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Abstract. The compact-table propagator for table constraints appears
to be a strong candidate for inclusion into any constraint solver due
to its efficiency and simplicity. However, successful integration into a
constraint solver based on copying rather than trailing is not obvious:
while the underlying bit-set data structure is sparse for efficiency it is
not compact for memory, which is essential for a copying solver.
The paper introduces techniques to make compact-table an excellent
fit for a copying solver. The key is to make sparse bit-sets dynamically
compact (only their essential parts occupy memory and their implemen-
tation is dynamically adapted during search) and tables shared (their
read-only parts are shared among copies). Dynamically compact bit-sets
reduce peak memory by 7.2% and runtime by 13.6% on average and
by up to 66.3% and 33.2%. Shared tables even further reduce runtime
and memory usage. The reduction in runtime exceeds the reduction in
memory and a cache analysis indicates that our techniques might also be
beneficial for trailing solvers. The proposed implementation has replaced
Gecode’s original implementations as it runs on average almost an order
of magnitude faster while using half the memory.

1 Introduction

The compact-table propagator [5] implements table constraints, where an ex-
plicit table of tuples defines the solutions to the constraint. Its basic idea is to
assign a number to each tuple in the table and maintain a sparse bit-set where bit
number i is set iff the tuple with number i is still considered a possible solution.
The sparse bit-set is represented as an array of words (typically, words of 64 bits)
and is sparse: operations performed on it by the propagator only consider words
that have at least one bit set (that is, non-zero or non-empty words), where the
emptiness information is tracked by an index structure. Compact-table and its
extensions have already shown great potential [5,15,14] and sparse bit-sets have
also been successfully used for itemset mining constraints [12].

The above-mentioned papers use constraint solvers that are based on trailing
where changes during propagation and search are recorded and undone when
backtracking occurs. Solvers based on copying create copies of the solver’s state
to which they can return during backtracking [13,10]. For a copying solver it is
crucial that the state to be copied be small, so any of its propagators should
require as little memory as possible to be copied. This paper contributes how
this can be achieved for the compact-table propagator.



Operations on sparse bit-sets save time as they safely ignore empty words.
However, empty words might still occupy memory as they are interleaved with
non-empty words in memory. This does not matter for a trailing solver as the
bit-set exists in one copy, however it poses a problem for a copying solver where
the bit-set needs to be copied for each node of the search tree. We contribute
how to make bit-sets sparse as well as compact : non-empty words move to the
beginning of the word array and hence only its non-empty prefix needs copy-
ing. Additionally, compact bit-sets are more cache-friendly and require fewer
indirections during update, which might be also beneficial for trailing solvers.

We make the propagator parametric with respect to its sparse bit-set imple-
mentation, so that we can get variants specialized for small tables. Here we take
advantage by compressing the index structure or dropping it altogether. This
optimization is dynamic: when the propagator is copied, the current size of its
sparse bit-set decides which implementation is best for the copy. The rationale
is that most copies are created close to the leaves of the search tree and hence
many words of the bit-sets might be empty.

It is important that as much information as possible of the table that is read-
only to the propagator be shared among its copies and among propagators using
the same table for different constraints. We introduce a design where tables can
be shared and only requires two mutable pointers per propagator variable.

The paper evaluates the various design decisions showing that the imple-
mentation of table constraints based on compact-table outperforms the original
implementations in Gecode. We demonstrate that compactness is important,
identify a promising hybrid candidate, and demonstrate that sharing is benefi-
cial while residues (discussed below) are not beneficial in the context of Gecode.

Plan of the Paper. The next section reviews the compact-table propagator.
Sect. 3 shows how tables can be shared between several propagators. Sect. 4
introduces techniques for dynamic compact sparse bit-sets which are evaluated
in Sect. 5 and Sect. 6 concludes the paper.

2 Compact-Table

Throughout the paper we assume: the n tuples in the table t are numbered from
0 to n−1; the i-th tuple is denoted as ti; the constraint (and hence t) has arity a;
the value at position k (1 ≤ k ≤ a) of tuple ti is denoted as ti,k; the variables
are x1, . . . , xa where the domain of variable xk is dom(xk); a tuple ti is a support
for a variable-value pair 〈xk, v〉 and for a position-value pair 〈k, v〉 if ti,k = v.

Sparse Bit-Sets. The n tuples are maintained in a sparse bit-set per propagator
where bit number i is set iff the tuple ti is still considered a possible solution. The
sparse bit-set is an array words of words of 64 bits and is sparse: its operations
only consider non-empty words, where the emptiness information is tracked by
an index structure. The index structure is an array index of 32-bit words that
maintain a permutation of the indices of words and a counter limit for the
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current number of non-empty words. The first limit entries of index store the
indices of words that are currently non-empty. If limit reaches zero the entire
bit-set is empty. The index structure is key to sparseness: bit-set operations only
need to consider words with indices in the first limit entries of index.

Modifications to the sparse bit-set are performed by intersections (word by
word bit-wise and, denoted as &) with a temporary mask. If the word at index
index[i] in words becomes empty, then the index structure records this by swap-
ping index[i] with index[limit− 1] in index and decrementing limit by one.
By doing so, non-empty indices move to the front of index while their order in
words remains unchanged. The following invariant is maintained, where w is the
number of words: ∀i ∈ {0, . . . , w − 1} : i < limit⇔ words[index[i]] 6= 0.

Support Bit-Sets. For each variable xk (1 ≤ k ≤ a) and value v ∈ dom(xk)
a support bit-set is constructed when the propagator is created, denoted by
supports〈xk,v〉. It captures the tuples in the table t that are supports for 〈xk, v〉:
bit i in the support bit-set is set iff ti,k = v. The support bit-sets are used to
update the sparse bit-set during the filtering phase of the algorithm (discussed
below). Note that the support bit-sets are created for each propagator using
the same table t with respect to the initial variable domains according to [5], a
design that we are going to improve on in Sect. 3.

Update and Filtering. The sparse bit-set and the support bit-sets encode the
information necessary to perform the two phases of the algorithm. The update
phase zeroes the bits in the sparse bit-set that correspond to tuples that have
lost support. The filtering phase removes values from variable domains that are
no longer supported by any tuple.

An optimization in the filtering phase of the algorithm are residual supports:
for each variable xk and value v ∈ dom(xk) the word index in the sparse bit-set
for which a support for 〈xk, v〉 was found is cached.

3 Sharing Tables

Sharing tables among propagators has two aspects: copies of a propagator cre-
ated during search share tables and propagators using the same table for different
constraints (that is, for different variables) share it. As mentioned in Sect. 2, the
latter case is not exploited in [5]. Sharing saves memory and increases spatial
locality and is likely to improve cache performance. When the table is created,
admissible domains and supports are computed, which are shared among all
propagators and their copies using the table.

Admissible Domains. For each position k (1 ≤ k ≤ a) the admissible domain is
computed as the set of values dk = {ti,k | 0 ≤ i < n} that occur in a tuple. The
admissible domains only depend on the table and hence can be shared. When a
propagator with variables x1 . . . , xa and table t is created, the variable domains
are constrained to dk ∩ dom(xk).
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Supports. The table data structure provides shared access to the support bit-sets
supports〈k,v〉 for v ∈ dk. Note the difference from the notation supports〈xk,v〉
used in Sect. 2, as support bit-sets are based on domains of variables xk in [5].
All support bit-sets for a position k are stored contiguously in a bit-set array
such that supports〈k,v2〉 is stored directly after supports〈k,v1〉 if value v2 is the
next larger value than v1 in the admissible domain dk.

The table should provide constant-time operations to find supports〈k,v〉 for
v ∈ dom(xk) or v ∈ ∆xk

. Here ∆xk
is the delta of xk as the set of values that

are removed from dom(xk). This is important if deltas are accurate, as for [5],
even though it is not discussed there. In [5] the domain implementation relies
on sparse bit-sets, which provide cheap access to deltas [11]. Gecode provides
only accurate delta information in case the lower or upper bound of a variable
changes [7]. Hence, the operations required skip entire ranges of values. Our
propagator maintains per variable xk pointers to supports〈k,min dom(xk)〉 and
supports〈k,maxdom(xk)〉 which are adjusted by binary search when min dom(xk)
or max dom(xk) change. In case no delta information is available, the correspond-
ing support information is computed by simultaneously iterating over variable
domains and the supports between the two pointers.

4 Dynamically Compact Sparse Bit-Sets

This section introduces techniques to make sparse bit-sets compact and index
structures small that can be adapted dynamically during copying. As in [5], our
implementation is a data structure that could also be used in other contexts.

Compact Bit-Sets. Our implementation makes sparse bit-sets compact such that
their non-empty words form a contiguous block in memory.

Let us consider part of the algorithm’s up-
date phase. The sparse bit-set with limit=4

is about to be updated with the shown mask
(computed from the support information). For
simplicity, we use 4-bit rather than 64-bit

mask 1010 0010 0111 0010

w0 w1 w2 w3

words 1101 1000 1011 1001

index 0 1 2 3

words. The update with the mask is performed by word-wise in-place inter-
section. After the update, limit is 2 and the words w1 and w3 are empty.

The original implementation, called Original, executes the following in-
structions (simplified), where x←& y abbreviates x← x& y:

for i← limit− 1 downto 0 do

words[index[i]]←& mask[index[i]]
if words[index[i]] = 0 then

index[i]← index[limit− 1]
limit← limit− 1

end

end

w0 w1 w2

words 1000 0000 0011

index 0 2

The result is shown to the right, where dead entries (not to be copied) are
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marked gray. When copying the resulting bit-set the word w1 would be copied
even though it is empty, as it is interleaved with w0 and w2.

Our compact implementation, called Compact, updates the data structures
by executing the following instructions (simplified) leading to the result shown
to the right of the instructions. Note that only w0 and w2 need copying.

for i← limit− 1 downto 0 do

words[i]←& mask[i]
if words[i] = 0 then

index[i]← index[limit− 1]
words[i]← words[limit− 1]
limit← limit− 1

end

end

w0 w2

words 1000 0011

index 0 2

The key benefit of Compact is that non-empty words are contiguous in
memory as captured by the following invariant:

∀i ∈ {0, . . . , limit− 1} : words[i] 6= 0

As only non-empty words need copying, both memory usage and time for copying
is reduced. The data structure is also more cache-friendly as it is contiguous.
Compact uses less indirection and hence might be more efficient than Original
as the words are accessed directly and not through index. Even though the
removal of an empty word now also requires an update to words, these updates
are infrequent. Additional changes to the implementation are required, they are
analogous. In particular, masks are constructed to be compact to match words

directly without indirection.
Note that for a trailing solver, rather than overwriting index[i] and words[i]

with index[limit − 1] and words[limit − 1], these entries would be swapped.
Hence the idea of Compact is also compatible with a trailing solver.

During the filtering phase of the algorithm, the bit-set is intersected with
support bit-sets which are not compact. The original implementation executes
instructions of the following form:

words[index[i]] & supports〈k,v〉[index[i]]

while our compact implementation uses less indirection:

words[i] & supports〈k,v〉[index[i]]

for position-value pairs 〈k, v〉 and 0 ≤ i < limit.

Compressing the Index Structure. We save additional memory for the index
structure. When possible, we use 16- or 8-bit data types for the entries in index

instead of 32-bit; this optimization we refer to as Compact++. Consider a table
with 16 384 tuples, which results in words and index with 256 entries each.
Assuming two pointers for words and index with 64 bits each, Compact++ can
use 8-bit entries and reduce memory usage from 3 092 to 2 321 bytes, a reduction
by ≈ 25% (ignoring memory layout requirements).
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Two specialized implementations for sufficiently small tables with w words
are as follows. Smallw uses 4-bit index entries, that is up to 15 entries and the
limit field are packed into a single 64-bit word. Densew drops the entire index
structure and considers all words in the bit-set.

Dynamic Data Structures. Making the propagator parametric with respect to
its sparse bit-set implementation gives opportunity for further optimization. The
decision which implementation to use is made statically when the propagator
is created or dynamically when the propagator is copied. For implementations
where only static decisions are made, we use “S” as subscript; for implemen-
tations also making dynamic decisions we use “D”. For example, Compact++S

may decide to use 16-bit integers initially and all of its copies also use 16-bit
integers, while Compact++D might create copies using 8-bit integers if possible.

5 Evaluation

We evaluate our implementation of compact-table and the various optimizations
on top of Gecode (Version 6.0.0), on the same benchmark set as in [5], in-
volving 1 621 table instances. Being originally in format XCSP 2.1, which is not
supported by Gecode, the benchmarks are translated into MiniZinc [9] using the
tool xcsp2mzn3. Time measurements are run on a Windows 7 (64 bit) computer
with two four-core Intel Xeon E5462 of 2.80 GHz and 8 GB RAM. Measurements
of memory usage are run on a server cluster. A time out of 1 000 seconds is used
on each instance. We skip instances that i) cannot be translated to MiniZinc
due to parse errors (117 instances); ii) require more than 8 GB of RAM (43
instances); iii) cannot be solved within the time out for the Original configu-
ration (170 instances); or iv) are solved in less than 1 second for the Original
configuration (1014 instances). In total, 277 instances are evaluated.

Table 1 shows the relative performance of various implementations, using
Original as baseline. No implementation except Residues uses residual sup-
ports. We report the minimum and maximum relative performance, the geomet-
ric mean of the relative performance, as well as the geometric standard deviation
of the relative performance. Solvetime means wall time excluding the time for
parsing FlatZinc and peak heap memory usage also excludes the peak memory
for parsing. For presenting the relation of implementation a to a baseline imple-

mentation b (Original in Table 1), we use the relative measures 100 · a
T
i

bTi
and

100 · a
M
i

bMi
, where cTi and cMi are solvetime respectively peak memory usage for

implementation c on instance i. Detailed results are available from the authors.
As shown in Table 1, compressing the bit-set (Compact) improves runtime

by 14.4% and peak memory usage by 4.5% on average compared to the original
implementation (Original). The decrease in runtime is most likely achieved
by a combination of i) fewer operations for copying, ii) less indirection as ar-
gued in Sect. 4, and iii) better cache performance due to the more compact

3 Available at https://github.com/CP-Unibo/mzn2feat, last accessed April 17, 2018.
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Table 1. Solvetime and peak memory relative to Original.

Solvetime Compact Compact++S Compact++D BestS BestD Residues

min −67.1% −66.8% −66.4% −66.7% −66.3% −8.5%

mean −14.4% −14.4% −13.7% −14.6% −13.6% 13.1%

max 0.4% 1.1% 0.7% 2.2% 0.9% 32.4%

deviation ±30.8% ±31.1% ±29.7% ±31.0% ±29.6% ±8.3%

Peak memory Compact Compact++S Compact++D BestS BestD Residues

min −27.2% −33.4% −33.4% −33.4% −33.2% −0.0%

mean −4.5% −6.8% −6.8% −7.2% −7.2% 10.0%

max 0.2% 0.0% 0.0% −0.3% −0.3% 71.2%

deviation ±8.5% ±11.4% ±11.4% ±11.2% ±11.2% ±13.1%

representation. Additional analysis with the cache profiling tool Cachegrind [8]
on instances with solvetime of more than 10 seconds (using a time out of one
hour), indicates that Compact reduces the miss rate of the first-level data cache
by ≈ 3% on average compared to Original.

Compressing the bit-set as well as the index structure (Compact++), further
reduces peak memory usage to −6.8% on average. Comparing Compact++S and
Compact++D, there is no visible difference in peak memory usage, while the
runtime is slightly higher for Compact++D due to extra overhead during copying.

Our proposed winning strategy, Best, is the combination of Compact++ and
Dense4. This strategy has the best memory usage among all evaluated imple-
mentations by a very modest ≈ 0.5% in average while being only marginally
slower in average. The winning strategy is chosen from evaluating the spe-
cialized implementations Smallw for w ∈ {1, 2, 4, 8, 15} and Densew for w ∈
{1, 2, 4, 8, 16} respectively, whose results we omit for lack of space. Overall, these
variants perform similarly to each other for all w, though Dense tends to be
slightly faster than Small. For simplicity, we use only one of Dense and Small,
with Dense being the winner of the two. The threshold value w = 4 is chosen
as larger values for w yield slightly higher maximum memory usage.

In Table 1, Residues denotes an implementation that is like Original ex-
cept that it uses residues, discussed in Sect. 2. Clearly, computation saved during
propagation by residues do not compensate for the memory and copying over-
head they incur, as both runtime and memory usage is increased.

To evaluate the impact of sharing tables between propagators, as discussed
in Sect. 3, we extend Gecode’s FlatZinc interpreter so that propagators that use
the same set of tuples can share the corresponding tables. Measurements are
made with and without sharing for BestD, and on average runtime is reduced
by 4.6% and memory usage by 56.5% when using sharing.

Note that the comparison is slightly approximate in the sense that it does
not only reflect sharing of the admissible domains and the support bit-sets, but
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also the actual tuples, as the entire tables are duplicated in the version with-
out sharing (even though the actual tuples are never used during propagation).
That being said, as the runtime measurements do not include FlatZinc overhead,
during which the tables are created, and as tables are not copied, the runtime
measurements are likely to reflect actual difference from sharing admissible do-
mains and support bit-sets. Analysis with Cachegrind indicates that sharing
tables reduces the miss rate of the first-level data cache by ≈ 18% on average
on sufficiently time-consuming instances.

We compare the performance of BestD with the two original implementa-
tions of table constraints in Gecode, based on [3] and [4]. The comparison is
without sharing tables in FlatZinc as this is not available for the two implemen-
tations. Our implementation reduces runtime on average by 85.7% and up to
99.6% and reduces peak memory on average by 45.4% and up to 67.7% com-
pared to the best of Gecode’s two implementations. Note that these numbers
are based on fewer instances than the other studied configurations, as the best
old implementation timed out on 43 additional instances.

6 Conclusions and Future Work

This paper shows that compact-table is an excellent fit for a copying solver; the
algorithm runs on average almost an order of magnitude faster than Gecode’s im-
plementations while using only half the memory. Our proposed implementation
of compact-table is more compact in memory than the original implementation,
reducing peak memory usage by 7.2% and solvetime by 13.6% on average on
our benchmark set. We introduce how to share tables among propagators and
demonstrate that sharing moderately reduces solvetime by 4.6% and consider-
ably reduces memory usage by 56.5%. A trailing solver can most likely benefit
from our optimizations as well: support bit-sets can be shared; and it might be
beneficial to make sparse bit-sets compact as it is better for cache performance
and uses less indirection.

Future Work. Our implementation only uses approximate information about
variable deltas; more accurate information maintained by the propagator might
speed up propagation. Heuristics for re-ordering the tuples in the table have not
been explored. Re-ordering can have an impact on how much the sparse bit-sets
can be compressed, as the order in which the tuples appear in the table decides
which bits become zero first during propagation.
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