Encodings in SAT and Constraints

Ian Gent
University of St Andrews
Topics in this Series

- Why SAT & Constraints?
- SAT basics
- Constraints basics
- Encodings between SAT and Constraints
- Watched Literals in SAT and Constraints
- Learning in SAT and Constraints
- Lazy Clause Generation + SAT Modulo Theories
Encodings SAT & CP

- Maybe most obvious link SAT to CP
- Works outside solvers
- More interesting than you might think
- Propagation-optimal encodings
 - Examples CP to SAT
 - Example SAT to CP
- Fundamental Conjecture of Reformulation
- Why it’s false!
Encodings: Motivation

- Entire basis of NP-completeness is encoding
 - translate one problem to another
 - in reasonable (poly) time
 - and faithfully - solution preserving
- SAT is the first NP-complete problem
- So Why Not ...
 - just translate everything into SAT
 - and use a SAT solver?
Encodings: Motivation

• Not a straw man argument
• There are real advantages to using SAT (or CP) as basis, and then encoding to it
• We only need to write one solver
 • which can then be highly optimised
• It’s typically easier to write translator than new solver
• Every time we optimise SAT (or CP)
 • we optimise every other NP-complete problem
Encodings: Motivation

- But it’s not as simple as that ...
- We can’t really afford to lose propagation
 - E.g. if we need to establish AC
 - then our encoded problem should do AC
 - using standard SAT techniques
- We can’t really afford to lose time
 - E.g. we can establish AC in $O(ed^2)$
 - So it has to be this if we encode to SAT
 - ... and then use standard encoding
- Leads to idea of “propagation-optimal” encodings
Propagation Optimal Encodings

- Encoded version might not propagate as well
- Propagation in encoded version might be slow
 - if we lose \(O(n)\) time at each node, translation will never be competitive

Propagation Optimal Encoding

- translation time should be optimal for target consistency level
- native propagation (e.g. unit prop.) on encoding should achieve target consistency level
- and do it in optimal time for target consistency level
Encoding CSP to SAT

- Going to start with binary CSPs
 - but ideas do generalise
- Focus on two key encodings
 - Direct Encoding
 - folklore, Walsh 2000
 - Acts like Forward Checking
 - Support Encoding
 - Kasif 1990, Gent 2002
 - Acts like AC
Encoding CSPs into SAT

- e.g. CSP variable A domain size 3
- SAT variables a1, a2, a3
- a1=T ⇔ A=1
- “at-least-one” clause
 - a1 OR a2 OR a3
- “at-most-one” clauses
 - -a1 OR –a2
 - -a2 OR –a3
 - -a3 OR –a1
Conflict Clauses

<table>
<thead>
<tr>
<th>$A < B$</th>
<th>$A=1$</th>
<th>$A=2$</th>
<th>$A=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B=1$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$B=2$</td>
<td>\checkmark</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$B=3$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
</tbody>
</table>

One conflict clause for each \times
Conflict Clauses

<table>
<thead>
<tr>
<th>$A < B$</th>
<th>$A=1$</th>
<th>$A=2$</th>
<th>$A=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B=1$</td>
<td>$-a_1 \lor -b_1$</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$B=2$</td>
<td>\checkmark</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$B=3$</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\times</td>
</tr>
</tbody>
</table>

If $A = 1$ then $B \neq 1$.
Conflict Clauses

<table>
<thead>
<tr>
<th>A < B</th>
<th>A=1</th>
<th>A=2</th>
<th>A=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=1</td>
<td>-a_1 OR -b_1</td>
<td>-a_2 OR -b_1</td>
<td>X</td>
</tr>
<tr>
<td>B=2</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B=3</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
</tbody>
</table>

If A = 2 then B ≠ 1.
Conflict Clauses

<table>
<thead>
<tr>
<th>$A < B$</th>
<th>$A=1$</th>
<th>$A=2$</th>
<th>$A=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B=1$</td>
<td>$-a_1 \lor -b_1$</td>
<td>$-a_2 \lor -b_1$</td>
<td>$-a_3 \lor -b_1$</td>
</tr>
<tr>
<td>$B=2$</td>
<td>✓</td>
<td>$-a_2 \lor -b_2$</td>
<td>$-a_3 \lor -b_2$</td>
</tr>
<tr>
<td>$B=3$</td>
<td>✓</td>
<td>✓</td>
<td>$-a_3 \lor -b_3$</td>
</tr>
</tbody>
</table>
Support Clauses

<table>
<thead>
<tr>
<th>A < B</th>
<th>A=1</th>
<th>A=2</th>
<th>A=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=1</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>B=2</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>B=3</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

One “support” clause for each row/column
Support Clauses

<table>
<thead>
<tr>
<th>A < B</th>
<th>A=1</th>
<th>A=2</th>
<th>A=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=1</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>B=2</td>
<td>✔</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>B=3</td>
<td>✔</td>
<td>✔</td>
<td>×</td>
</tr>
</tbody>
</table>

B=1 is impossible as no value of A supports it.
Support Clauses

A < B	A=1	A=2	A=3	
B=1	×	×	×	-b1
B=2	✓	×	×	a1 OR -b2
B=3	✓	✓	×	

If A≠1, then there is no support for B=2
Support Clauses

<table>
<thead>
<tr>
<th>A < B</th>
<th>A=1</th>
<th>A=2</th>
<th>A=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B=1</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>B=2</td>
<td>✔</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>B=3</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

If $A \neq 1$ and $A \neq 2$, then there is no support for $B=3$
Support Clauses

<table>
<thead>
<tr>
<th>A < B</th>
<th>A=1</th>
<th>A=2</th>
<th>A=3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B=1</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-b1</td>
</tr>
<tr>
<td>B=2</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>a1 OR -b2</td>
</tr>
<tr>
<td>B=3</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>a1 OR a2 OR –b3</td>
</tr>
<tr>
<td></td>
<td>b2 OR b3 OR -a1</td>
<td>b3 OR –a2</td>
<td>-a3</td>
<td></td>
</tr>
</tbody>
</table>
Direct & Support Encodings

- “Direct Encoding” is most commonly used
 - almost folklore but see e.g. [Walsh, CP 2000]
 - at-least-one clauses
 - at-most-one clauses optional
 - conflict clauses
- “Support Encoding” [Gent, ECAI 2002]
 - at-least-one clauses
 - at-most-one clauses (not optional)
 - support clauses [Kasif, AIJ 1990]
Theoretical Comparison

• Compare CSP algorithms FC & MAC
 • FC = Forward Checking
 • MAC = Maintaining Arc Consistency
• With (simple) DPLL running on encoded versions
 • unit propagates between nodes
• Results on Direct Encoding
 • DPLL on Direct performs equivalent search to FC
 • [Genisson & Jegou ECAI 94]
 • MAC can outperform DPLL on Direct encoding
 • [Walsh CP 2000]
Arc Consistency in SAT

- Natural correspondence in the support encoding
 - $a_1 = T \iff A = 1$
 - $a_1 = F \iff 1 \notin \text{domain}(A)$
 - $a_1 = \{T,F\} \iff 1 \in \text{domain}(A)$

- Key result on Support Encoding
 - When unit propagation terminates without failure, the SAT variables correspond to Arc Consistent domains in the CSP

- Simple Corollary
 - DPLL on Support Encoding = MAC on CSP
Support Encoding is AC-Optimal

• For a CSP with e constraints, domain size d
 • unit propagation takes time $O(ed^2)$
 • including translation time
 • this is optimal worst case time for AC
 • in fact maybe the second optimal algorithm for AC [Kasif 90]
• So translation to SAT & use of DPLL
 • is equivalent to MAC
 • is optimal time algorithm for MAC
 • benefits from any other techniques used in SAT
 • e.g. clause learning key in Chaff
Experimental Comparison

- Implemented translation in Common Lisp
- Used Chaff on translated instances
- Tested on hard random binary CSP’s
- At peak difficulty, about 5-6 times slower than MAC2001 [Bessière/Regin IJCAI 2001]
DPLL for Support vs Direct:

- Chaff used as DPLL solver
- N=50
- x axis is constraint tightness, p2
- y axis is nodes searched
- Support always searches less
- Support max is less than direct mean
- Zero search for p2>0.7
DPLL for Support vs Direct:

- same data as previous slide
- y axis is mean cpu time
- top line includes translation time
- bottom line just chaff time
- Support encoding usually slower
- Support just faster at peak of hardness
- At N=100, support encoding about 3x faster at peak
WalkSAT for Support vs Direct:

- Hoos’s Novelty+ variant
- each point one instance
- x axis is #flips for support encoding
- y axis is flips-speedup of support vs direct encoding
- Umm, got that yet?
WalkSAT for Support vs Direct:

- Hoos’s Novelty+ variant
- each point one instance
- x axis is #flips for support encoding
- y axis is flips-speedup of support vs direct encoding
- This instance took about 10,000,000 flips for support encoding, but 20x more in the direct encoding
WalkSAT for Support vs Direct:

- Hoos’s Novelty+ variant
- each point one instance
- x axis is #flips for support encoding
- y axis is flips-speedup of support vs direct encoding
- This instance took about 500,000 flips for support encoding, but 922 x more in the direct encoding
WalkSAT for Support vs Direct:

- Hoos’s Novelty+ variant
- each point one instance
- x axis is #flips for support encoding
- y axis is flips-speedup of support vs direct encoding

The median was 16x more flips using the direct encoding

The best the direct encoding could do was 2.34x more flips
Optimal Encodings: Pluses and Minuses

Pluses

+ Just need to implement a translation
+ Take advantage of state of the art SAT solvers …
+ … and future developments
+ Can be competitive with direct CSP solvers

Minuses

- Space complexity is worse
- Hits worst case time complexity in average case
- Direct implementation should always be faster
Support Encoding

- Generalised to non binary constraints
 - with similar propagation-optimality
 - meaning we can search arbitrary constraint problems using GAC
 - Bessiere, Hebrard, Walsh 2002
- Investigated further on local search
 - with mixed results
 - Prestwich 2004
 - Interesting further ideas
 - Introducing as many solutions as possible
 - while preserving correctness of course
So that’s that!

- Encodings are great
 - Ok there are some minuses
- But we’ve got an ideal solution
 - we can propagate any constraint
 - in optimal time
 - using only simplish encodings + SAT solvers
 - so what’s the problem?
“Space complexity is worse”

• Forgot one little word...
“Space complexity is exponentially worse”

• Forgot one BIG word...
Exponentially worse?

- Well, not in the case of AC
- But in the case of GAC
- Remember I said ...
 - we almost never list all tuples in constraints?
- Well we have to in support encodings
 - all allowed tuples
- Or in direct encodings
 - all disallowed tuples
- Which can be exponentially bigger than an implicit representation
 - e.g. all different has $n!$ allowed tuples and far more disallowed
Ok Forget It

- So there’s a cute encoding for AC in SAT
- But we can’t do well in general
- So encodings are useless, right?
Find smarter encodings

- Give up on the idea of one true encoding
 - Just like there’s no single key constraint
- Have an army of encodings
 - One for every constraint we want
 - Maybe propagation optimal for that
- Steal ideas from propagation algorithms?
 - E.g. GAC-Lex
Inspiration

- We present an encoding of GACLex
 - I’ll tell you what that is in a minute
- The encoding was inspired by an algorithm for maintaining GACLex
- Initial algorithm proposed by Miguel/Frisch/Walsh
- Later variants and study presented in
 - Global Constraints for Lexicographic Orderings
 - Frisch, Hnich, Kiziltan, Miguel, Walsh, 2002 [CP], 2006 [AIJ]
Lexicographic Constraint

- Arrays A/B of variables
- $A \leq B$ if
 - ...
- Application in symmetry
 - A/B indistinguishable
 - $A \leq B$ breaks symmetry
Lexicographic Constraint

- Arrays A/B of variables
- \(A \leq B \) if
 - …
 - \(A[I] = B[I] \) for all I
- Application in symmetry
 - A/B indistinguishable
 - \(A \leq B \) breaks symmetry

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>
GAC: Generalised Arc Consistency

• A ≤ B is GAC if
 • any value A[I] is allowed by some setting of the values of other A/B vars
 • similarly for B[I]

• If A ≤ B is not GAC
 • we can establish GAC

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
GAC: Generalised Arc Consistency

- $A \leq B$ is GAC if
 - any value $A[i]$ is allowed by some setting of the values of other A/B vars
 - similarly for $B[i]$
- If $A \leq B$ is not GAC
 - we can establish GAC
 - E.g. $A[3] = 1$ is not possible, as then $A > B$
 - Similarly $B[3] = 0$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
GAC: Generalised Arc Consistency

• A ≤ B is GAC if
 • any value A[I] is allowed by some setting of the values of other A/B vars
 • similarly for B[I]

• If A ≤ B is not GAC
 • we can establish GAC

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
GAC: Generalised Arc Consistency

- GAC Lex can be established in $O(n)$ time for binary domains
 - Frisch et al, CP 2002
 - specialised algorithm
- We encode GAC Lex using new constraints

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Encoding GAC Lex

• Assume that A/B indexed from 1
• Introduce new array a[] indexed from 0
 • two values of each a[I]
• Meaning of a[]
 • a[I] = 0 ⇔ A ≤ B guaranteed by A[1..I], B[1..I]
• Add O(n) constraints linking A/B/a[]
5 Constraints for GAC Lex

1) \(a[0] = 1 \)

- Presentational convenience
- Allows uniform presentation of remaining constraints
5 Constraints for GAC Lex

1) \(a[0] = 1 \)
2) \(a[I] = 0 \implies a[I+1] = 0 \)

- \(0 \leq I \leq n-1 \)
- Monotonicity
- If GAC Lex guaranteed by 1..I, it is guaranteed by 1..I+1
5 Constraints for GAC Lex

1) $a[0] = 1$
2) $a[I] = 0 \Rightarrow a[I+1] = 0$
3) $a[I] = 1 \Rightarrow A[I] = B[I]$

- $0 \leq I \leq n-1$
- Equality
- Monotonicity implies each $a[J] = 1$ for $J \leq I$
- Gives intended meaning to $a[I] = 1$
5 Constraints for GAC Lex

1) \(a[0]=1\)
2) \(a[I]=0 \Rightarrow a[I+1]=0\)
3) \(a[I]=1 \Rightarrow A[I]=B[I]\)
4) \(a[I]=1 \& a[I+1]=0 \Rightarrow A[I+1] < B[I+1]\)

- \(0 \leq I \leq n-1\)
- Inequality
- \(a[I+1]=0\) means we want to guarantee \(A < B\) from \(1..I\)
- But \(a[I]=1\) means we have \(A[1..I]=B[1..I]\)
- So we must set \(A[I+1] < B[I+1]\)
5 Constraints for GAC Lex

1) \(a[0] = 1\)
2) \(a[I] = 0 \Rightarrow a[I+1] = 0\)
3) \(a[I] = 1 \Rightarrow A[I] = B[I]\)
4) \(a[I] = 1 \& a[I+1] = 0 \Rightarrow A[I+1] < B[I+1]\)
5) \(a[I] = 1 \Rightarrow A[I+1] \leq B[I+1]\)

- \(0 \leq I \leq n-1\)
- Redundant constraint
- Implied by (2) & (3)
- But not deduced by AC
- 5) included so that AC can do implication
 - In fact only needed for domain size > 2
5 Constraints for GAC Lex

1) \(a[0] = 1 \)
2) \(a[I] = 0 \Rightarrow a[I+1] = 0 \)
3) \(a[I] = 1 \Rightarrow A[I] = B[I] \)
4) \(a[I] = 1 \& a[I+1] = 0 \Rightarrow A[I+1] < B[I+1] \)
5) \(a[I] = 1 \Rightarrow A[I+1] \leq B[I+1] \)

<table>
<thead>
<tr>
<th>a</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) \(a[0]=1\)
2) \(a[I]=0 \Rightarrow a[I+1]=0\)
3) \(a[I]=1 \Rightarrow A[I]=B[I]\)
4) \(a[I]=1 \land a[I+1]=0 \Rightarrow A[I+1] < B[I+1]\)
5) \(a[I]=1 \Rightarrow A[I+1] \leq B[I+1]\)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) $a[0] = 1$
2) $a[I] = 0 \Rightarrow a[I+1] = 0$
3) $a[I] = 1 \Rightarrow A[I] = B[I]$
4) $a[I] = 1 \& a[I+1] = 0 \Rightarrow A[I+1] < B[I+1]$
5) $a[I] = 1 \Rightarrow A[I+1] \leq B[I+1]$

<table>
<thead>
<tr>
<th>a</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) \(a[0]=1\)
2) \(a[I]=0 \Rightarrow a[I+1]=0\)
3) \(a[I]=1 \Rightarrow A[I]=B[I]\)
4) \(a[I]=1 \& a[I+1]=0 \Rightarrow A[I+1]<B[I+1]\)
5) \(a[I]=1 \Rightarrow A[I+1] \leq B[I+1]\)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) \(a[0] = 1 \)
2) \(a[I] = 0 \) \(\Rightarrow \) \(a[I+1] = 0 \)
3) \(a[I] = 1 \) \(\Rightarrow \) \(A[I] = B[I] \)
4) \(a[I] = 1 \) \& \(a[I+1] = 0 \)
 \(\Rightarrow \) \(A[I+1] < B[I+1] \)
5) \(a[I] = 1 \) \(\Rightarrow \) \(A[I+1] \leq B[I+1] \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) \(a[0]=1\)
2) \(a[I]=0 \Rightarrow a[I+1]=0\)
3) \(a[I]=1 \Rightarrow A[I]=B[I]\)
4) \(a[I]=1 \& a[I+1]=0 \Rightarrow A[I+1] < B[I+1]\)
5) \(a[I]=1 \Rightarrow A[I+1] \leq B[I+1]\)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) \(a[0] = 1 \)
2) \(a[I] = 0 \) \(\Rightarrow \) \(a[I+1] = 0 \)
3) \(a[I] = 1 \) \(\Rightarrow \) \(A[I] = B[I] \)
4) \(a[I] = 1 \) \& \(a[I+1] = 0 \) \(\Rightarrow \) \(A[I+1] < B[I+1] \)
5) \(a[I] = 1 \) \(\Rightarrow \) \(A[I+1] \leq B[I+1] \)

<table>
<thead>
<tr>
<th>a</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
5 Constraints for GAC Lex

1) \(a[0] = 1 \)

2) \(a[I] = 0 \Rightarrow a[I+1] = 0 \)

3) \(a[I] = 1 \Rightarrow A[I] = B[I] \)

4) \(a[I] = 1 \) & \(a[I+1] = 0 \) \(\Rightarrow A[I+1] < B[I+1] \)

5) \(a[I] = 1 \) \(\Rightarrow A[I+1] \leq B[I+1] \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

For 0/1 domains, \(x < y \Leftrightarrow x = 0, y = 1 \)
Theoretical Analysis

- Arc Consistency (AC) establishes GAC Lex
 - Specifically:
 - A/B GAC Lex in any AC state of A/B/a[] variables
- Time Complexity in Boolean Domains
 - AC takes O(n) time
 - Encoding + AC = optimal algorithm for GAC
 - This is a “propagation-optimal” encoding
Stable Marriage

- Stable Marriage problem
 - Assume every female has a preference list of all males
 - And vice versa
 - And there are n males and n females
- Find a **stable** matching of females to males
 - There is no pair Ann & Andy, not married
 - Where Ann prefers Andy to her husband
 - And Andy prefers Ann to his wife
 - i.e. Ann & Andy would elope with each other
Stable Marriage

- Gale-Shapley algorithm is low polynomial time
 - Inspired SAT encoding
 - Which achieves AC in same poly time
 - And solutions can be read off from AC domains
- Gent, Irving, Manlove, Prosser, Smith 2001
SAT to Constraints

• Don’t need to encode SAT to Constraints?
• We do if we want propagation-optimal
• At first sight looks hard/impossible
 • assuming we use AC propagation
• Taking boolean domains to n-ary
• And AC per constraint is $O(d^2)$
 • Maybe we’ll lose $O(d/2) = O(d)$ or something
• But there is a propagation optimal encoding
Extended Literal Encoding

- Based on the “literal encoding”
 - Bennaceur 1996
- But extension makes it propagation-optimal
 - Gent, Prosser, Walsh, 2003
- Also called “Place Encoding”
 - Jarvisalo & Niemela, 2004
Literal Encoding

- For each k-clause C in the SAT problem
 - Variable x_C in CSP encoding
 - Domain of x_C is $\{1..k\}$
- The meaning of $x_C = i$
 - is that the i^{th} literal of clause C is satisfied
 - from which we can read solution of SAT problem
- For every pair of clauses C_1, C_2
 - If there are any ...
 - Add constraint ruling out complementary literals
Literal Encoding
Example

\[C_1: a \text{ OR } b \text{ OR } c \]

\[C_2: -a \text{ OR } -b \text{ OR } c \]

<table>
<thead>
<tr>
<th>(c_1/c_2)</th>
<th>(x_2 = 1)</th>
<th>(x_2 = 2)</th>
<th>(x_2 = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1 = 1)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(x_1 = 2)</td>
<td>(\checkmark)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(x_1 = 3)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>
Literal Encoding
Problem

- can do unit propagation, but ...
 - u.p. should take $O(mk)$
 - But each constraint $O(k^2)$

<table>
<thead>
<tr>
<th>c_1/c_2</th>
<th>$x_2=1$</th>
<th>$x_2=2$</th>
<th>$x_2=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1=1$</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$x_1=2$</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>$x_1=3$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Literal Encoding Problem

- can do unit propagation, but ...
 - u.p. should take $O(mk)$
- But each constraint $O(k^2)$
- And there can be $O(m^2)$
 - because var might occur
 - $m/2$ times positively
 - $m/2$ times negatively
- So this is $O(m^2k^2)$

<table>
<thead>
<tr>
<th>(c_1/c_2)</th>
<th>(x_2=1)</th>
<th>(x_2=2)</th>
<th>(x_2=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1=1)</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1=2)</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>(x_1=3)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Extended Literal Encoding

- As before:
 - For each k-clause C in the SAT problem
 - Variable x_C in CSP encoding
 - Domain of x_C is $\{1..k\}$

- Extension
 - Reintroduce original boolean variables
 - Domain $\{0,1\}$

- Constraints between booleans and clause vars
 - none between clause vars and other clause vars
Extended Literal Encoding Example

\[C_1: \text{a OR b OR c} \]

\[C_2: \text{-a OR -b OR c} \]

<table>
<thead>
<tr>
<th>a/c</th>
<th>x₁=1</th>
<th>x₁=2</th>
<th>x₁=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=0</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a=1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Extended Literal Encoding Example

$C_1: a \lor b \lor c$

<table>
<thead>
<tr>
<th>c</th>
<th>$x_1=1$</th>
<th>$x_1=2$</th>
<th>$x_1=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c=0$</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$c=1$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

$C_2: \neg a \lor \neg b \lor c$
Extended Literal Encoding Example

C_1: $a \lor b \lor c$

C_2: $-a \lor -b \lor c$

<table>
<thead>
<tr>
<th>a/c_2</th>
<th>$x_1=1$</th>
<th>$x_1=2$</th>
<th>$x_1=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c=0$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$c=1$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Extended Literal Encoding Example

C_1: $a \lor b \lor c$

C_2: $-a \lor -b \lor c$

<table>
<thead>
<tr>
<th>a/c_2</th>
<th>$x_2=1$</th>
<th>$x_2=2$</th>
<th>$x_2=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a=0$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$a=1$</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Extended Literal Encoding Example

C_1: $a \lor b \lor c$

C_2: $\neg a \lor \neg b \lor c$

<table>
<thead>
<tr>
<th>b/c_2</th>
<th>$x_2=1$</th>
<th>$x_2=2$</th>
<th>$x_2=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b=0$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$b=1$</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>
Extended Literal Encoding Example

C_1: a OR b OR c

C_2: $-a$ OR $-b$ OR c

<table>
<thead>
<tr>
<th>c/C_2</th>
<th>$x_1=1$</th>
<th>$x_1=2$</th>
<th>$x_1=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c=0$</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$c=1$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Extended Literal Complexity

• This example looks worse
 • 6 constraints/36 cells
 • compared to 1 constraint/18 cells
• But asymptotics are better
• We have $O(mk)$ constraints
 • One for each literal in each clause
 • Each propagates in time $O(2k) = O(k)$
• Total $O(mk^2)$ propagation time
Extended Literal Complexity

- This example looks worse
 - 6 constraints/36 cells
 - compared to 1 constraint/18 cells
- But asymptotics are better
- We have $O(mk)$ constraints
 - One for each literal in each clause
 - Each propagates in time $O(2k) = O(k)$
 - Total $O(mk^2)$ propagation time
Extended Literal Complexity

- This is propagation optimal if we fix k
- Plus there is easy propagation optimal encoding k-SAT to 3-SAT
- e.g. $a \lor b \lor c \lor d$ becomes
 - $a \lor b \lor z$
 - $\neg z \lor c \lor d$
- So we have propagation optimal encoding of k-SAT to CSP
Is the Extended Literal Encoding worthwhile?

- Not really
- Why not?
Why not?

• Hard to see the advantages of translating SAT to CSP in general
• It’s unlikely that the translated version will propagate as fast in practice as in SAT
 • which is true from CSP to SAT too but ...
• Also harder to see advantages we get
 • CP solvers good at propagating multiple different types of constraints together
 • And writing specialised propagators, for (e.g.) clauses
 • If we’re going to only propagate one type of constraint, why not build a (SAT) solver to do it?
• Overall, encodings SAT to CP have attracted little interest
Fundamental Conjecture of Reformulation

- In early 2000s, work such as above on AC, GACLex, SATtoCP, StableMarriage, ...
- Led me to suggest the
- “Fundamental Conjecture of Reformulation”
Fundamental Conjecture of Reformulation

- This says that ...
- For any [reasonable] constraint propagator taking time $p(n)$ (for some polynomial p)
- not saying what reasonable is
- There is an encoding of the constraint so that a standard AC algorithm can do the same work as the propagator in time $p(n)$, including translation time
- Since we have optimal encodings both ways, AC can be interchanged SAT
Fundamental Conjecture of Reformulation

- If true, ...
- There would be a strong argument that encodings should become key focus of SAT/CP research
- Including techniques to beat some of the disadvantages
 - e.g. hitting worst case space complexity
Encoding All-Different

- It was always obvious that All-Different would be an acid test of the conjecture
 - Key constraint
 - Very good GAC algorithm (Regin)
 - flow based
 - beats “obvious” encoding easily
Encoding All-Different

- Fundamental conjecture fails the acid test
- I.e. it’s false
- Key result
 - Bessiere, Katsirelos, Narodytska, Walsh, 09
- It is impossible to encode all-different to SAT
 - in a polynomial sized number of clauses
 - and obtain GAC
Impossibility Result

- Result based on circuit complexity
- Encoding constraint c to into SAT
 - gives a SAT checker [ie. there being a solution tuple to c]
 - gives monotone circuit of poly size
- So if there’s no monotone circuit of poly size
 - there’s no encoding of c into SAT
Impossibility Result

- Perfect matching has no monotone circuit of poly size
 - Rasborov 85, Tardos 88
- All-Different subsumes perfect-matching
- But we already had ...
 - So if there’s no monotone circuit of poly size
 - there’s no encoding of c into SAT
- Proof by contradiction:
 - We are done.
- There is no propagation-optimal encoding of AllDifferent into SAT (or generic AC)
Encodings Summary

• More to encodings than you might think
• Attractive, fun and interesting area
• And valuable....
 • increase power of SAT solving especially
• But still some problems
 • Can’t expect to beat native implementation
 • Can have space complexity problems
 • Can hit worst case *all the time*