari-
ables for modification.

Recall the division between variable-centered and propagator-centered
propagation. Providing modification information to a propagator is straight-
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forward with variable-centered propagation, and is used in systems such
as Choco [36], ILOG Solver [31], and Minion [22]. This is not true for
propagator-centered propagation which is for example used in CHIP [17],
SICStus [14], and Gecode [20, 52]. While propagator-centered propagation
typically lacks support for modification information, it is simple and has
important advantages such as fix-point reasoning, priorities, and priority-
based staging [52].

This chapter presents advisors as a simple, efficient, yet widely applicable
method for supporting incremental propagation in a propagator-centered
setting. The idea for advisors is not new; similar concepts called demons
are used in CHIP [17] and SICStus [13]. This chapter, however, is the first
attempt to define a model, to describe an implementation, and to analyze
advisors.

Basic requirements and approach. For propagator-centered propaga-
tion, it is not too difficult to record for a propagator its modified variables.
However, information about modified variables is often not what a propaga-
tor needs. For example, when a variable x is modified, a propagator might
need to know the position of x in an array, or the node in a variable-value
graph corresponding to x. That is, a propagator requires propagator-specific
information.

Providing information on domain change is difficult in a propagator-
centered setting: the information is specific to each propagator, in contrast
to variable-centered propagation where the information is the same for all
constraints. This relies on the convention that a propagator that is invoked
for variable x in a variable-centered system should not change that variable.
Thus, for all the propagators depending on x the information will be the
same. Moreover, since most propagators do not use domain change informa-
tion, the information should be computed on demand for the propagators
that need it, if any. This is needed so that the overall efficiency of a system
is not compromised.

Taking these issues into account, advisors are programmed for a par-
ticular propagator to support propagator-specific modification information.
Like propagators, advisors are generic in that they can be used with ar-
bitrary variable domains. Advisors are second-class citizens compared to
propagators: advisors cannot propagate, they can only advise propagators
in order to achieve incremental and more efficient propagation. The second-
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class citizen status is a deliberate design choice: advisors are designed to
be the simplest possible extension to support incremental propagation while
introducing close to no overhead.

4.2 Detailed formal model

This section introduces a more detailed formal model for a propagation sys-
tem than in Section 2.2. The detail is needed to reason about the way a
propagator executes and how the domain of a variable changes. The setup
is slightly uncommon: a propagator is a function that takes a store and a
state as input, and returns a log as a sequence of tell operations and a new
state. The log will describe the modifications to the variable domains, while
the updated state is used for incremental propagation. These two concepts
are essential for describing propagation with advisors.

Tells and logs. A tell x ∼ n describes how to update a domain, where
x ∈ Var and n ∈ Z and ∼ is one of the relation symbols ≤,≥, 6=. The
store update s[x ∼ n] of a store s by a tell x ∼ n is defined as follows:
s[x ∼ n] (x) = {m ∈ s(x) | m ∼ n} and s[x ∼ n] (y) = s(y) if x 6= y. Note
that s[t] ≤ s for any tell t and store s. A tell t is pruning for a store s,
if s[t] < s. The relation symbols in a tell captures most domain updates
typically found in systems.

Propagators describe the result of propagation by a tuple of tells, called
log. The domain update s[l] of a store s by a log l successively applies the
updates from l to s. The update s[〈〉] by the empty log is s itself. For a
non-empty log 〈t1, . . . , tn〉 with n > 0, the update s[〈t1, . . . , tn〉] is defined as
(s[t1])[〈t2, . . . , tn〉]. Clearly, s[l] ≤ s for any log l and store s.

A log 〈t1, . . . , tn〉 is pruning for a store s if n = 0, or if t1 is pruning for
s and 〈t2, . . . , tn〉 is pruning for s[t1]. Note that the empty log is pruning
and that a pruning log can contain multiple tells for the same variable. An
important property is that a pruning log will always be of finite size, since
each tell will remove at least one value from one variable, and there are a
finite number of values to remove.

Given a store s and a tell t = x ∼ n, the set of values removed by
performing the tell is ∆(s, x, t) = s(x)− s[t] (x).
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Propagate(P,s)
begin

N ← P ;
while N 6= ∅ do

remove p from N ;
〈l, σ〉 ← p(d, state[p]);
s′ ← s; state[p]← σ;
foreach x ∼ n ∈ l do

s′ ← s′[x ∼ n];
N ← N ∪

⋃

x∈dis(s,s′) prop[x];
s← s′;

return s;
end

Algorithm 5: Propagator-centered propagation using logs

Propagators. A propagator can use state for incremental propagation
where the exact details are left opaque. Here, a propagator is a function
p that takes a store s and a state σ as input and returns a pair 〈l, σ′〉 of a log
l and a new state σ′. The store obtained by propagation is the update s[l] of
s by l. It is required that l is pruning for s (capturing that a propagator only
returns pruning and hence relevant tells but not necessarily a minimal log).
While the set-up might look different from Section 2.2, the real difference is
only in how detailed the model is. In essence, the log models the interaction
between a propagator and the store.

As a simplifying assumption, the result of propagation is independent of
state: for a propagator p and a store s for any two states σi with p(s, σi) =
〈li, σ

′
i〉 (i = 1, 2) it holds that s[l1] = s[l2]. Hence, the result of propagation

p[[s]] is defined as s[l] where p(s, σ) = 〈l, σ′〉 for an arbitrary state σ.
The properties of propagators in Section 2.2 are retained in the following

way. A propagator p is contracting : by construction of a log, p[[s]] ≤ s
for all stores s. A propagator p must also be monotonic: if s1 ≤ s2 then
p[[s1]] ≤ p[[s2]] for all domains s1 and s2. A store s is a fix-point of a propagator
p, if p[[s]] = s (that is, if p(s, σ) = 〈l, σ′〉 for states σ, σ′, the log l is empty).

Propagation. Propagation is shown in Algorithm 5. It is assumed that
all propagators are contained in the set P and that state[p] stores a prop-
erly initialized state for each propagator p ∈ P . The difference from the
propagator-centered Algorithm 1 is that the modifications to the store are



4.3. ADVISED PROPAGATION 31

now lifted to the level of the propagation algorithm, instead of being left
hidden in the propagators.

Computing the propagators to be added to N does not depend on the
size of the log l. While the log can have multiple occurrences of a variable,
each variable from dis (d, d′) is considered only once.

4.3 Advised Propagation

Advised propagation adds advisors to the model to enable a broad and in-
teresting range of techniques for incremental propagation while keeping the
model simple. Simplicity entails in particular that capabilities of propaga-
tors are not duplicated, that the overhead for advisors is low, and that the
essence of Algorithm 5 is kept. Ideally, a system with advisors should execute
propagators not using advisors without any performance penalty.

The design of advisors takes two aspects into account: how an advisor
gives advice to propagators (output) and what information is available to
an advisor (input). Advisors are functions, like propagators are functions.
From the discussion in the introduction it is clear that the input of an advisor
must capture which variable has been changed by propagation and how it
has been changed.

Based on the input to an advisor function, the only way an advisor can
give advice is to modify propagator state and to decide whether a propa-
gator must be propagated (“scheduled”). Modifying the state of a propaga-
tor enables the propagator to perform more efficient propagation. Deciding
whether a propagator must be propagated enables the advisor to avoid use-
less propagation.

The model ties an advisor to a single propagator. This decision is natural:
the state of a propagator should only be exposed to advisors that belong to
that particular propagator. Additionally, maintaining a single propagator
for an advisor simplifies implementation.

Advisors. An advisor a is a function that takes a store s, a tell t, and a
state σ as input and returns a pair a(s, t, σ) = 〈σ′, Q〉 where σ′ is a state
and Q a set of propagators. An advisor a gives advice to a single propagator
p, written as prop[a] = p where p is referred to as a’s propagator (not to be
confused with the propagators prop[x] depending on a variable x). The set
of propagators Q returned by a must be either empty or the singleton set
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{p}. The intuition behind the set Q is that an advisor can suggest whether
its propagator p requires propagation (Q = {p}) or not (Q = ∅). To ease
presentation, adv[p] refers to the set of advisors a such that prop[a] = p.

As for propagators, the model does not detail how advisors handle state:
if a(s, t, σi) = 〈σ′

i, Qi〉 for an arbitrary store s and two states (i = 1, 2),
then Q1 = Q2. In contrast to propagators, advisors have no own state but
access to their propagators’ state (an implementation most likely will decide
otherwise).

Dependent advisors. Like propagators, advisors depend on variables.
An advisor a, however, depends on a single variable var(a) ∈ Var . This
restriction means that whenever an advisor a is executed, it is known that
var(a) has been modified. Similar to propagators, the set of advisors adv[x]
depending on a variable x is: a ∈ adv[x] if and only if x = var(a) (not to be
confused with the advisors adv[p] for a propagator p).

Variables of a propagator p and variables of its advisors are closely re-
lated. One goal with advised propagation is to make informed decisions
in an advisor when a propagator must be re-executed. The idea is to trade
variables on which the propagator depends for advisors that depend on these
variables.

The set of advised variables avar[p] of a propagator is defined as {x ∈
Var | ∃a ∈ adv[p] .var(a) = x}. For a propagator p, the set of dependent
variables and advisors var(p) ∪ avar[p] must be sufficient for p: if a store s
is not a fix-point of p (that is, p[[s]] < s), then for all pruning tells x ∼ n for
s′ such that s′[x ∼ n] = s holds, x ∈ var(p) or a(s, x ∼ n, σ) = 〈σ′, {p}〉 for
some advisor a ∈ adv[x] ∩ adv[p]. This is needed so that no modifications
that would lead to a propagator not being at a fix-point are lost, since that
would lead to non-monotonic behavior of the propagator.

Propagation. Algorithm 6 performs advised propagation. The only dif-
ference to simple propagation is that the update by the log computed by a
propagator executes advisors.

Advisors are executed for each tell t in the order of the log l. Each advisor
can schedule its propagator by returning it in the set Q and potentially
modify the state of its propagator. Note the difference between variables
occurring in the log l and variables from dis (d, d′): if a variable x occurs
multiply in l, also all advisors in adv[x] are executed multiply. Variables
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Propagate(P,s)
begin

N ← P ;
while N 6= ∅ do

remove p from N ;
〈l, s〉 ← p(s, state[p]);
s′ ← s; state[p]← s;
foreach x ∼ n ∈ l do

s′ ← s′[x ∼ n];
foreach a ∈ adv[x] do

〈s, Q〉 ← a(s′, x ∼ n, state[prop[a]]);
state[prop[a]]← s; N ← N ∪Q;

N ← N ∪
⋃

x∈dis(s,s′) prop[x];
s← s′;

return s;
end

Algorithm 6: Advised propagation

in dis (d, d′) are processed only once. The reason for processing the same
variable multiply is to provide each tell x ∼ n as information to advisors.

Again, the propagation loop computes the weakest simultaneous fix-point
for all propagators in P . This may be seen by considering the loop invariant:
if p ∈ P −N , then d is a fix-point of p. Since the set of advised variables and
dependencies of a propagator is sufficient for a propagator and an advisor
always provides sufficient advice, the loop invariant holds. Hence, the result
of advised propagation is as before.

The algorithm makes a rather arbitrary choice of how to provide tell
information to an advisor: it first updates the store s′ by x ∼ n and then
passes the updated store s′[x ∼ n] together with x ∼ n to the advisor. It
would also be possible to pass the not-yet updated store s′ and x ∼ n. This
decision is discussed in more detail in Sect. 4.4.

An essential aspect of advised propagation is that it is domain indepen-
dent : the only dependencies on the domain of the variables are the tells. All
remaining aspects readily carry over to other variable domains.

The algorithm reveals the benefit of making advisors second-class citizens
without propagation rights. Assume that an advisor could also perform
propagation (by computing a log). Then, after propagation by an advisor,
all advisors would need to be reconsidered for execution. That would leave
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two options. One option is to execute advisors immediately, resulting in a
recursive propagation process for advisors. The other is to organize advisors
that require execution into a separate data structure. This would clearly
violate our requirement of the extension to be small and to not duplicate
functionality. Moreover, both approaches would have in common that it
would become very difficult to provide accurate information about domain
changes of modified variables.

Dynamic dependencies. One simplifying assumption in this thesis is
that propagator dependencies and advised variables are static: both sets
must be sufficient for all possible variable domains. Some techniques require
dynamically changing dependencies, such as watched literals in constraint
propagation [21]. The extension for dynamic dependencies is orthogonal to
advisors, for a treatment of dynamic dependency sets see [53].

Views. Views is a technique to simplify the implementation of constraint
programming systems [54]. The basic difference is that propagators operate
on views of variables instead of directly on variables. A view is able to make
simple transformations of its variable, for example adding a constant. Typ-
ical views used are identity views, offset views (adding a constant), scaling
views (multiplying with a constant), and negation views. Given views, a
propagator for

∑

i xi = y can also be used for a linear constraint with non-
unit coefficients,

∑

i aixi = y, through the use of scaling views. Views are
compiled statically in the code of a system, giving the same performance as
if the transformations were added directly in the code.

The formal model for a view ϕ for a variable x is of an injective function
that transform the domain of the variable, ϕx ∈ Val → Val . A family of
views ϕx for all variables x ∈ Var is taken as a view for a propagator. A
propagator p will access the store through the view, and will produce tells
that use the inverse view. In particular, the inverse view not only has to map
the value the propagator removes to the corresponding value that should be
removed from the store, but also the relation used needs to be mapped.
Consider a tell on x that goes through a negation view ϕx adjusting the
upper bound: x < n. The real tell to perform is actually x > ϕ−

x (n),
since the lower bound for x should be adjusted. Thus views are extended to
operate on the relation symbols also.

Given the above discussion, the integration of views and advisors should
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be clear. Propagators need not be modified, they read variables through
views, and produce tells that are translated into the real underlying domain.
For advisors to match their associated propagator, they must also use the
same views as the propagator. For example, consider a propagator that
potentially uses a negation view (otherwise it uses an identity view) and is
interested in changes to the upper bound of the variable. The propagator
can use advisors with the same views as the propagator to ensure that the
advisors work. For an advisor, the relation and value in the tell is translated
using the view (not the inverse).

Multiple variable-advisors. While advisors as presented are connected
to a single variable, it is also straightforward to extend advisors to handle
more than one variable. If the advisor handles a constant number of vari-
ables, it can find out the particular variable that has changed in constant
time. A typical use-case might be a view that handles two variables at the
same time. The upside of using just one variable is that only one advisor
needs to be created and maintained. While this does not change the actual
complexity, it lowers the overhead. If the view handles more than a constant
amount of variables then it can still do useful things, as discussed below.

Another typical use case is a propagator for lexicographic ordering be-
tween two vectors x and y of variables. An advisor can be connected to a
pair of variables 〈xi, yi〉 to see if the ordering of the variables has changed.
Another possibility is for a propagator z = max(y1, . . . , yn), where a single
advisor over all the y-variables can be used to check if anything potentially
can be propagated to z. A single advisor on all the y variables can check the
possibility of a decrease in the total upper bound of y since it suffices to in-
spect the delta information (regardless of which variable has been modified)
and compare it to a cached upper bound. The gain in these cases is that
fewer advisors are needed, thus keeping the memory overhead down. The
drawback is that the constants for processing time might increase.

4.4 Implementation

This section discusses how advisors can be efficiently implemented: it details
the model and assesses the basic cost and the potential benefit of advisors.
Advisors is included in Gecode from version 2.0.0 [20].
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Advisors. Advisors are implemented as objects. Apart from support for
construction, deletion, and memory management, an advisor object main-
tains a pointer to its propagator object. The actual code for an advisor
is implemented by a runtime-polymorphic method advise in the advisor’s
propagator. The call of advise corresponds to the application of an advi-
sor in the model. Both advisor and modification information are passed as
arguments to advise. As an advisor’s propagator implements advise, the
advisor does not require support for runtime polymorphism and hence uses
less memory. The choice also gives more natural code, since an advisor needs
to modify the state of the propagator.

Advisors are attached to variables in the same way as propagators are.
Systems typically provide one entry per propagation event where dependent
propagators are stored (corresponding to prop[x] for a variable x). Typically,
the propagators are organized in a suspension list, whereas in Gecode they
are stored in a partitioned array. To accommodate for advisors, a variable
x provides an additional entry where dependent advisors adv[x] are stored.
This design in particulars entails that advisors do not honor events (to be
discussed below).

Logs. The log in the model describes how propagation by a propagator
should modify the domain of its variables. Most systems do not implement
a log but perform the update by tells immediately. This is also the approach
taken in Gecode. A notable exception is SICStus Prolog, which uses a data
structure similar to logs for implementing global constraints [32].

Performing updates immediately also executes advisors immediately. This
differs from the model where execution of propagators and advisors is sepa-
rated. In an implementation with immediate updates, the advisors of a prop-
agator will be run while the propagator is running itself. When designing
advisors and propagators this needs to be taken into account, in particular
to guarantee consistent management of the propagator’s state. This is often
natural, since many propagators have data structures that have monotonic
behavior in the changes. If the data structures of the propagator needs to
be protected, then one can add a flag in the state that the advisor checks
before modifying the state, thus creating a sort of critical section.

Modification information. During propagation, the domain and the tell
provide information to an advisor which variable has changed and how it has
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changed. This information, provided as a suitable data structure, is passed
as an argument to the advise function of an advisor object.

As discussed in Sect. 4.3, there are two options: either first modify the
domain and then call the advisor, or the other way round. We chose to first
modify the domain as in Algorithm 6: many advisors are only interested in
the domain after update and not in how the domain changed.

There is an obvious trade-off between information accuracy and its cost.
The most accurate information is ∆(s, x, t), since it is the precise set of values
removed. Accuracy can be costly: whenever a variable x is modified by a
tell, ∆(x) must be computed regardless of whether advisors actually use the
information.

As a compromise between accuracy and cost, our implementation uses
the smallest interval I(x) = {min∆(x), . . . ,max ∆(x)} as approximation.
Hence, for a store s′ the interval for the pruning tell x ≤ n is given by
{n+1, . . . ,max s′(x)}, for x ≥ n it is {min s′(x), . . . , n−1}, and for x 6= n it
is {n}. For other more complicated domain operations, such as the removal
of a set of arbitrary values, ∅ can be passed to signal that anything might
have changed.

Propagation events. Systems typically use propagation events to char-
acterize changes to domains by tells. For finite domain systems, common
propagation events are: the domain becomes a singleton, the minimum or
maximum changes, or the domain changes. Sets of dependent variables for
propagators are then replaced by event sets: only when an event from a
propagator’s event set occurs, the propagator is considered for re-execution.

The same approach can be taken for advisors, using sets of advised events
rather than sets of advised variables. In our implementation, advisors do not
use propagation events for the following reasons: Events are not essential for
a system where propagator execution has little overhead [52, 53]. Per event
type additional memory is required for each variable. Events for advisors
would increase the memory overhead for advisors even in cases where no
advisors are being used. The domain change information available to an
advisor subsumes events, albeit not with the same level of efficiency.

Performance assessment. Advisors come at a cost. For memory, each
variable x requires an additional entry for adv[x] regardless of whether advi-
sors are used or not. If an advisor for a variable x and a propagator p is used



38 CHAPTER 4. PROPAGATOR IMPLEMENTATION

Table 4.1: Performance assessment: runtime

Example base a-none a-run a-avoid

stress-exec-1 45.38 +0.2% +55.1% +63.5%
stress-exec-10 114.93 +0.9% +88.7% +98.7%
queens-n-400 519.14 ±0.0% +1316.7% +634.5%
queens-s-400 14.57 +0.7% +28.6% +12.2%

rather than using x as a dependency of p (that is, x ∈ var(p)), additional
memory for an advisor is required (this depends on the additional informa-
tion an advisor stores, in our implementation the minimal overhead is 8 bytes
on a 32-bit machine). For runtime, each time a variable x is modified by a
tell, the tell information must be constructed and the advise function of all
advisors in adv[x] must be called.

Table 4.1 shows the runtime for systems using advisors compared to a
system without advisors (base, runtime given in milliseconds). The system
a-none provides advisors without using them, a-run uses advisors that al-
ways schedule their propagators (fully replacing propagator dependencies by
advised variables), whereas advisors for a-avoid decide whether the execu-
tion of a propagator can be avoided. All runtime are relative to base.

All examples have been run on a Laptop with a 2 GHz Pentium M CPU
and 1024 MB main memory running Windows XP. Runtimes are the average
of 25 runs, the coefficient of deviation is less than 5% for all benchmarks.

The example stress-exec-1 posts two propagators for x < y and y > x
with d(x) = d(y) = {0, . . . , 1000000}, whereas stress-exec-10 posts the
same propagators ten times. The advisor for avoiding propagation (system
a-avoid) checks by max d(x) < max d(y) and min d(x) > min d(y) whether
its propagator is already at fix-point. queens-n-400 uses O(n2) binary dis-
equality propagators, whereas queens-s-400 uses 3 all-different propa-
gators to solve the 400-Queens problem.

These analytical examples clarify that the overhead of a system with ad-
visors without using them is negligible and does not exceed 1%. Advisors for
small and inexpensive propagators as in stress-exec-* and queens-n-400

are too expensive, regardless of whether propagation can be avoided. Only
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Table 4.2: Performance assessment: memory

Example base a-none a-run a-avoid

queens-n-400 24 656.0 ±0.0% +67.6% +67.6%
queens-s-400 977.0 ±0.0% +5.6% +5.6%

Table 4.3: Performance assessment: break-even

Example base a-none a-avoid

bool-10 0.01 +0.2% −16.6%
bool-100 0.09 +7.6% −22.3%
bool-1000 1.43 +33.0% −30.2%
bool-10000 238.23 +20.6% −94.7%

for sufficiently large propagators (such as in queens-s-400), the overhead
suggests that advisors can be beneficial. Exactly the same conclusions can
be drawn from the memory overhead shown in Table 4.2, where memory is
given as peak allocated memory in KB.

4.5 Using Advisors

This section demonstrates advisors for implementing incremental propaga-
tion. Central issues are to avoid useless propagation, to improve propagation
efficiency, and to simplify propagator construction.

Boolean linear in-equations. A Boolean linear in-equation Σixi ≥ n
indicates that at least n variables from x should be set to true. Whenever
a traditional propagator is invoked, it has to check all remaining variables
to see what and how they have changed, leading to linear run-time. Given
advisors, this scan is no longer needed since the advisor knows both the
variable and how it has changed. The advisor will only need to schedule
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Figure 4.1: Boolean linear in-equations: Advised vs. non-advised propa-
gation. The upper line shows propagation without advisors, while the lower
shows propagation with advisors.

the propagator if there is propagation to do. This is similar to how Boolean
linear in-equations are implemented using watched literals in [22].

Table 4.3 gives a first impression that advisors can actually be useful.
The example bool-n has a single propagator propagating that the sum of
4n + 1 Boolean variables is at least 2n where 2n variables are successively
assigned to 0 and then propagated. System a-avoid uses 2n + 1 advisors
(constant runtime) where the other systems use a single propagator (linear
runtime) with 2n + 1 dependencies. As the number of variables increases,
the benefit of advisors truly outweigh their overhead. That there is a real
asymptotic difference can be seen in the graph in Figure 4.1, where the data
from Table 4.3 is shown graphically.

Extensional constraints. We consider two algorithms for implementing
n-ary extensional constraints, GAC-2001 [10] and GAC-Schema [9]. GAC-
2001 uses a data-structure (called last) where the last valid support for a
variable value pair is recorded. When the propagator is invoked, all variable
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value pairs are checked, starting from the last valid support. In many cases,
this is still a valid support. For binary constraints, GAC-2001 has optimal
time-complexity. GAC-Schema is a more involved algorithm, where also the
inverse mapping to last is maintained, i.e., what tuples involving a variable
value pair is used as a support in last. This data structure is called a
support list. Support lists need to be maintained, so that whenever a value
is removed from a variable, then all the tuples including that literal used as
support should be removed. If any literal looses all its supports in this way,
a new support must be found.

Implementing GAC-Schema with advisors is straightforward. If a vari-
able is modified, support for the deleted values is removed from the support
lists. If a value loses a support, a new support is found. If no support can be
found, the value is deleted. Advisors remove supports, while the propagator
deletes values. Advisors are necessary since removing supports efficiently
needs both the variable (with respect to the propagator data-structures)
and the deleted values. However, advisors as well as the propagator can
potentially be used to find new supports leading to eager and lazy search for
supports.

Tables 4.4 and 4.5 compares runtime and number of propagator execu-
tions for different extensional propagators. The column base is the GAC-
2001 propagator, cheap is a GAC-Schema propagator where the propagator
searches for new supports, and expensive is a GAC-Schema propagator
where advisors search for new supports.

Examples rand-10-20-10-n are random instances from the Second In-
ternational CSP Solver Competition, and are originally from [40]. The
crowded-chess-n example is a structured problem where several different
chess pieces are placed on an n × n chess board. The placement of bish-
ops and knights is modeled by two n2-ary extensional constraints on 0/1
variables.

Tables 4.4 and 4.5 clarifies that using an incremental approach to prop-
agate extensional constraints reduces the number of propagator executions.
Using advisors to remove supports also reduces runtime. Finding new sup-
ports by advisors reduces the number of propagations the most, but is also
consistently slowest. The reason is that many more supports are entered
into the support-lists as new supports are searched for eagerly. In contrast,
searching for a new support in the propagator is done on demand. There is
also a problem with priority inversion, where expensive (exponential time)
advisors are run before cheap propagators.



42 CHAPTER 4. PROPAGATOR IMPLEMENTATION

Table 4.4: Runtime (in ms) for extensional propagation

Example base cheap expensive

rand-10-20-10-0 4 010.33 −11.4% +164.0%
rand-10-20-10-1 64 103.00 −23.1% +163.7%
rand-10-20-10-2 68 971.00 −16.0% +239.5%
rand-10-20-10-3 7 436.80 −20.8% +165.5%
rand-10-20-10-4 4 362.33 −1.6% +168.6%
rand-10-20-10-5 28 009.20 −16.3% +224.5%
crowded-chess-5 1.44 −1.1% +7.4%
crowded-chess-6 468.29 −17.1% +273.7%

Table 4.5: Propagation steps for extensional propagation

Example base cheap expensive

rand-10-20-10-0 16 103 −24.3% −57.9%
rand-10-20-10-1 290 163 −37.1% −63.0%
rand-10-20-10-2 257 792 −18.3% −56.6%
rand-10-20-10-3 34 046 −36.5% −63.2%
rand-10-20-10-4 16 988 −29.7% −65.4%
rand-10-20-10-5 84 805 −7.4% −53.8%
crowded-chess-5 586 +0.7% +0.5%
crowded-chess-6 2 720 −2.7% −3.1%
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As for memory, GAC-Schema will naturally use more memory than GAC-
2001 since it uses an additional large data structure. Given a maximum
domain size of d and n variables, the memory usage will be in O(nd) for
GAC-2001 vs. in O(n2d) for GAC-Schema. For the random problems, the
memory overhead is around 5 to 6 times on the whole problem.

Regular. The algorithm used in our experiments deviates slightly from
both variants presented in [46]: it is less incremental in that it rescans all
support information for an entire variable, if one of the predecessor or suc-
cessor states for a variable is not any longer reachable.

Advisors for regular store the index of the variable in the variable se-
quence. When an advisor is executed, it updates the supported values taking
the information on removed values into account. If a predecessor or a suc-
cessor state changes reachability after values have been updated, the advisor
can avoid scheduling the propagator. This can potentially reduce the number
of propagator invocations. Besides improving propagator execution, advisors
lead to a considerably simpler architecture of the propagator: advisors are
concerned with how supported values are updated, while the propagator is
concerned with analyzing reachability of states and potentially telling which
variables have lost support.

Tables 4.6 and 4.7 compares runtime and number of propagator execu-
tions not using advisors (base), using advisors but ignoring domain change
information (advise), and using advisors and domain change information
(domain). The memory requirements are the same for all examples. The
nonogram example uses regular over 0/1 variables to solve a 25 × 25 nono-
gram puzzle, and the pentominoes-* example uses regular to place irregu-
larly shaped tiles into a rectangle (8 × 8 with 10 tiles, 10 × 6 with 12 tiles)
in the same manner as described in Section 3.

The advisor-based propagators reduce the number of propagation steps
by half in case there is little propagation (propagation for nonogram is
rather strong). But the reduction in propagation steps does not translate
directly into a reduction in runtime: executing the regular propagator in
vain is cheap. With larger examples a bigger improvement in runtime can
be expected, suggested by the improvement for placement-2 compared to
placement-1.
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Table 4.6: Runtime (in ms) for regular

Example base advise domain

nonogram 803.13 +11.6% +11.9%
placement-1 214.35 ±0.0% −0.5%
placement-2 7 487.81 −4.4% −4.8%

Table 4.7: Propagation steps for regular

Example base advise domain

nonogram 122 778 +3.1% +3.1%
placement-1 2 616 −44.8% −44.8%
placement-2 91 495 −50.4% −50.4%

All-different. The propagator used for domain-consistent all-different
follows [50]. The key to making it incremental is how to compute a maximal
matching in the variable-value graph: only if a matching edge (correspond-
ing to a value) for a variable x is removed, a new matching edge must be
computed for x. An observation by Quimper and Walsh [47] can be used to
avoid propagation: if a variable domain changes, but the number of values
left still exceeds the number of variables of the propagator, no propagation
is possible.

Tables 4.8 and 4.9 shows the runtime and number of propagator execu-
tions for examples using the domain-consistent all-different constraint.
base uses no advisors, for avoid advisors use the above observation to check
whether the propagator can propagate, for advise advisors maintain the
matching and use the observation, and for domain advisors maintain the
matching by relying entirely on domain change information. For domain,
the observation is not used to simplify matching maintenance by advisors.
golomb-10 finds an optimal Golomb ruler of size 10, graph-color colors a
graph with 200 nodes based on its cliques, and queens-s-400 is as above.

While the number of propagator invocations decreases, runtime never de-
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Table 4.8: Runtime (in ms) for all-different

Example base avoid advise domain

golomb-10 1 301.80 +5.6% +12.9% +11.2%
graph-color 191.90 +1.7% +3.1% +4.9%
queens-s-400 3 112.13 −0.1% +27.4% +23.3%

Table 4.9: Propagation steps for all-different

Example base avoid advise domain

golomb-10 3 359 720 ±0.0% −18.6% −18.6%
graph-color 150 433 −3.4% −8.1% −7.3%
queens-s-400 2 397 −0.1% −0.3% −0.3%

creases. Using the observation alone is not beneficial as it does not outweigh
the overhead of advisors. The considerable reduction in propagator execu-
tions for advise and domain is due to early detection of failure: advisors
fail to find a matching without executing their propagator. The increase
in runtime is not surprising: edges are matched eagerly on each advisor
invocation. This is wasteful as further propagation can remove the newly
computed matching edge again before the propagator runs. Hence, it is
beneficial to wait until the propagator actually runs before reconstructing
a matching. Another problem with eager matching is similar to the obser-
vations for extensional constraints: prioritizing matching by advisors over
cheaper propagators leads to priority inversion between cheap propagators
and expensive advisors.

Advisors again lead to an appealing separation of concerns, as matching
becomes an orthogonal issue. However, the examples clarify another essen-
tial aspect of incremental propagation: even if a propagator does not use
advisors, it can perform incremental propagation (such as matching incre-
mentally). And for some propagators, it can be important to defer com-
putation until perfect information about all variables is available when the
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propagators is actually run. Being too eager by using advisors can be waste-
ful.

Summary. The above experiments can be summarized as follows. Advi-
sors are essential to improve asymptotic complexity for some propagators
(in particular for propagators with sub-linear complexity, such as Boolean or
general linear equations [27]). The optimal complexity can not be achieved
in a purely propagator-centered set-up. Advisors help achieving a good fac-
torization of concerns for implementing propagators. However, the effort
spent by an advisor must comply with priorities and must not be too eager.
Unfortunately, substantial efficiency improvements might only be possible
for propagators with many variables.

4.6 Further possibilities

While advisors have been developed here for collecting and processing infor-
mation for propagators, they can also be used to give information interac-
tively to a user. Consider the case of using a constraint system for interactive
configuration, where fast response times and incremental updates of variable
domains is very important. Typically, the propagation process will be rel-
atively time-consuming, since strong propagation is desired. By connecting
an advisor to each displayed variable, it is possible to observe the removal
of values in real-time. There are many possible application areas for this,
including configuration, puzzle design, and implementing debugging support
for constraint programs.

4.7 Conclusions

This chapter has shown how to add advisors to a propagator-centered propa-
gation system for supporting more efficient propagation. Advisors are simple
and do not duplicate functionality from propagators: no propagation is done
and execution is immediate. In particular, advisors satisfy the key require-
ment of not slowing down propagation when they are not used. That makes
advisors a viable approach also for other propagator-centered constraint pro-
gramming systems.

Advisors can be used to increase the efficiency, in particular improving
asymptotic complexity, and achieving a better factorization of concerns in
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the implementation of propagators (relying on the fact that advisors are pro-
grammable). Furthermore, two important issues have been clarified First,
advisors must comply with priorities in a propagator-centered approach with
priorities. Second, for some propagators it is more important that an in-
cremental algorithm is used rather than running the algorithm eagerly on
variable change.

Advisors, like propagators, are generic. It can be expected that for vari-
able domains with expensive domain operations (such as finite sets or graph
variables[18]), the domain change information provided to an advisor can
be more useful than for finite domain propagators. Adapting advisors for
a particular variable domain only needs to define which domain change in-
formation is passed to an advisor by a tell. In Gecode from version 2.0.0,
advisors are also implemented for set variables.





Chapter 5

Constraint Representation

A generic global constraint is a global constraint that is capable of expressing
any other constraint on a finite number of variables over finite domains.
While global constraints with dedicated propagators such as all-different
are to be preferred, these are not always able to express all constraints of a
model. Depending on the model the usual fall-back is to use a decomposition
into a set of simple constraints or one or more tables of tuples to express
the remaining constraints. The first of these options usually results in less
propagation. The latter option involving a table of tuples is the most basic
of generic global constraints. This chapter explores the use of Multivalued
Decision Diagrams (MDD) as a data-structure for representing generic global
constraints.

In Section 5.1, the MDD representation is described. In Section 5.2 ap-
proaches that relate to the approach taken in this paper are summarized.
The following Section presents the MDD constraint showing how to con-
struct and propagate it. Section 5.4 discusses entailment detection. In Sec-
tion 5.5 Cartesian Product Tables are discussed. It is shown how these can
be constructed by using MDD construction as an intermediate step. This is
followed by Section 5.6 which reports empirical results for all the techniques
discuss in the paper. The final Section 5.7 give conclusions and discuss future
work.

49
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5.1 Decision diagrams

A decision diagram (DD) is a tuple DD = 〈V, v, E〉, where V is a set of
vertices including the terminal vertices ⊥ and ⊤, v ∈ V → Var is a function
from vertices to variables, E ∈ P(V × Val × V ) is a set of marked edges,
and 〈V, E〉 forms a directed, rooted, acyclic graph where all paths from the
root node reaches either ⊥ or ⊤, and where the path does not contain two
nodes u1, u2 for which v(u1) = v(u2). A DD is ordered if there exists an
ordering <v on the variables such that for all edges (u1, u2) it is the case
that v(u1) <v v(u2). Any edge (u1, u2) for which there exists a variable
x ∈ V ar such that v(u1) <v x <u v(u2) is said to skip x and is called a
long edge. A DD is said to be deterministic if the out-going edges of each
node have distinct markings. As is common, DDs will be assumed to be
deterministic. A DD is reduced if there exists no two nodes with identically
labelled outgoing edges leading to the same nodes, and further that no node
exists with outgoing edges marked with all possible values and leading to
the same child node. Reduced ordered deterministic decision diagrams are
canonical (given a fixed ordering), which is important in many applications.
A path from the root to ⊤ gives an assignment of values to variables for
which the DD is true. If a variable is not assigned a value on a path, it is
a “don’t care” variable, and can be assigned any value. Finally, if the set of
values is restricted to 0 and 1 the DD is a binary decision diagram (BDD),
otherwise it is a multi-valued decision diagram (MDD). The most common
kind of decision diagrams are Reduced Ordered Binary Decision Diagrams
(ROBDDs) [12]. There exist many variations of the basic DDs discussed
above as well as several other related graph based representations (see for
example [16] and [42]).

5.2 Related work

The concept of graph-based representations of constraints is not new. For
example [2] derives automata from constraint signatures and obtains prop-
agation algorithm based on these automata and [39, 28] uses BDDs for im-
plementing complete set variable domains and propagators. Some previous
representations in particular relate closely to the MDD proposed in this pa-
per. The ad-hoc Boolean constraint from [15] makes use of a Binary Decision
Diagram and describes a partially incremental propagation algorithm. The
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regular constraint introduced in [46], makes use of an unfolded Deterministic
Finite Automata (DFA), resulting in a representation that closely resembles
an MDD but is not fully reduced. We will in our empirical comparison ver-
ify that this additional reduction can provide a significant reduction in the
propagation time. Finally, the Case DAG available in SICStus Prolog [32]
also resembles an MDD, but details of the construction and propagation
algorithm are not available.

5.3 The Multivalued Decision Diagram constraint

In this section we will introduce the MDD representation of a constraint and
discuss how to construct and propagate it.

5.3.1 Construction

Binary Decision Diagrams are usually constructed from logical expression.
Each atomic logical expression is represented as a small BDD and the AP-
PLY operator [12] is then used to conjoin these BDDs into a single BDD. For
implementing MDDs, it is common to use a group of Boolean variables to rep-
resent a single domain variable and then perform compilation as mentioned
above using a variable order that keeps the Boolean variables corresponding
to the same domain variable together. Given such a BDD, the corresponding
MDD can be built in linear time in the size of the resulting MDD.

A special case occurs when the input is a table of tuples, in this case the
MDD can be built directly by first constructing the decision tree correspond-
ing to the tuples under some variable ordering and then reducing it. This
takes linear time in the size of table. Another special case is input in the
form of a regular language. In this case the technique from [46] can be used
to obtain a layered graph that can then be converted into a more succinct
MDD in time proportional to the unfolded DFA.

5.3.2 MDD reduction subsumes DFA minimization

Performing MDD reduction results in a more succinct data structure than
minimizing a DFA and then unfolding it as described in [46]. It is easy to see
that DFA minimization will not yield a more succinct representation since a
reduced MDD is unique and minimal with respect to the fixed variable order.
That MDD reduction is superior is due to the fact that DFA minimization
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Figure 5.1: Graph for recognizing strings from a∗|a(baa∗)∗ of length 4 using
the unfolded minimized DFA (top) and the reduced MDD (bottom).

minimizes prior to the unfolding of the DFA and therefore with respect to
the whole language represented by the DFA (and not just strings of length
n), and that the state structure is maintained over all layers. A small toy
example showing the MDD to be more succinct is shown in Figure 5.1. In
practice the difference between unfolded DFAs and reduced MDDs can be
very large, as we will see in Section 5.6.

5.3.3 Propagation

As noted previously the layered graph used as representation in the prop-
agation algorithm for regular [46] is closely related to an MDD, albeit less
succinct. For this reason it is relatively straightforward to adapt the in-
cremental propagation algorithm for the regular constraint to work on the
MDD. The existence of long edges in the MDD is however a problem for
that algorithm. To avoid changing the algorithm, all long edges can be re-
placed by paths accepting all values for the missing layers. Unfortunately,
this introduces very many new edges into the graph, and thus slowing down
propagation. By allowing wild cards as edge markers (matching any value),
the number of additional edges required is kept down. Note that such a
wild-card edge gives support to all values in the domain, and therefore there
would exist a number of supports super-linear in the number of edges in the
MDD. To keep the complexity down, we keep separate track of the count of
wild-card edges in each layer. Any layer in which a wild-card edge still exists
allows all values in the corresponding domain. The resulting propagation
algorithm guarantees an amortized complexity of O(|E|) over any path in
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the search tree.
As an alternative to adapting the above incremental algorithm, the par-

tially incremental propagation algorithm of [15] can also be used with only
small adjustments. This algorithm is basically a standard DFS computing
the supported values. When it examines a node u, then if it has already
determined that at least one outgoing edge is valid (and thus the node), and
all possible support has already been found for v(u) and later variables, then
it is not necessary to examine the remaining outgoing edges and their sub-
structures for supports. However, this technique is likely to translate poorly
into larger domains, as the scenario of all possible supports being found for a
set of variables is much less likely. Therefore we will in our empirical results
be making use of the previously described incremental algorithm.

5.3.4 Propagation complexity

As indicated above, regardless of the choice of algorithm, the critical pa-
rameter that determines the complexity of the propagation algorithm is the
size of the MDD that must be propagated. This is also why we can expect
the more succinct MDD representation to outperform the regular constraint.
We will verify this behavior empirically in Section 5.6. Since an ROMDD is
canonical with respect to the ordering used, the potential for optimizations
lies in finding a good ordering. The difference in size can be exponential,
and finding the best ordering is NP-complete. In practice simple greedy tech-
niques are used to obtain good orderings. These techniques involve either
interchanging nearby layers within a certain window size or moving a single
layer through all possible positions (known as sifting) [49]. We will not go
into more detail, but instead view the available software packages as black
boxes that have automated heuristics for optimizing ROMDDs.

5.4 Entailment

When a propagator is entailed, it can safely be removed from the system.
This is done to avoid executing a propagator in vain, since we know that the
entailed propagator will not do any propagation.

Unfortunately, entailment detection for general constraints is a co-NP
complete problem, which makes it intractable in practice. In this section we
introduce a simple entailment detection technique that can be supported for
any constraint that allows the number of solutions of the constraint to be
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counted with respect to a given store. We then introduce two techniques
unique to the MDD representation which rely on structural properties to
detect entailment.

5.4.1 Solution counting

Counting the number of solutions to a constraint can be used for detecting
entailment. Given a constraint c over variables 〈x1, . . . , xn〉 and a store
S, the number of solutions to the constraint valid in the store is given by
#sol(c, S) = |Cons (S, var(c)) ∩ c|. The key observation is that if the store
restricted to the variables of for the constraint (call it Svar(c)) admits the
same number of solutions as are valid for c in S, the constraint is entailed:

#sol(c, S) = |sol(Svar(c))| ⇒ Cons (S, var(c)) ⊆ c

That MDDs support solution counting in linear time is well-known, and
the same algorithm has also been used on the closely related representation
used in the regular constraints [59]. The solutions to an MDD can be counted
recursively: for each node the solution count is determined by multiplying the
number of solutions obtained by following each outgoing edge, remembering
to adjust for long edges. Hence we can do entailment detection on an MDD
in linear time by just computing the number of solutions allowed under the
current domains. The drawback of this technique is that it will always use
linear time in the MDD size.

5.4.2 Structural detection

A decision diagram that forms a path is describes a store. Using this obser-
vation, a simple check can be performed to detect entailment. If the MDD
is reduced but with all layers kept, this is a strict condition since that is
the minimal representation. Propagation during search might violate the re-
duced property, but it can be restored at any time in linear time. While this
may yield additional benefits besides just entailment detection, it requires
linear time in the best case just like the approach based on solution count-
ing. However, even if the decision diagram is not reduced during search, the
check can still be used as a heuristic.

Full entailment detection can be done efficiently even without requiring
that the MDD is reduced. Iff the MDD is entailed, every node in a layer
will have the same set of values on its outgoing edges (ignoring those edges
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marked with values inconsistent with the store). This can be seen by noting
that if all nodes in each layer allow the same values to be chosen, then the set
of solutions to the MDD is expressible as a single Cartesian product, exactly
the object that describes a domain stores solution set.

The two above techniques share the advantage that the analysis can be
aborted as soon as the structural property used is violated. This gives a
sub-linear average complexity. Furthermore, since any layer satisfying the
above two properties at some node in the search tree will continue to do so
in all descendant search nodes, we can easily ensure linear amortized time
over any path in the search tree by always resuming the entailment check
from the node which caused the entailment check to abort the last time. In
practice it is beneficial to do the structural analysis bottom up, since it is
common that the variable order in the MDD corresponds to the order in
which variables are branched on. Early termination of the analysis is thus
more likely.

5.5 Cartesian product tables

A Cartesian Product Table (CPT) is a generalization of a set of tuples
where a set of stores on the constraint variables is used for specification in-
stead. To ease presentation, CPTs will be written using tuples as the stores,
and identifying singleton sets with values. As an example, the constraint
{〈0, 0〉 , 〈0, 1〉 , 〈1, 1〉} represents implication. The minimal CPT representa-
tion for this constraint is {〈0, {0, 1}〉 , 〈1, 1〉}. Cartesian product tables have
been introduced as a data-structure for array based logic [44] for specifying
configuration problems. Using CPTs in constraint programming has been
done as a compression schema [35], where GAC-Schema was generalized to
use a CPT as specification.

5.5.1 MDDs vs. CPTs

Since both MDDs and CPTs are more succinct constraint representations
than a set of tuples, it is interesting to see which is the more succinct one. If
we assume that each tuple is only represented once in a CPT, then it follows
that the corresponding MDD is smaller. Consider a decision tree with fixed
variable ordering and wild-card edges obtained from a CPT. Reducing this
into an MDD will always maintain or decrease the size. However if a tuple is
allowed to be stored multiple times, then the corresponding MDD might no
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longer be the more succinct. In Example 5.1, the minimal CPT is smaller
than the MDD for the same constraint (seen in Figure 5.2). The reason is
that a CPT can exploit don’t care values on a per store basis, as opposed to
the deterministic MDD where a choice for a value at layer i affect the choices
at all subsequent layers.

Example 5.1. Consider the constraint that is specified by the following tuple
set:

{〈00〉 , 〈01〉 , 〈02〉 , 〈10〉 , 〈11〉 , 〈13〉 , 〈20〉 , 〈22〉 , 〈31〉 , 〈33〉}

This constraint has the following minimal CPT:

{〈{01}{01}〉 , 〈{02}{02}〉 , 〈{13}{13}〉}

This CPT contains the tuples 〈00〉 and 〈11〉 twice each. If no sharing is
allowed, a CPT with four stores is needed.

Even in cases where the MDD is smaller, CPTs can sometimes still be
of interest. This is because the overhead of propagating a CPT is somewhat
lower than for an MDD. Hence in cases where the CPTs are not too much
bigger than the MDD they are still a valid alternative.

5.5.2 Constructing CPTs using MDDs

There are a number of published algorithms for constructing CPTs. All of
these requires that the input is a set of tuples. The earliest ones are in the
context of array-based logic, where a column elimination method is used to
compress normal tuple sets [44, 34]. The idea is to remove variables one
by one, and to collapse all the tuple that can be collapsed for each variable
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Figure 5.2: Decision diagram of constraint from Example 5.1
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removed. This can be efficiently implemented using universal hashing [34].
Katsirelos and Walsh use decision trees to find small CPTs [35] and show
the resulting propagation of the CPT to be faster than propagating the
uncompressed tables. For all the above techniques the resulting CPTs only
stores each tuple once and thus cannot be more succinct than MDDs.

However, a CPT can also easily be derived from an MDD: each node
path from the root to the terminal in the MDD correspond to a Cartesian
product formed by including all the edge values occurring on the node path.
An important observation is that this allows the CPT to benefit from vari-
able reordering performed on the MDD. For example the MDD in Figure 5.2
would result in the CPT {〈{0}{012}〉 , 〈{1}{013}〉 , 〈{2}{02}〉 , 〈{3}{13}〉}.
The practical evaluation in Section 5.6 shows that this approach is compet-
itive with the technique from [35]. An additional advantage of constructing
CPTs from MDDs is that the full set of tuples is no longer required as input,
in contrast to all previously suggested approaches. Given an MDD for the
constraint in question, the equivalent CPT can be produced in time liner
in the size of the output. One such example are the Pentomino problems
evaluated in the next section: the constraints from the instances often admit
up to 1050 solutions.

5.6 Evaluation

In this section we present an empirical evaluation of some of the introduced
techniques. All experiments were run using BuDDy 2.4 as the BDD-package
and Gecode 2.0.1 as the CP system on an Athlon 64 3500+ with 2GB of
RAM.

CPT construction using MDDs. The instances investigated are the
ones used in [35] for evaluation from the 2005 Solver Competition. The re-
sults are presented in Table 5.1. The random example is the rand-3-20-20-1
instance, other random instances showed the same kind of behavior. For each
row, the number of tables, the average size, the average size of the CPT using
DD construction, with re-ordering also, and the best size from [35], is given.
From the results, we can see that using decision diagrams to find CPTs is a
viable method. While the DD method does not dominate, in the instances
for which it is outperformed it is so by a factor of less than two, while it on
the better instances improves upon [35] with a factor of more than 8. Vari-
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Table 5.1: CPT construction using MDDs

Instance Tables Avg size CPT from DD Re-ordered K&W

cril-0 27 1482.11 464.82 459.90 291.23
cril-6 9 281.33 28.77 27.06 142.65
cril-7 9 292.67 34.77 31.66 180.31
rand 60 2944.00 399.95 376.70 211.37
renault 89 2182.76 278.23 134.88 1133.28
wordlist 6 8584.33 5662.20 5448.08 -

able reordering only gives small improvements on most instances, most likely
because the variable ordering is already good or there is no especially good
variable ordering. In the renault instance variable reordering is important,
since it halfs the size of the resulting CPT.

Reduction. The effect of MDD reduction is tested using the Nonogram
problem (problem 12 in CSPLib). The line constraints use extensional prop-
agation over the set of solutions. The instances are tested using tuple sets
(gac2001 and gac-schema), minimized DFAs from the disjunction of the
solutions (dfa), and reduced version of the same (mdd). Instances are from
the Gecode nonogram example. For each version, the time (in milliseconds,
including construction time), and size of the specification (number of tu-
ples/nodes) are given in Tables 5.2 and 5.3. We can see that using the
reduced decision diagram results in a significantly smaller specification than
for the DFA. Looking at the time, we can see that this smaller specification
also translates into faster propagation. Overall we can also see that MDDs
gives the most stable solution time.

Entailment detection. To test the effect of entailment detection, Pen-
tomino placement problems specified using regular expressions are run using
the incremental propagation algorithm described earlier. Versions using no
entailment detection (base), entailment detection using solution counting
(count), using path detection (path), and using structural entailment detec-
tion (struct) are compared. For each version, the total number of propaga-
tor invocations and the total time (in milliseconds) is presented in Tables 5.4
and 5.5. Instances are from the Gecode Pentomino example.
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Table 5.2: MDD Reduction for Nonogram constraints, size.

Instance Failures gac2001 gac-schema dfa mdd

size size size size

nonogram-0 0 12.17 12.17 242 53
nonogram-3 22 22.6 22.6 334 59
nonogram-5 3983 41.5 41.5 753 59
nonogram-7 0 374.5 374.5 2239 242

Table 5.3: MDD Reduction for Nonogram constraints, time

Instance Failures gac2001 gac-schema dfa mdd

time time time time

nonogram-0 0 2.5 3.5 5.0 4.5
nonogram-3 22 25.0 24.0 32.5 18.5
nonogram-5 3983 4837.5 5225.5 4480.0 2480.0
nonogram-7 0 595.0 592.5 2147.5 745.5

Suprisingly, the results show that the solution counting method does not
detect all entailments. This is due to overflow problems of counting the
number of solutions. While using an arbitrary-precision package would solve
the problem, it would also be much more expensive. Another reason why
solution counting is so slow, is that each time the whole decision diagram
must be visited, while the structural methods can abort early very often.
There is no difference in the amount of entailments detected by the path

method and the struct method. This is due to the particular problem
investigated, where all entailed constraints will have the path structure, even
though no reduction is performed. While the path method is better on these
examples than the struct method, the latters greater potential for detecting
entailments combined with its relatively low overhead makes it an interesting
choice.
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Table 5.4: Entailment detection, steps

Instance base count path struct

pentomino-1 1509 1483 1400 1400
pentomino-2 111 111 111 111
pentomino-4 45477 45070 40940 40940
pentomino-5 2167 2163 2084 2084
pentomino-6 289841 288897 275229 275229

Table 5.5: Entailment detection, time

Instance base count path struct

pentomino-1 223.6 271.6 214.4 221.2
pentomino-2 18.8 20.0 18.4 18.4
pentomino-4 5830 6886 5053 5250
pentomino-5 353.3 403.3 333.3 343.3
pentomino-6 50742 62680 47176 48985

5.7 Conclusions and future work

This chapter has introduced the MDD global constraint and shown how to
propagate it by adapting the algorithm from [46]. Empirical results have
shown that the additional reduction offered by this representation has a
significant impact on the propagation complexity compared to using the
regular constraint. It was also shown how to efficiently perform entailment
detection on the MDD constraint and the empirical results indicated that
the heuristic structural detection was most efficient in practice. Finally, a
technique for constructing CPTs using MDDs as an intermediate step was
developed. An empirical comparison with previous techniques showed it
to be a competitive technique that in some cases outperformed the other
techniques by a large margin.

In future work it would be interesting to examine more succinct variations
of the MDD, for example using AOMDDs or non-deterministic decision dia-
grams as the representation. If heuristics could be developed for construct-
ing non-deterministic diagrams this would also benefit the construction of
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CPTs using the technique described in this paper. In general, the use of
non-deterministic data-structures is very interesting for finding succinct rep-
resentations, but also usually very hard. As an example, even for a finite
language finding the minimal NFA is at least NP-hard, and the best known
upper bound is ΣP

2 (the second level of the Polynomial Hierarchy) [26]. This
means that an exact algorithm is most probably out of reach for any practi-
cal examples. Given that we need to use heuristics and approximations, the
approximation complexity is of interest. Unfortunately, a general NFA can
not be minimized within an approximation factor of O(n) efficiently, unless
P=PSPACE [25]. This implies that efficient heuristics should be the main
focus.





Chapter 6

Abstraction

In previous chapters the efficiency of a single propagator has been discussed.
However, looking at a complete problem, there might be interesting pos-
sibilities for increasing the efficiency of propagation. We will start with a
motivating example first, improving the efficiency of the Pentomino problem,
and then give some idea about how it can be formalized. This chapter will
not give a full solution, it is intended as an idea about where to find further
possibilities for increasing the performance of propagation.

6.1 Example: Revisiting Pentominoes

Consider again the problem of placing pentominoes on a grid, as explained
in Chapter 3. While the model is clear and follows the original statement
closely, it is not as efficient as it can be. The main problem is that each
constraint talks about every value in every variable (through the use of com-
plemented values), even though it constrains only one of the values. This
leads to repeated uses of subexpressions of the form n1| · · · |ni−1|ni+1| . . . |nk

for denoting all values except ni.
To improve the performance, it is possible to abstract away the depen-

dence on the placement of the other values, and only focus on a specific value
ni for a constraint. Assume that the variables x from Chapter 3 describe a
board of size mn, with k pieces to place. In order to abstract the values, we
define additional 0-1 variables yij :

yij = 1⇔ xi = j, 0 ≤ i < nm, 1 ≤ j ≤ k
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Table 6.1: Packing pentominoes, standard versus 0-1 model, 1st solution

original 0-1

Size failures time time

20× 3 25 129 25 484 6 695
15× 4 4 700 4 478 1 015
12× 5 541 553 126
10× 6 893 1 103 237

Table 6.2: Packing pentominoes, standard versus 0-1 model, all solutions

original 0-1

Size failures solutions time time

20× 3 35 680 8 34 989 9 320
15× 4 649 068 1 472 587 144 147 210
12× 5 2 478 035 4 040 2 390 850 576 270
10× 6 5 998 165 9 356 6 706 211 1 517 150

To connect the x and y variables, a channeling propagator can be used
for each xi and corresponding 〈yi1, . . . , yik〉. The regular constraints can
now be defined using 0-1 expressions on the y variables for the right piece
instead. This extended model has many more propagators than the original
model, mn+k compared to just k, but the extra propagators are very cheap
to propagate. We gain in efficiency by reducing the number of times the
regular constraints have to propagate, as well as by reducing the size of the
layered graphs used.

As can be seen in Tables 6.1 and 6.2, the abstracted 0-1 model improves
the solutions times significantly.

6.2 Abstraction variants

There are several potential ways that problems can be abstracted. In the
previous Section, the original propagators were removed, since the new prop-
agators captured the full semantics of the original problem. Using the idea of
staging [52, 53], cheap but incomplete propagators can be added to a prob-
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lem to speed up the process of finding a fix-point by executing the expensive
propagators fewer times.

The technique used can also vary. In the previous Section, sets of values
for variables were merged to represent higher level concepts. Other transfor-
mations are also possible. For example, the set of solutions that a propagator
allows could be extended (e.g., dropping some side constraints from a global
constraint). Another possibility is to choose a subset of the variables to
propagate on.

6.3 Knapsack

As an example of an abstraction that adds new cheap propagators, merges
values, and extends the set of solutions, consider knapsack problems. There
is a complete pseudo-polynomial propagation algorithm for knapsack con-
straints [56] that uses the MDD unfolding of the problem. This algorithm is
based on the standard pseudo-polynomial dynamic programming algorithm
for knapsack. Unfortunately, this can take quite some time if the items have
large sizes, as can be quite common. When solving knapsack problems, it is
quite common to use a heuristic that divides the cost of all elements with
a constant. While the costs are still ordered with respect to each other,
the complexity of the dynamic programming algorithm goes down since the
range is compressed. The drawback is that the algorithm is no longer ex-
act, since dividing the costs may merge nearby values so that they become
indistinguishable.

To use the heuristic in a constraint programming setting, it is necessary to
keep some propagator that ensure the final solution is in fact a solution to the
original problem. This can be the original, pseudo polynomial propagator.
If the size of the costs in the original knapsack constraint are too large, then
a normal bounds propagator can be used as the checking propagator. The
choice of the checking propagator determines if the problem will have the
same amount of propagation (and thus the same search tree), or if the search
tree might be larger.

6.4 Abstraction in a system

Finding and applying abstractions can quite possibly be automated, since we
are interested in finding instances of pre-defined patterns. For example, given
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that a regular constraint is in the problem, the sets of values used in state-
transitions can be analyzed to find potential abstractions. It is preferable to
do this on the whole problem at once, since for an example such as the one
in Section 6.1, using global propagators for the channeling of information is
useful to keep the number of added propagators down.

There are several challenges in implementing a system for abstraction.
In the following list, a few are given.

• The problem must be inspected. Should this be done in a modeling
layer, or should it be done directly in the Gecode system? While doing
the inspection directly in Gecode is harder, the potential might be
higher since it could even be used dynamically. On the other hand, a
model in a modelling layer might have much more structure than the
concrete representation in Gecode.

• For each potential abstraction, the analysis must be implemented.
Should these analysises operate on individual constraints, on groups
of constraints, or even on the whole problem?

• Deciding when an abstraction is beneficial can potentially be quite
hard. For example, when are the costs for a knapsack constraint large
enough for an abstraction to be worthwhile.

• If several propagators of the same kind are used in the system, but
some are obviously cheaper than others, how should the priorities of
the propagators be changed? For example, given an abstracted and
an unabstracted propagator for knapsack, we want to ensure that the
abstracted propagator has a higher priority than the unabstracted,
even though they have the same type.



Chapter 7

Conclusions and Further Work

This thesis has presented new ways to improve the efficiency of constraint
propagation. Three main avenues has been explored: propagator implemen-
tation, constraint representation, and model abstraction.

To close the complexity gap between propagator-centered and variable
centered constraint programming systems, advisors have been added (Chap-
ter 4). Using advisors, it is possible to program the change information that
a propagator receives directly, and to specialize it for each propagator. For
propagators that do not need detailed change information (comprising most
of the propagators in a system) the addition does not cost any significant
amount of time or memory. While this addition has existed before this thesis,
often called Demons, this is the first model and evaluation of it.

Given that the propagators in a system is implemented in the most effi-
cient way, potentially using advisors, we must choose the right representation
to use for a particular problem. While the choice of propagators is some-
times clear, the choice of representation for generic constraints is less clear.
In Chapter 5, the use of Multivalued Decision Diagrams (MDDs) is proposed
for generic constraints. MDDs have many interesting properties as represen-
tations of constraints, and are easy to propagate using an adaptation of the
algorithm for regular constraints.

Given that the propagators are implemented in the most efficient way,
and that the best propagators have been chosen, it is natural to look at a
higher level on the problem to solve to find new possibilities for improv-
ing the efficiency. As has been demonstrated with the improved model for
placing several pieces (Section 6.1), finding common features in and between
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propagators can be a fruitful way to improve the efficiency of a model.
Finally, the model presented for general placement problems is a very

versatile and general model. The pieces can be quite general: non-connected
pieces, alternative pieces, and pieces with several colors. The latter tech-
nique is used in [37] to solve the Solitaire Battleship problem by encoding
water-boundaries into the pieces (representing ships) to ensure separation.
As shown, the model can solve the traditional pentominoes problem in rea-
sonable time with a very low modeling effort.

Future work. On the implementation side, a full, non-prototype integra-
tion of MDD handling into the current regular constraint in Gecode could
speed up many examples, as well as providing for users that want to specify
constraints using MDDs.

On the conceptual side, the potential of abstractions should be explored
further, and a few abstractions implemented.

For the placement model, a direct comparison with the geost constraint [3]
would be very interesting. The comparison in [37] is unfortunately lacking
in that different branching schemes and potentially slightly different models
are used.
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