Generated on Tue Apr 18 10:22:24 2017 for Gecode by doxygen 1.6.3

val.hpp File Reference

(Revision: 15569)

Go to the source code of this file.

Namespaces

namespace  Gecode
 

Gecode toplevel namespace


Functions

IntValBranch Gecode::INT_VAL_MIN (void)
 Select smallest value.
IntValBranch Gecode::INT_VAL_MED (void)
 Select greatest value not greater than the median.
IntValBranch Gecode::INT_VAL_MAX (void)
 Select largest value.
IntValBranch Gecode::INT_VAL_RND (Rnd r)
 Select random value.
IntValBranch Gecode::INT_VAL_SPLIT_MIN (void)
 Select values not greater than mean of smallest and largest value.
IntValBranch Gecode::INT_VAL_SPLIT_MAX (void)
 Select values greater than mean of smallest and largest value.
IntValBranch Gecode::INT_VAL_RANGE_MIN (void)
 Select the smallest range of the variable domain if it has several ranges, otherwise select values not greater than mean of smallest and largest value.
IntValBranch Gecode::INT_VAL_RANGE_MAX (void)
 Select the largest range of the variable domain if it has several ranges, otherwise select values greater than mean of smallest and largest value.
IntValBranch Gecode::INT_VAL (IntBranchVal v, IntBranchCommit c=nullptr)
 Select value as defined by the value function v and commit function c Uses a commit function as default that posts the constraints that a variable x must be equal to a value n for the first alternative and that x must be different from n for the second alternative.
IntValBranch Gecode::INT_VALUES_MIN (void)
 Try all values starting from smallest.
IntValBranch Gecode::INT_VALUES_MAX (void)
 Try all values starting from largest.
BoolValBranch Gecode::BOOL_VAL_MIN (void)
 Select smallest value.
BoolValBranch Gecode::BOOL_VAL_MAX (void)
 Select largest value.
BoolValBranch Gecode::BOOL_VAL_RND (Rnd r)
 Select random value.
BoolValBranch Gecode::BOOL_VAL (BoolBranchVal v, BoolBranchCommit c=nullptr)
 Select value as defined by the value function v and commit function c Uses a commit function as default that posts the constraints that a variable x must be equal to a value n for the first alternative and that x must be different from n for the second alternative.