Constraint Programming

Introduction, State of the Art & Trends

Christian Schulte
cschulte@kth.se

Department of Electronic, Computer and Software Systems
School of Information and Communication Technology
KTH – Royal Institute of Technology
Sweden
Talk Overview

- What is Constraint Programming?

 Sudoku is Constraint Programming

- ... more later
Sudoku

...is Constraint Programming!
Assign blank fields digits such that:
digits distinct per rows, columns, blocks
Sudoku

Assign blank fields digits such that: digits distinct per rows, columns, blocks
Assign blank fields digits such that: digits distinct per rows, columns, blocks.
Assign blank fields digits such that: digits distinct per rows, columns, **blocks**
Block Propagation

- No field in block can take digits 3, 6, 8
Block Propagation

- No field in block can take digits 3, 6, 8
 - propagate to other fields in block
- Rows and columns: likewise
Prune digits from fields such that:
digits distinct per rows, columns, blocks
Prune digits from fields such that:
digits distinct per rows, columns, blocks
Propagating digits from fields such that:
digits distinct per rows, columns, blocks
Propagate digits from fields such that:
digits distinct per rows, columns, blocks
Iterated Propagation

- Iterate propagation for rows, columns, blocks
- What if no assignment: search... later
Sudoku is Constraint Programming

- **Variables**: fields
 - take **values**: digits
 - maintain set of possible values

- **Constraints**: distinct
 - relation among variables

- **Modelling**: variables, values, constraints

- **Solving**: propagation, search

```
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2</th>
<th></th>
<th>5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Constraint Programming

- Variable domains
 - finite domain integer, finite sets, multisets, intervals, ...

- Constraints
 - distinct, arithmetic, scheduling, graphs, ...

- Solving
 - propagation, branching, exploration, ...

- Modelling
 - variables, values, constraints, heuristics, symmetries, ...
Key ideas and principles
- constraint propagation
- search: branching and exploration

Why does constraint programming matter

State of the art and trends

Excursions
- constraint propagation revisited
- scheduling resources
- strong propagation
Key Ideas and Principles
Running Example: SMM

- Find distinct digits for letters, such that

\[
\begin{align*}
\text{SEND} & + \text{MORE} \\
\hline
\text{MONEY} &
\end{align*}
\]
Constraint Model for SMM

- **Variables:**
 \(S, E, N, D, M, O, R, Y \in \{0, \ldots, 9\} \)

- **Constraints:**
 \[
 \text{distinct}(S, E, N, D, M, O, R, Y)
 \]
 \[
 1000 \times S + 100 \times E + 10 \times N + D
 \]
 \[
 + 1000 \times M + 100 \times O + 10 \times R + E
 \]
 \[
 = 10000 \times M + 1000 \times O + 100 \times N + 10 \times E + Y
 \]
 \[
 S \neq 0 \quad M \neq 0
 \]
Solving SMM

- Find values for variables

such that

all constraints satisfied
Finding a Solution

- Compute with possible values
 - rather than enumerating assignments

- Prune inconsistent values
 - constraint propagation

- Search
 - branch: define search tree
 - explore: explore search tree for solution
Constraint Propagation
Important Concepts

- Constraint store
- Propagator
- Constraint propagation
Constraint Store

\[x \in \{3,4,5\} \quad y \in \{3,4,5\} \]

- Maps variables to possible values
Constraint Store

- Maps variables to possible values
- Others: finite sets, intervals, trees, ...

finite domain constraints

\(x \in \{3,4,5\} \quad y \in \{3,4,5\}\)
Propagators

- Implement constraints

\[\text{distinct}(x_1, \ldots, x_n) \]

\[x + 2xy = z \]
Propagators

- \(x \geq y \) \quad \text{and} \quad y > 3

- \(x \in \{3, 4, 5\} \quad \text{and} \quad y \in \{3, 4, 5\} \)

- Amplify store by constraint propagation
Propagators

- Amplify store by constraint propagation
Propagators

- Amplify store by constraint propagation

\[x \geq y \quad y > 3 \]

\[x \in \{3,4,5\} \quad y \in \{4,5\} \]
Propagators

- Amplify store by constraint propagation
Propagators

- Amplify store by constraint propagation

\(x \geq y \quad y > 3 \)

\(x \in \{4,5\} \quad y \in \{4,5\} \)
Propagators

- Amplify store by constraint propagation
- Disappear when done (subsumed, entailed)
 - no more propagation possible

\[x \geq y \quad y > 3 \]
\[x \in \{4, 5\} \quad y \in \{4, 5\} \]
Propagators

- Amplify store by constraint propagation
- Disappear when done (subsumed, entailed)
 - no more propagation possible

\[x \geq y \]
\[x \in \{4, 5\} \quad y \in \{4, 5\} \]
Propagation for SMM

- Results in store

\[
S \in \{9\} \quad E \in \{4, \ldots, 7\} \quad N \in \{5, \ldots, 8\} \quad D \in \{2, \ldots, 8\} \\
M \in \{1\} \quad O \in \{0\} \quad R \in \{2, \ldots, 8\} \quad Y \in \{2, \ldots, 8\}
\]

- Propagation **alone** not sufficient!
 - create simpler sub-problems
 - branching
Important Concepts

- Branching
- Exploration
- Branching heuristics
- Best solution search
Search: Branching

- Create subproblems with additional information
 - enable further constraint propagation
Example Branching Strategy

- Pick variable x with at least two values
- Pick value n from domain of x
- Branch with
 \[x = n \quad \text{and} \quad x \neq n \]

- Part of model
Search: Exploration

- Iterate propagation and branching
- Orthogonal: branching ⇔ exploration
- Nodes:
 - Unsolved
 - Failed
 - Succeeded
SMM: Solution

\[
\begin{align*}
\text{SEND} & \quad + \quad \text{MORE} \\
 & \quad = \quad \text{MONEY} \\
9567 & \quad + \quad 1085 \\
\hline
10652 & \quad = \quad \text{MONEY}
\end{align*}
\]
Heuristics for Branching

- Which variable
 - least possible values (first-fail)
 - application dependent heuristic

- Which value
 - minimum, median, maximum
 \[x = m \quad \text{or} \quad x \neq m \]
 - split with median \(m \)
 \[x < m \quad \text{or} \quad x \geq m \]

- Problem specific
SMM: Solution With First-fail

\[
\begin{align*}
\text{SEND} & \quad + \quad \text{MORE} \\
= & \quad \text{MONEY} \\
= & \quad 9567 \\
+ & \quad 1085 \\
= & \quad 10652
\end{align*}
\]
Send Most Money (SMM++)

- Find distinct digits for letters, such that

\[
\begin{align*}
\text{SEND} & \quad + \quad \text{MOST} \\
\hline
\text{MONEY} & =
\end{align*}
\]

and \text{MONEY} maximal
Best Solution Search

- **Naïve approach:**
 - compute all solutions
 - choose best

- **Branch-and-bound approach:**
 - compute first solution
 - add “betterness” constraint to open nodes
 - next solution will be “better”
 - prunes search space
Branch-and-bound Search

Find first solution
Branch-and-bound Search

- Explore with additional constraint
Branch-and-bound Search

- Explore with additional constraint
Branch-and-bound Search

 Guarantees better solutions
Branch-and-bound Search

Guarantees better solutions
Branch-and-bound Search

Last solution best
Branch-and-bound Search

Proof of optimality
Modelling SMM++

- Constraints and branching as before
- Order among solutions with constraints
 - so-far-best solution \(S, E, N, D, M, O, T, Y\)
 - current node \(S, E, N, D, M, O, T, Y\)
 - constraint added
 \[10000 \times M + 1000 \times O + 100 \times N + 10 \times E + Y < 10000 \times M + 1000 \times O + 100 \times N + 10 \times E + Y\]
SMM++: Branch-and-bound

\[
\begin{align*}
\text{SEND} & + \text{MOST} \\
& = \text{MONEY} \\
& = 9782 + 1094 \\
& = 10876
\end{align*}
\]
SMM++: All Solution Search

SEND
+ MOST
= MONEY

\[9782 + 1094 = 10876 \]
Summary: Key Ideas and Principles

- **Modelling**
 - variables with domain
 - constraints to state relations
 - branching strategy
 - solution ordering

- **Solving**
 - constraint propagation
 - constraint branching
 - search tree exploration

- **Applications**

- **Principles**
Excursion
Constraint Propagation
Revisited
Constraint Propagation

- Variables (as members of store)
 - feature variable domain (here: finite set of integers)

- Propagators
 - implement constraints

- Propagation loop
 - execute propagators until simultaneous fixpoint
Propagator

- Propagator p is procedure
 - implements constraint $\text{con}(p)$
 - its semantics (set of tuples)
 - computes on set of variables $\text{var}(p)$

- Execution of propagator p
 - narrows domains of variables in $\text{var}(p)$
 - signals failure
Propagators Are Intensional

- Propagators implement narrowing
 - also: filtering, propagation, domain reduction

- No extensional representation of con(\(\rho\))
 - impractical in most cases (space)

- Extensional representation of constraint
 - can be provided by special propagator
 - often: “element” constraint, “relation” constraint, …
Propagator Properties

- Propagator p is
 - correct: no solution of $\text{con}(p)$ is removed
 - assignment complete: failure at latest for assignments
 - compatibility with search

- Propagator p is
 - contracting: variable domains are narrowed
 - monotonic: application to smaller domains will result in smaller domains than application to larger domains
Propagation Loop

- **Largest simultaneous fixpoint of propagators**
 - fixpoint: propagators cannot narrow any further
 - largest: no solutions lost

- **Guaranteed**
 - termination: domains finite
 - largest fixpoint: propagators contracting

Detailed study with proofs: [Apt 00]
Fix and Runnable Propagators

- Propagator is either
 - fix: has reached fixpoint
 - runnable: not known to have reached fixpoint

- Propagation loop maintains propagator sets
 - all propagators \(Prop \)
 - runnable propagators \(Run \)
 - initially \(Run := Prop \)
Sketch of Propagation Loop

\[
\textbf{while} (\text{Run} \neq \emptyset) \{ \\
\text{pick and remove } p \text{ from } \text{Run}; \\
\text{execute } p; \\
\text{ModVar} := \{ x | x \text{ modified by } p \}; \\
\text{DepProp} := \{ q | x \in \text{var}(q), x \in \text{ModVar} \}; \\
\text{Run} := \text{join}(\text{DepProp}, \text{Run}); \\
\}
\]
Sketch of Propagation Loop

while \((Run \neq \emptyset)\) {
 pick and remove \(p\) from \(Run\);
 execute \(p\);
 \(ModVar := \{ x \mid x \text{ modified by } p \}\);
 \(DepProp := \{ q \mid x \in \text{var}(q), x \in ModVar \}\);
 \(Run := \text{join}(DepProp, Run)\);
}

Loop invariant: \(p\) is fix \(\iff p \in (Prop-Run)\)
Sketch of Propagation Loop

\[
\text{while } (Run \neq \emptyset) \{ \\
\quad \text{pick and remove } p \text{ from } Run; \\
\quad \text{execute } p; \\
\quad \text{ModVar} := \{ x \mid x \text{ modified by } p \}; \\
\quad \text{DepProp} := \{ q \mid x \in \text{var}(q), x \in \text{ModVar} \}; \\
\quad \text{Run} := \text{join}(\text{DepProp}, \text{Run}); \\
\}\n\]

Termination \((Run=\emptyset)\): \(p \text{ is fix } \iff p \in Prop\)
Sketch of Propagation Loop

\[\textbf{while} \ (\textit{Run} \neq \emptyset) \ {\textbf{\{}} \]

\begin{align*}
\text{pick and remove } p \text{ from } \textit{Run}; \\
\text{execute } p; \\
\textit{ModVar} := \{x \mid x \text{ modified by } p\}; \\
\textit{DepProp} := \{q \mid x \in \text{var}(q), \ x \in \textit{ModVar}\}; \\
\textit{Run} := \text{join}(\textit{DepProp}, \textit{Run}); \\
\textbf{\}}
\end{align*}

\textbf{Ignored: failure (signaled by } p)\]
Implementing *ModVar* and *DepProp*

- **Variable-centered approach**
 - each variable x knows dependent propagators
 - typically organized as list (*suspension list*)
 - propagator p included in list of $x \iff x \in \text{var}(p)$

- **Upon propagator creation**
 - propagator subscribes to its variables
 - becomes runnable
Propagators \Rightarrow Variables

- **Propagators** know their variables
 - to perform domain modifications
 - passed as parameters to propagator creation
Variables \Rightarrow Propagators

- **Variables** know dependent **propagators**
 - to perform efficient computation of dependent propagators
Modifying a Variable

- Traverse suspension list
 - add propagators to *Run*

- Optimization
 - mark runnable propagators
 - that is: propagators already in *Run*

- Multiple variable modification by propagator
 - explicitly maintain *ModVar* (as in model)
 - only after propagator execution: process *ModVar*
 - suspension list traversed only once per variable
Idempotent Propagators

- Idempotent propagator
 - always computes fixpoint

- Propagation loop perspective
 - no need to include in Run
 - more efficient: saves one invocation of propagator

- Propagator perspective
 - must compute fixpoint itself
 - more efficient: specific method for computing fixpoint
 - might be more challenging
Propagator Entailment

- Propagator will never contribute anything
 - fixpoint property preserved by narrowing

- Delete propagator, if entailment detected
 - remove from suspension-list, or
 - mark as dead, delegate removal to garbage collection
Summary: Constraint Propagation Revisited

- **Variables**
 - domain, suspension list

- **Propagators**
 - intensional, correct, contracting, monotone, ...
 - know variables for narrowing

- **Propagation loop**
 - computes largest simultaneous fixpoint
Why Does Constraint Programming Matter
Widely Applicable

- Timetabling
- Scheduling
- Crew rostering
- Resource allocation
- Workflow planning and optimization
- Gate allocation at airports
- Sports-event scheduling
- Railroad: track allocation, train allocation, schedules
- Automatic composition of music
- Genome sequencing
- Frequency allocation
- …
Draws on Variety of Techniques

- Artificial intelligence
 - basic idea, search, ...
- Operations research
 - scheduling, flow, ...
- Algorithms
 - graphs, matching, networks, ...
- Programming languages
 - programmability, extensionability, ...
Essential Aspect

- Compositional middleware for combining
 - smart algorithmic
 - problem substructures

 components (propagators)
 - scheduling
 - graphs
 - flows
 - ...

 plus
 - essential extra constraints
Significance

- Constraint programming identified as a strategic direction in computer science research
 [ACM Computing Surveys, December 1996]
Excursion
Scheduling Resources

- Modelling
- Propagation
- Strong propagation
Scheduling Resources: Problem

- **Tasks**
 - duration
 - resource

- **Precedence constraints**
 - determine order among two tasks

- **Resource constraints**
 - at most one task per resource
 [disjunctive, non-preemptive scheduling]
Scheduling: Bridge Example

Infamous: additional side constraints!
Scheduling: Solution

- Start time for each task
- All constraints satisfied
- Earliest completion time
 - minimal make-span
Scheduling: Model

- Variable for start-time of task a
 \[
 \text{start}(a)
 \]
- Precedence constraint: a before b
 \[
 \text{start}(a) + \text{dur}(a) \leq \text{start}(b)
 \]
Propagating Precedence

\[a \text{ before } b \]

\[\text{start}(a) \in \{0, \ldots, 7\} \]
\[\text{start}(b) \in \{0, \ldots, 5\} \]
Propagating Precedence

\[a \text{ before } b \]

\[\begin{align*}
\text{start}(a) &\in \{0, \ldots, 7\} \\
\text{start}(b) &\in \{0, \ldots, 5\}
\end{align*} \]

\[\begin{align*}
\text{start}(a) &\in \{0, \ldots, 2\} \\
\text{start}(b) &\in \{3, \ldots, 5\}
\end{align*} \]
Scheduling: Model

- Variable for start-time of task \(a \)
 \[\text{start}(a) \]

- Precedence constraint: \(a \) before \(b \)
 \[\text{start}(a) + \text{dur}(a) \leq \text{start}(b) \]

- Resource constraint:
 \(a \) before \(b \)
 or
 \(b \) before \(a \)
Scheduling: Model

- Variable for start-time of task a
 \[\text{start}(a) \]
- Precedence constraint: a before b
 \[\text{start}(a) + \text{dur}(a) \leq \text{start}(b) \]
- Resource constraint:
 \[\text{start}(a) + \text{dur}(a) \leq \text{start}(b) \]
 or
 \[b \text{ before } a \]
Scheduling: Model

- Variable for start-time of task a
 \[
 \text{start}(a)
 \]
- Precedence constraint: a before b
 \[
 \text{start}(a) + \text{dur}(a) \leq \text{start}(b)
 \]
- Resource constraint:
 \[
 \text{start}(a) + \text{dur}(a) \leq \text{start}(b)
 \]
 or
 \[
 \text{start}(b) + \text{dur}(b) \leq \text{start}(a)
 \]
Reified Constraints

- Use control variable $b \in \{0,1\}$

 $c \leftrightarrow b=1$

- Propagate

 - c holds \Rightarrow propagate $b=1$
 - $\neg c$ holds \Rightarrow propagate $b=0$
 - $b=1$ holds \Rightarrow propagate c
 - $b=0$ holds \Rightarrow propagate $\neg c$
Reified Constraints

- Use control variable $b \in \{0,1\}$
 \[c \leftrightarrow b=1 \]

- Propagate
 - c holds \[\Rightarrow \text{propagate } b=1 \]
 - $\neg c$ holds \[\Rightarrow \text{propagate } b=0 \]
 - $b=1$ holds \[\Rightarrow \text{propagate } c \]
 - $b=0$ holds \[\Rightarrow \text{propagate } \neg c \]

\[\text{not easy!} \]
Reification for Disjunction

- Reify each precedence
 \[\text{start}(a) + \text{dur}(a) \leq \text{start}(b)\] \iff \(b_0 = 1\)

and

\[\text{start}(b) + \text{dur}(b) \leq \text{start}(a)\] \iff \(b_1 = 1\)

- Model disjunction
 \[b_0 + b_1 \geq 1\]
Model Is Too Naive

- **Local view**
 - individual task pairs
 - $O(n^2)$ propagators for n tasks

- **Global view ("global" constraints)**
 - all tasks on resource
 - single propagator
 - smarter algorithms possible
Example: Edge Finding

- Find ordering among tasks ("edges")
- For each subset of tasks \(\{a\} \cup B \)
 - assume: \(a \) before \(B \)
 - deduce information for \(a \) and \(B \)
 - assume: \(B \) before \(a \)
 - deduce information for \(a \) and \(B \)
 - join computed information
 - can be done in \(O(n^2) \)
Summary

- Modelling
 - easy but not always efficient
 - constraint combinators (reification)
 - global constraints
 - smart heuristics

- More on constraint-based scheduling
Excursion
Strong Propagation
SMM: Strong Propagation

\[
\begin{align*}
\text{SEND} & \quad + \quad \text{MORE} \\
& \quad = \quad \text{MONEY} \\
& \quad = \quad 9567 \\
& \quad + \quad 1085 \\
& \quad = \quad 10652
\end{align*}
\]
Example: Distinct Propagator

- **Infeasible: decomposition**
 - $O(n^2)$ disequality propagators

- **Naive distinct propagator**
 - wait until variable becomes assigned
 - remove value from all other variables

- **Strong distinct propagator**
 - only keep values appearing in a solution to constraint
 - essential for many problems
Distinct Propagator: Hall Sets

- Direct approach: Hall sets
 - Van Beek, Quimper, et. al. [CP 2004]

- Set \(\{x_1, ..., x_n\} \) of variables Hall set, iff set of values \(s(x_1) \cup ... \cup s(x_n) \) has cardinality \(n \)

- Pruning
 - find Hall set \(H \)
 - prune values in \(H \) from all other variables
Strong Distinct Propagator

- Can be propagated efficiently
 - \(O(n^{2.5})\) is efficient

- Uses graph algorithms
 - insight on problem structure
 - relation between solutions of constraint and properties of graph
Régin's Approach

- Construct a variable-value graph
 - bipartite graph: variable nodes \rightarrow value nodes
- Characterize solutions in graph
 - maximal matchings
- Use matching theory
 - one matching can describe all matchings
- Remove edges not representing solutions
Variable Value Graph

\[s(x_0) = \{0, 1\} \]
\[s(x_1) = \{1, 2\} \]
\[s(x_2) = \{0, 2\} \]
\[s(x_3) = \{1, 3\} \]
\[s(x_4) = \{2, 3, 4, 5\} \]
\[s(x_5) = \{5, 6\} \]

Diagram:
- \(x_0 \) connects to 0 and 1
- \(x_1 \) connects to 1 and 2
- \(x_2 \) connects to 0 and 2
- \(x_3 \) connects to 1 and 3
- \(x_4 \) connects to 2, 3, 4, and 5
- \(x_5 \) connects to 5 and 6
Maximal Matching Are Solutions

\[a(x_0) = 0 \]
\[a(x_1) = 1 \]
\[a(x_2) = 2 \]
\[a(x_3) = 3 \]
\[a(x_4) = 4 \]
\[a(x_5) = 6 \]
Matching Theory

- Edge e belongs to some matching \leftrightarrow for some arbitrary matching M:
 - either: e belongs to even alternating path starting at free node
 - or: e belongs to even alternating cycle

- [C. Berge, 1970] See Régin's paper
Oriented Graph: Alternation
Alternating Paths…

- Only free node: 6
 - mark 6 \rightarrow x_5
 - mark x_5 \rightarrow 5
 - mark 5 \rightarrow x_4
 - mark x_4 \rightarrow 4

- Intuition: edges can be permuted
Alternating Cycles…

- Nodes in SCC
 \(x_0, x_1, x_2, 0, 1, 2 \)
- Mark joining edges
- Intuition: variables take all values from SCC
All Marked Edges
Edges Removed

- **Remove**
 - \(1 \rightarrow x_3\)
 - \(2 \rightarrow x_4\)
 - \(3 \rightarrow x_4\)

- **Keep**
 - \(x_3 \rightarrow 3\)
 - matched!

- **Edge removal**
 - value removal
Characterising Strength: Consistency

- **Domain-consistent propagator for constraint**
 - every value appears in at least one solution of constraint
 - strongest possible propagation
 - Régis's method is domain-consistent
 - also known as: generalized arc consistency, ...

- ** Bounds-consistent propagator for constraint**
 - extremal values appears in solution of convex relaxation
 - depends on relaxation: integer versus real
 - weaker but cheaper yet relevant
 - confusion about variants...
Global Constraints

- Reasons for globality: decomposition...
 - semantic: ...not possible
 - operational: ...less propagation
 - algorithmic: ...less efficiency

- Plethora available
 - scheduling, sequencing, cardinality, sorting, circuits, ...
 - systematic catalogue with hundreds available...
 - difficult to pick the right one (consistency versus efficiency, etc)
Trends and State of the Art
Trends and State of The Art

- Focus here
 - constraints for combinatorial problems
 - ignoring
 - programming languages, graphics, databases, tractability, complexity, ...

- Up-to-date overview
 Handbook of Constraint Programming
Modelling

- Symmetry breaking
- Implied constraints
- Variable domains
- Soft constraints
- Modelling languages
- ...

Christian Schulte, ICT, KTH
Symmetry Breaking

- Absolutely essential
 - just search for single solution, ignore symmetric solutions
 - drastically prunes search space
 - without, most problems can not be solved

- Key questions
 - how to find symmetries automatically?
 - class of symmetries: value, variable symmetries?
 - how to break them (rule out symmetric solutions)_DISTILLATION_BEGIN?
 - how many to break (all typically to expensive)?
 - break them statically or dynamically?
 - break them during search?
Implied Constraints

- Absolutely essential
 - find constraints that are semantically implied
 - yet provide essential propagation

- Key questions
 - how to find them?
 - manual versus automatic?
 - how to propagate them?
Variable Domains

- Finite sets, multisets, intervals, ...
- Often help to avoid symmetries (sets)
- Typically require approximation
 - full set representation: exponential time and space
 - bounds approximation: describe by glb and lub

Key questions
- total ordering for symmetry breaking?
- efficient representations?
- efficient and strong propagators for global constraints?
Soft Constraints

- Important to capture inconsistent models
 - as they tend to be in practice
- Devise new framework
 - generalize propagation to cater for softness
- Remain in same framework
 - propagators that propagate according to degree of violation
- ...
Modelling Languages

- Fundamental difference to LP and SAT
 - language has structure (global constraints)
 - different solvers support different constraints

- In its infancy

- Key questions:
 - what level of abstraction?
 - solving approach independent: LP, SAT, CP, ...?
 - how to map to different systems?
Solving

- Automatic solving ("black box" solvers)
- Constraint-based local search
- Hybrid approaches
- Constraint programming systems
- Global constraints
- ...
Automatic Solving

- Modelling is very difficult for CP
 - requires lots of knowledge and tinkering
 - very different from SAT

- How to automatize
 - restart search?
 - automatic symmetric breaking?
 - new idea, promising first ideas and approaches?
 - to which extent possible?
Constraint-based Local Search

- Local search
 - operate on assignments not necessarily solutions
 - find "good" assignments
- Use constraints as abstractions to model and solve with local search
- Derive implementations automatically from constraints
- Hybrid approaches?
- Very promising
 - check out Comet: www.comet-online.org
Hybrid Approaches

- Operations research methods
- Key issue: CP poor for optimization
- Key questions
 - relaxations to obtain bounds?
 - column generation?
 - Benders decomposition?
 - cuts?
- Extremely important for practical problems
Global Constraints

■ Ever more! Ever more?

■ Key questions
 ■ what are the essential primitive ones?
 ■ how to characterize them?
 ■ how to automatically get an implementation?
Constraint Programming Systems

- Essential for initial and continuing success
- Two approaches
 - library-based: ILOG Solver, Koalog, Choco, Gecode, ...
 - language-based: SICStus Prolog, Eclipse, Oz, ...
- Key questions
 - parallelism
 - efficiency
 - robustness
 - automatic
 - coverage
Constraint Programming

- Powerful approach for modelling and solving combinatorial problems
- Key aspect: middleware for
 - powerful algorithmic components
 - essential extra constraints

- Key issues: modelling, propagation, search

- Widely used but modelling is challenging