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Abstract. Today’s models for propagation-based constraint solvers re-
quire propagators as implementations of constraints to be at least con-
tracting and monotonic. These models do not comply with reality: to-
day’s constraint programming systems actually use non-monotonic prop-
agators. This paper introduces the first realistic model of constraint prop-
agation by assuming a propagator to be weakly monotonic (complying
with the constraint it implements). Weak monotonicity is shown to be
the minimal property that guarantees constraint propagation to be sound
and complete. The important insight is that weak monotonicity makes
propagation in combination with search well behaved. A case study sug-
gests that non-monotonicity can be seen as an opportunity for more
efficient propagation.

1 Introduction

When implementing a propagator for a constraint, the propagator must comply
with policies mandated by the underlying constraint programming system such
that constraint propagation becomes well behaved. The most obvious property
is contraction: values are removed but never added. A second property is mono-
tonicity: a propagator can perform stronger pruning only when being applied to
stronger input (fewer values for variables). Contraction captures pruning as the
very essence of constraint propagation, while monotonicity guarantees that the
same result (the weakest possible) is computed regardless of propagation order.

However, some propagators are non-monotonic. They may compromise be-
tween propagation strength and efficiency, like task intervals in scheduling [1]
and propagating the circuit (Sect. 5) or multicost-regular constraint [2].
Other approaches yield non-monotonic propagators due to delaying or adapt-
ing propagation [3,4], using randomization [5,6], or approximation [7]. For some
propagators, it may just not be obvious whether they are monotonic.

Systems implement some of these non-monotonic propagators, for example
Choco, Gecode, Oz, and SICStus Prolog. It is realistic to assume that many
more non-monotonic propagators are used, and that many more systems rely
on them. Essentially, many systems use non-monotonic constraint propagation
while not spelling out the most basic guarantees: Is the result of propagation
unique? Is propagation correct? Do two runs of the same problem return the
same solution? Do techniques such as recomputation for search still work?

This paper attempts to answer these questions. We show that even non-
monotonic propagators have to be monotonic to a certain extent, in order to



ensure soundness. This leads to the definition of weakly monotonic propagators,
a class of propagators that covers approximative, heuristic, and randomized al-
gorithms, while yielding strong enough guarantees to keep propagation sound.

After presenting preliminaries in Sect. 2, the paper contributes the first theory
of non-monotonic propagators, based on weak monotonicity, that fills the gap
between models for propagation and reality (Sect. 3). It analyzes the interaction
between propagation of weakly monotonic propagators and search, including an
analysis of recomputation (Sect. 4). Finally, it provides a case study that suggests
that non-monotonicity should be seen as an opportunity rather than a problem
(Sect. 5) and concludes with Sect. 6.

2 Preliminaries

We assume a finite set of variables Var = {x1, . . . , xn} and a finite set of values
Val . Constraints are characterized by assignments a ∈ Asn that map variables to
values: Asn = Var → Val . A constraint c ∈ Con is a relation over the variables:
a set of all assignments that satisfy the constraint, Con = 2Asn . Constraints are
defined for all variables in Var . Typically, only a subset vars(c) of the variables
is significant ; the constraint is the full relation for all x /∈ vars(c).

A domain d ∈ Dom maps each variable x ∈ Var to a set of possible values,
the variable domain d(x) ⊆ Val . A domain d can be identified with the set
of assignments {a | ∀x : a(x) ∈ d(x)}. We can therefore identify domains with
constraints. In particular, {a} is a domain and a constraint for any assignment a.

A domain d1 is stronger than a domain d2 (d1 ⊆ d2), iff ∀x ∈ Var : d1(x) ⊆
d2(x). By dom(c) we refer to the strongest domain including all valid assignments
of a constraint: min {d ∈ Dom | c ⊆ d} = {a | ∀x ∃b ∈ c. a(x) = b(x)}. Note that
the minimum exists (domains are closed under intersection) and that not every
constraint can be captured by a domain. For a constraint c and a domain d,
dom(c ∩ d) refers to removing all values from d not supported by c.

A constraint satisfaction problem (CSP) is a pair 〈d, C〉 of a domain d and
a set of constraints C. The solutions of a CSP 〈d, C〉 are all assignments that
satisfy all constraints: sol(d, C) = {a ∈ Asn | {a} ⊆ d, ∀c ∈ C : a ∈ c}.

3 Weakly Monotonic Propagators

Propagators, sometimes also referred to as constraint narrowing operators or
filter functions, serve as implementations of constraints. They are usually defined
as contracting functions over domains: p ∈ Dom → Dom , p(d) ⊆ d. Requiring
propagators to be contracting is uncontroversial, after all it captures the very
essence of constraint propagation and guarantees termination.

Many models of propagation additionally require propagators to be idempo-
tent (p(p(d)) = p(d)) and monotonic (d1 ⊆ d2 ⇒ p(d1) ⊆ p(d2)). Then, propa-
gators are closure or consequence operators over the lattice of domains [8,9,10].
Examples for definitions of propagators as closure operators are [11,12,13,14].



Theorem 1. Given a propagation problem, a pair 〈d, P 〉 of a domain d and a
set of monotonic propagators P , there is a unique weakest simultaneous fixpoint
of all p ∈ P that is stronger than d. It can be computed by iteration:

prop(d, P ) ≡ while ∃p ∈ P : p(d) 6= d do

d← p(d)
return d

The theorem still holds without idempotency. In practice, it is better to de-
termine the fixpoint status of a propagator dynamically [15]. Similarly, strength
of propagators is irrelevant (bounds or domain consistency, or forward check-
ing). Consequently, propagators are sometimes defined to be contracting and
monotonic. Examples for this definition of propagators are [16,17,15].

In order to relax the definition of propagators, consider how a propagator p
can implement a constraint c. The first condition is correctness, p must not re-
move solutions of c: a ∈ c∧a ∈ d⇒ a ∈ p(d) for any assignment a and domain d.
The second condition is that for an assignment a, p checks whether a is a solution
of c: p({a}) = {a} ⇔ a ∈ c. The interesting connection between these properties
and monotonicity is that every monotonic propagator implements exactly one
constraint.

Definition 2. A monotonic propagator p implements the constraint defined as
the set of assignments accepted by the propagator, {a | p({a}) = {a}}. This is
called the induced constraint cp of p.

By definition, a propagator p checks whether assignments are solutions of
cp. And by monotonicity, if a ∈ cp and a ∈ d, then p({a}) ⊆ p(d), and hence
a ∈ p(d). Thus, p is correct for cp. Having correct propagators for constraints,
it makes sense to define the set of solutions of a propagation problem 〈d, P 〉 for
a domain d and a set of propagators P as the set of solutions of the induced
constraints: sol(d, P ) = sol(d, {cp | p ∈ P}).

In Def. 2 monotonicity is used to enforce correctness of the propagator. How-
ever, monotonicity was only used for assignments. This leads to the central
definition used in this paper.

Definition 3. A function p over domains is called weakly monotonic iff a ∈ d⇒
p({a}) ⊆ p(d) for all assignments a and domains d. A propagator is a contract-
ing and weakly monotonic function over domains.

Every weakly monotonic propagator also induces a single constraint. Weak
monotonicity yields a minimal definition of propagators, as every propagator can
be made weakly monotonic. Given a non-monotonic propagator that is correct
for a constraint c, we can turn it into a weakly monotonic propagator that
implements c by composing it with a function that checks c on assignments.

Lemma 4. A monotonic propagator is weakly monotonic.



The lemma follows directly from the definitions. Conversely, a weakly mono-
tonic propagator is not necessarily monotonic. Assume a propagator p that only
prunes the domain if |d(x)| ∈ {1, 3}. A domain with |d(x)| = 2 can be stronger
than a domain with |d(x)| = 3 but yield weaker propagation, so p is not mono-
tonic. But it is weakly monotonic, because p does propagate when |d(x)| = 1
and thus still checks assignments.

Lemma 5. Propagation preserves solutions: sol(d, P ) = sol(p(d), P ) for p ∈ P .

Theorem 1 does not hold for non-monotonic propagators. But, prop(d, P )
still terminates, as propagators are contracting and domains are finite. Thus,
prop(d, P ) still produces simultaneous fixpoints for all p ∈ P . However, these
fixpoints can now be different for different orders of propagator application.
Thus, prop turns into a relation. For convenience, we will continue to write
d′ = prop(d, P ) instead of d′ ∈ prop(d, P ).

Lemma 6. Assume that prop(d, P ) = d1 and prop(d, P ) = d2. Then d1 and d2

may not be comparable: d1 6⊆ d2 and d2 6⊆ d1.

Consider propagators p and q with cp ≡ (x > 0) and cq ≡ (x < 2). To make
them non-monotonic, assume that both p and q only propagate if |d(x)| ∈ {1, 3}.
Given the domain d = (x 7→ {0, 1, 2}), there are two incomparable fixpoints
d1 = p(q(d)) = (x 7→ {0, 1}) and d2 = q(p(d)) = (x 7→ {1, 2}).

Although there is no unique weakest fixpoint, the different fixpoints are still
well behaved in that they contain all solutions of the original problem. The
following lemma will be central for the discussion of search in the next section.

Lemma 7. If prop(d, P ) = d′, then d′ ⊆ d and sol(d, P ) = sol(d′, P ).

This follows from the fact that if some p ∈ P prunes an assignment a from d,
then weak monotonicity guarantees that p({a}) = ∅. Therefore, a is no solution
of cp, and hence not of 〈d, P 〉, either.

But how are these fixpoints related to the unique weakest fixpoint computed
by monotonic propagation? We define the strongest possible propagator for a
constraint c. This so-called domain propagator p̂c establishes domain consistency
(also known as generalized arc consistency), it removes all values from all variable
domains that cannot be extended to a solution of c. That is, p̂c returns the
strongest domain that contains all solutions of c and d: p̂c(d) = dom(c ∩ d).

Lemma 8. Any propagator p implementing c returns a weaker domain than p̂c:
p̂c(d) ⊆ p(d). For any constraint c, p̂c is monotonic.

Any non-monotonic propagator for a constraint c is weaker than p̂c. Fixpoints
are therefore always weaker than those obtained by domain propagation.

The astute reader may have noticed that none of the results depends on
propagators being functions, except when being applied to assignments. This
is an important insight, as it allows for example randomized propagation: on
the same domain d, a propagator may return different results. In other words,
propagators can be relaxed to be contracting and weakly monotonic relations
over Dom ×Dom, as long as they are functional on assignments.



4 Search

A constraint solver interleaves propagation with search. It starts with a propaga-
tion problem 〈d, P 〉 and computes a fixpoint. If this fixpoint is neither failed (an
empty domain) nor solved (all variables assigned), the solver splits the problem
and solves the resulting subproblems recursively. Splitting creates two branches
(we assume binary search for simplicity), adding propagators to each branch
that make the problem simpler (for instance x = i for one branch and x 6= i for
the other). Splitting must partition the solution space of the original problem.

Thus, the solver explores a search tree. A solver is sound if all solutions that
it finds by exploring the search tree are solutions of the original problem. It is
complete if the search tree contains all solutions of the original problem.

If all propagators are monotonic, there is a unique fixpoint for each propa-
gation problem. As long as the addition of propagators to the branches is de-
terministic, the search tree is completely determined by the initial propagation
problem. With non-monotonic propagators, the order of propagation matters. As
a result, the shape of the tree also depends on the order of propagation chosen
by the solver. As discussed in Lemma 6, the resulting fixpoints may be incompa-
rable, resulting in a different search tree. The good news is that non-monotonic
propagation is still correct, it does not remove solutions.

Lemma 9. A combination of non-monotonic propagation and search is a sound
and complete solver for propagation problems. The set of solutions found by
search is thus determined solely by the original problem to be solved. The order
of the solutions in the tree depends on the order of propagation.

For a solver, propagation order may depend on the environment, for instance
on memory allocation or other things out of the control of the solver, and may
be different for different runs of the same problem. Hence, the first solution
may not even be the same between different runs of the same solver. While this
may seem inconvenient, non-monotonic propagation is not alone in this respect:
parallel search and random restarts share the same properties.

Mozart solves the problem of non-unique fixpoints by fixing the order in
which non-monotonic propagators are executed [17]. This technique however
clashes with priorities for propagator scheduling, which has proven extremely
useful [15].

Recomputation. Recomputation is an important technique for making solvers
based on copying efficient [18], and for enabling trailing solvers to perform more
advanced search strategies such as best-first search [19].

The main idea is to recompute a node in the search tree from a state further
up in the tree, using a path that describes the choices that lead to the node.
Such a path can consist of a sequence of moves to a child of a node (for example
1.2.2.1.1). Recomputation amounts to redoing the exploration along this path,
computing fixpoints for every intermediate step. This is the method described
in [18], called fixpoint recomputation. Alternatively, a path is a sequence of prop-
agators added by splitting (for example P1.P2.P3). Then recomputation adds all



propagators to the original propagation problem and computes a single fixpoint.
We will refer to this as path recomputation (called batch recomputation in [20]
and decomposition based search in [21]).

Fixpoint recomputation fails in the presence of non-monotonic propagators.
Assume that splitting adds x = 1 on the left and x 6= 1 on the right branch. When
recomputing the same node, splitting may make an entirely different decision,
choosing y = 1 and y 6= 1 instead. But recomputation just explores the right
branch, resulting in an incomplete search: possible solutions with y = 1 are lost.
The Mozart approach of fixing propagator order solves this problem.

Path recomputation is well-behaved even for non-monotonic propagation. In
the above example, the splitting decision would be made only once (during the
original exploration), and recomputation just adds x 6= 1 on the right branch.
As propagation preserves solutions, the set of solutions of the right branch is ex-
actly the same as during original exploration. Interestingly, Choi et al. [20] state
that path recomputation requires monotonic propagators. This over-cautious as-
sumption underlines the importance of a theory of non-monotonic propagation.

With non-monotonic propagation, the fixpoint after recomputation can differ
from the one during exploration. Instead of failure, the solver may recompute a
non-failed node, and instead of a solution, a node where some variables are not
assigned yet. However, as the set of solutions is the same, further search will only
produce failure or the very same solution, respectively. The solver must thus be
able to perform less or additional search when recomputing.

Theorem 10. Constraint propagation with weakly monotonic propagators, com-
bined with search (possibly based on path recomputation), yields a sound and
complete solver for propagation problems.

5 Case Study: Propagating circuit

The circuit(x1, . . . , xn) constraint over n finite domain integer variables is true
iff the graph with edges i→ j where xi = j has a single cycle covering all nodes.
Domain-consistent propagation of circuit is of course NP-hard.

A simple monotonic propagator for the circuit constraint based on the
graph G with nodes i and edges i → j for all j ∈ d(xi) for 1 ≤ i ≤ n is as
follows: use a standard alldifferent propagation algorithm, as all xi have to
be pairwise distinct; check the mandatory condition that G has only a single
strongly connected component. Checking the mandatory condition can be done
using DFS on G. However, the DFS spanning tree starting from a node i with
|d(xi)| > 1 also offers potential for propagation [22].

The disjoint subtrees explored by DFS are
sketched as triangles. For circuit, the following
must hold: There must be an edge from each sub-
tree to its predecessor subtree, and an edge from
the leftmost subtree to the root (otherwise, there
is no covering cycle). There must not be any edges
between non-neighbor subtrees (such as the dot-



ted edge: the root node must be visited twice if following this edge). This insight
can be propagated: prune edges between non-neighbor subtrees, and if there is
a single edge between neighbors or from the leftmost subtree to the root, assign
the corresponding variable.

This algorithm is obviously non-monotonic: pruning is likely to increase with
the number of subtrees in the DFS spanning tree. The DFS spanning tree has
more subtrees, if the variable from which DFS starts has more values. Hence,
the more values the variable has from which DFS starts, the more pruning.

The propagator is weakly monotonic, as it checks the constraint on assign-
ments. Propagation depends on where DFS starts, so different heuristics for se-
lecting the start variable can be: the first variable; a random variable; a variable
with the largest domain. The experiments below confirm that the propagator is
indeed non-monotonic: pruning depends on where DFS starts, as witnessed by
the different number of fails during search.

The following table shows the effect of non-monotonicity for circuit. We
have used Gecode 3.0.2 on a MacPro with 2 × 2.8 GHz Intel Xeons and 8 GB
memory running Windows Vista. The runtimes (average of 20 runs, with a co-
efficient of deviation less than 2% except for random) and number of failures
for pruning are relative to just checking by DFS. The alldifferent part of
circuit uses domain-consistency. knights-n finds a Knights tour on an n× n
board and tsp-* finds an optimal traveling salesman tour.

Example check first largest random
time (s) fail time fail time fail time fail

knights-18 0.36 6 070 86.1% 83.4% 66.9% 57.4% 11.4% 2.2%
knights-20 0.05 39 98.1% 92.3% 101.9% 100.0% 100.0% 87.2%
knights-22 45.03 543 384 94.4% 93.2% 81.3% 75.6% 0.9% 0.6%
knights-24 4.36 42 260 28.4% 26.1% 67.8% 54.0% 4.9% 1.9%

tsp-br17 0.83 48 804 98.2% 97.9% 100.4% 98.1% 102.7% 99.1%
tsp-ftv33 1423.71 31 013 229 99.8% 99.5% 99.8% 97.9% 96.9% 92.5%

Random variable selection vastly outperforms the other strategies for difficult
knights instances and shows some speedup for the medium-sized tsp-ftv33

instance. The coefficient of deviation for runtime and number of failures for
random is less than 5% for tsp and around 45% for knights-n. That is, for
knights-22 and knights-24 the speedup is almost always at least one order of
magnitude thanks to randomization now legalized by weak monotonicity.

6 Conclusion

This paper has introduced a minimal model of propagation based on weakly
monotonic propagators and has clarified the properties of propagation and search
based on the model. By this, the paper for the first time gives a model to capture
the essential properties of many constraint programming systems that use non-
monotonic propagators. The hope is that non-monotonic propagation is seen as
a general opportunity for more efficient propagation rather than a problem that
is best ignored.
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