Generated on Thu Mar 22 10:39:44 2012 for Gecode by doxygen 1.6.3

path.hh

Go to the documentation of this file.
00001 /* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
00002 /*
00003  *  Main authors:
00004  *     Christian Schulte <schulte@gecode.org>
00005  *
00006  *  Copyright:
00007  *     Christian Schulte, 2003
00008  *
00009  *  Last modified:
00010  *     $Date: 2010-07-22 11:59:14 +0200 (Thu, 22 Jul 2010) $ by $Author: schulte $
00011  *     $Revision: 11248 $
00012  *
00013  *  This file is part of Gecode, the generic constraint
00014  *  development environment:
00015  *     http://www.gecode.org
00016  *
00017  *  Permission is hereby granted, free of charge, to any person obtaining
00018  *  a copy of this software and associated documentation files (the
00019  *  "Software"), to deal in the Software without restriction, including
00020  *  without limitation the rights to use, copy, modify, merge, publish,
00021  *  distribute, sublicense, and/or sell copies of the Software, and to
00022  *  permit persons to whom the Software is furnished to do so, subject to
00023  *  the following conditions:
00024  *
00025  *  The above copyright notice and this permission notice shall be
00026  *  included in all copies or substantial portions of the Software.
00027  *
00028  *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
00029  *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
00030  *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
00031  *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
00032  *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
00033  *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
00034  *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
00035  *
00036  */
00037 
00038 #ifndef __GECODE_SEARCH_PARALLEL_PATH_HH__
00039 #define __GECODE_SEARCH_PARALLEL_PATH_HH__
00040 
00041 #include <gecode/search.hh>
00042 
00043 namespace Gecode { namespace Search { namespace Parallel {
00044 
00058   class Path {
00059   public:
00061     class Edge {
00062     protected:
00064       Space* _space;
00066       unsigned int _alt;
00068       unsigned int _alt_max;
00070       const Choice* _choice;
00071     public:
00073       Edge(void);
00075       Edge(Space* s, Space* c);
00076       
00078       Space* space(void) const;
00080       void space(Space* s);
00081       
00083       const Choice* choice(void) const;
00084       
00086       unsigned int alt(void) const;
00088       bool rightmost(void) const;
00090       bool work(void) const;
00092       void next(void);
00094       unsigned int steal(void);
00095       
00097       void dispose(void);
00098     };
00099   protected:
00101     Support::DynamicStack<Edge,Heap> ds;
00103     unsigned int n_work;
00104   public:
00106     Path(void);
00108     const Choice* push(Worker& stat, Space* s, Space* c);
00110     bool next(Worker& s);
00112     Edge& top(void) const;
00114     bool empty(void) const;
00116     int lc(void) const;
00118     void unwind(int l);
00120     void commit(Space* s, int i) const;
00122     Space* recompute(unsigned int& d, unsigned int a_d, Worker& s);
00124     Space* recompute(unsigned int& d, unsigned int a_d, Worker& s,
00125                      const Space* best, int& mark);
00127     int entries(void) const;
00129     size_t size(void) const;
00131     void reset(void);
00133     bool steal(void) const;
00135     Space* steal(Worker& stat, unsigned long int& d);
00136   };
00137 
00138 
00139   /*
00140    * Edge for recomputation
00141    *
00142    */
00143   forceinline
00144   Path::Edge::Edge(void) {}
00145 
00146   forceinline
00147   Path::Edge::Edge(Space* s, Space* c)
00148     : _space(c), _alt(0), _choice(s->choice()) {
00149     _alt_max = _choice->alternatives()-1;
00150   }
00151 
00152   forceinline Space*
00153   Path::Edge::space(void) const {
00154     return _space;
00155   }
00156   forceinline void
00157   Path::Edge::space(Space* s) {
00158     _space = s;
00159   }
00160 
00161   forceinline unsigned int
00162   Path::Edge::alt(void) const {
00163     return _alt;
00164   }
00165   forceinline bool
00166   Path::Edge::rightmost(void) const {
00167     return _alt == _alt_max;
00168   }
00169   forceinline bool
00170   Path::Edge::work(void) const {
00171     return _alt != _alt_max;
00172   }
00173   forceinline void
00174   Path::Edge::next(void) {
00175     _alt++;
00176   }
00177   forceinline unsigned int
00178   Path::Edge::steal(void) {
00179     assert(work());
00180     return _alt_max--;
00181   }
00182 
00183   forceinline const Choice*
00184   Path::Edge::choice(void) const {
00185     return _choice;
00186   }
00187 
00188   forceinline void
00189   Path::Edge::dispose(void) {
00190     delete _space;
00191     delete _choice;
00192   }
00193 
00194 
00195 
00196   /*
00197    * Depth-first stack with recomputation
00198    *
00199    */
00200 
00201   forceinline
00202   Path::Path(void) : ds(heap), n_work(0) {}
00203 
00204   forceinline const Choice*
00205   Path::push(Worker& stat, Space* s, Space* c) {
00206     Edge sn(s,c);
00207     if (sn.work())
00208       n_work++;
00209     ds.push(sn);
00210     stat.stack_depth(static_cast<unsigned long int>(ds.entries()));
00211     return sn.choice();
00212   }
00213 
00214   forceinline bool
00215   Path::next(Worker& stat) {
00216     while (!ds.empty())
00217       if (ds.top().rightmost()) {
00218         stat.pop(ds.top().space(),ds.top().choice());
00219         ds.pop().dispose();
00220       } else {
00221         assert(ds.top().work());
00222         ds.top().next();
00223         if (!ds.top().work())
00224           n_work--;
00225         return true;
00226       }
00227     return false;
00228   }
00229 
00230   forceinline Path::Edge&
00231   Path::top(void) const {
00232     assert(!ds.empty());
00233     return ds.top();
00234   }
00235 
00236   forceinline bool
00237   Path::empty(void) const {
00238     return ds.empty();
00239   }
00240 
00241   forceinline void
00242   Path::commit(Space* s, int i) const {
00243     const Edge& n = ds[i];
00244     s->commit(*n.choice(),n.alt());
00245   }
00246 
00247   forceinline int
00248   Path::lc(void) const {
00249     int l = ds.entries()-1;
00250     while (ds[l].space() == NULL)
00251       l--;
00252     return l;
00253   }
00254 
00255   forceinline int
00256   Path::entries(void) const {
00257     return ds.entries();
00258   }
00259 
00260   forceinline size_t
00261   Path::size(void) const {
00262     return ds.size();
00263   }
00264 
00265   forceinline void
00266   Path::unwind(int l) {
00267     assert((ds[l].space() == NULL) || ds[l].space()->failed());
00268     int n = ds.entries();
00269     for (int i=l; i<n; i++) {
00270       if (ds.top().work())
00271         n_work--;
00272       ds.pop().dispose();
00273     }
00274     assert(ds.entries() == l);
00275   }
00276 
00277   forceinline void
00278   Path::reset(void) {
00279     n_work = 0;
00280     while (!ds.empty())
00281       ds.pop().dispose();
00282   }
00283 
00284   forceinline bool
00285   Path::steal(void) const {
00286     return n_work > Config::steal_limit;
00287   }
00288 
00289   forceinline Space*
00290   Path::steal(Worker& stat, unsigned long int& d) {
00291     // Find position to steal: leave sufficient work
00292     int n = ds.entries()-1;
00293     unsigned int w = 0;
00294     while (n >= 0) {
00295       if (ds[n].work())
00296         w++;
00297       if (w > Config::steal_limit) {
00298         // Okay, there is sufficient work left
00299         int l=n;
00300         // Find last copy
00301         while (ds[l].space() == NULL)
00302           l--;
00303         Space* c = ds[l].space()->clone(false);
00304         // Recompute, if necessary
00305         for (int i=l; i<n; i++)
00306           commit(c,i);
00307         c->commit(*ds[n].choice(),ds[n].steal());
00308         if (!ds[n].work())
00309           n_work--;
00310         d = stat.steal_depth(static_cast<unsigned long int>(n+1));
00311         return c;
00312       }
00313       n--;
00314     }
00315     return NULL;
00316   }
00317 
00318   forceinline Space*
00319   Path::recompute(unsigned int& d, unsigned int a_d, Worker& stat) {
00320     assert(!ds.empty());
00321     // Recompute space according to path
00322     // Also say distance to copy (d == 0) requires immediate copying
00323 
00324     // Check for LAO
00325     if ((ds.top().space() != NULL) && ds.top().rightmost()) {
00326       Space* s = ds.top().space();
00327       stat.lao(s);
00328       s->commit(*ds.top().choice(),ds.top().alt());
00329       assert(ds.entries()-1 == lc());
00330       ds.top().space(NULL);
00331       d = 0;
00332       return s;
00333     }
00334     // General case for recomputation
00335     int l = lc();             // Position of last clone
00336     int n = ds.entries();     // Number of stack entries
00337     // New distance, if no adaptive recomputation
00338     d = static_cast<unsigned int>(n - l);
00339 
00340     Space* s = ds[l].space()->clone(); // Last clone
00341 
00342     if (d < a_d) {
00343       // No adaptive recomputation
00344       for (int i=l; i<n; i++)
00345         commit(s,i);
00346     } else {
00347       int m = l + static_cast<int>(d >> 1); // Middle between copy and top
00348       int i = l; // To iterate over all entries
00349       // Recompute up to middle
00350       for (; i<m; i++ )
00351         commit(s,i);
00352       // Skip over all rightmost branches
00353       for (; (i<n) && ds[i].rightmost(); i++)
00354         commit(s,i);
00355       // Is there any point to make a copy?
00356       if (i<n-1) {
00357         // Propagate to fixpoint
00358         SpaceStatus ss = s->status(stat);
00359         /*
00360          * Again, the space might already propagate to failure (due to
00361          * weakly monotonic propagators).
00362          */
00363         if (ss == SS_FAILED) {
00364           // s must be deleted as it is not on the stack
00365           delete s;
00366           stat.fail++;
00367           unwind(i);
00368           return NULL;
00369         }
00370         ds[i].space(s->clone());
00371         stat.adapt(ds[i].space());
00372         d = static_cast<unsigned int>(n-i);
00373       }
00374       // Finally do the remaining commits
00375       for (; i<n; i++)
00376         commit(s,i);
00377     }
00378     return s;
00379   }
00380 
00381   forceinline Space*
00382   Path::recompute(unsigned int& d, unsigned int a_d, Worker& stat,
00383                   const Space* best, int& mark) {
00384     assert(!ds.empty());
00385     // Recompute space according to path
00386     // Also say distance to copy (d == 0) requires immediate copying
00387 
00388     // Check for LAO
00389     if ((ds.top().space() != NULL) && ds.top().rightmost()) {
00390       Space* s = ds.top().space();
00391       stat.lao(s);
00392       s->commit(*ds.top().choice(),ds.top().alt());
00393       assert(ds.entries()-1 == lc());
00394       if (mark > ds.entries()-1) {
00395         mark = ds.entries()-1;
00396         s->constrain(*best);
00397       }
00398       ds.top().space(NULL);
00399       d = 0;
00400       return s;
00401     }
00402     // General case for recomputation
00403     int l = lc();             // Position of last clone
00404     int n = ds.entries();     // Number of stack entries
00405     // New distance, if no adaptive recomputation
00406     d = static_cast<unsigned int>(n - l);
00407 
00408     Space* s = ds[l].space(); // Last clone
00409 
00410     if (l < mark) {
00411       mark = l;
00412       s->constrain(*best);
00413       // The space on the stack could be failed now as an additional
00414       // constraint might have been added.
00415       if (s->status(stat) == SS_FAILED) {
00416         // s does not need deletion as it is on the stack (unwind does this)
00417         stat.fail++;
00418         unwind(l);
00419         return NULL;
00420       }
00421       // It is important to replace the space on the stack with the
00422       // copy: a copy might be much smaller due to flushed caches
00423       // of propagators
00424       Space* c = s->clone();
00425       ds[l].space(c);
00426       stat.constrained(s,c);
00427     } else {
00428       s = s->clone();
00429     }
00430 
00431     if (d < a_d) {
00432       // No adaptive recomputation
00433       for (int i=l; i<n; i++)
00434         commit(s,i);
00435     } else {
00436       int m = l + static_cast<int>(d >> 1); // Middle between copy and top
00437       int i = l;            // To iterate over all entries
00438       // Recompute up to middle
00439       for (; i<m; i++ )
00440         commit(s,i);
00441       // Skip over all rightmost branches
00442       for (; (i<n) && ds[i].rightmost(); i++)
00443         commit(s,i);
00444       // Is there any point to make a copy?
00445       if (i<n-1) {
00446         // Propagate to fixpoint
00447         SpaceStatus ss = s->status(stat);
00448         /*
00449          * Again, the space might already propagate to failure
00450          *
00451          * This can be for two reasons:
00452          *  - constrain is true, so we fail
00453          *  - the space has weakly monotonic propagators
00454          */
00455         if (ss == SS_FAILED) {
00456           // s must be deleted as it is not on the stack
00457           delete s;
00458           stat.fail++;
00459           unwind(i);
00460           return NULL;
00461         }
00462         ds[i].space(s->clone());
00463         stat.adapt(ds[i].space());
00464         d = static_cast<unsigned int>(n-i);
00465       }
00466       // Finally do the remaining commits
00467       for (; i<n; i++)
00468         commit(s,i);
00469     }
00470     return s;
00471   }
00472 
00473 }}}
00474 
00475 #endif
00476 
00477 // STATISTICS: search-parallel