
Modeling and Programming
with Gecode

Christian Schulte

Guido Tack

Mikael Z. Lagerkvist

mailto:schulte@gecode.org
mailto:tack@gecode.org
mailto:lagerkvist@gecode.org

This document was published on May 28, 2019. It corresponds to Gecode 6.2.0.

c© Christian Schulte, Guido Tack, Mikael Z. Lagerkvist, 2008–2019.

License information

This document is provided under the terms of the

cbnd

Creative Commons License Attribution-Noncommercial-No Derivative Works 3.0

The complete license text can be found at the end of this document.
We kindly ask you to not make this document available on the Internet such that it might

be indexed by a search engine. We insist that search engines should point to a single and
up-to-date version of this document.

The location of this document is:

https://www.gecode.org/doc/6.2.0/MPG.pdf

The location of this document corresponding to the latest Gecode version is:

https://www.gecode.org/doc-latest/MPG.pdf

Acknowledgments

We thank the following people for helpful comments: Vincent Barichard, Léonard Benedetti,
Pavel Bochman, Markus Böhm, Roberto Castañeda Lozano, Marco Correia, Gregory Cross-
white, Pierre Flener, Gustavo Gutierrez, Gabriel Hjort Blindell, Sverker Janson, Andreas
Karlsson, Håkan Kjellerstrand, Chris Mears, Benjamin Negrevergne, Flutra Osmani, Max Os-
trowski, David Rijsman, Dan Scott, Kish Shen.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.gecode.org/doc/6.2.0/MPG.pdf
https://www.gecode.org/doc-latest/MPG.pdf

Contents

1 Introduction 1

1.1 What is Gecode? . 1

1.2 What is this document? . 2

1.3 How to read this document? . 4

1.4 Do I need to be a C++ wizard? . 5

1.5 Can you help me? . 6

1.6 Does Gecode have bugs? . 6

1.7 How to refer to this document? . 6

1.8 Do you have comments? . 7

M Modeling 9

2 Getting started 13

2.1 A first Gecode model . 13

2.2 Searching for solutions . 18

2.3 Compiling, linking, and executing . 20

2.3.1 Microsoft Visual Studio . 20

2.3.2 Apple Mac OS . 22

2.3.3 Linux and relatives . 23

2.4 Using Gist . 24

2.5 Best solution search . 27

2.6 Obtaining Gecode . 29

2.6.1 Installing Gecode . 29

2.6.2 Compiling Gecode . 30

2.6.3 Advanced configuration and compilation 32

3 Getting comfortable 35

3.1 Posting linear constraints de-mystified . 35

3.2 Using a cost function . 35

3.3 Using the script commandline driver . 38

4 Integer and Boolean variables and constraints 43

4.1 Integer and Boolean variables . 44

4.1.1 Creating integer variables . 44

I

4.1.2 Limits for integer values . 45

4.1.3 Variable domains are never empty . 45

4.1.4 Creating Boolean variables . 46

4.1.5 Variable access functions . 46

4.1.6 Iterating over integer variable domains 46

4.1.7 When to inspect a variable . 47

4.1.8 Updating variables . 47

4.2 Variable and argument arrays . 48

4.2.1 Integer and Boolean variable arrays . 48

4.2.2 Argument arrays . 49

4.2.3 STL-style iterators . 52

4.3 Posting constraints . 52

4.3.1 Post functions are clever . 52

4.3.2 Everything is copied . 53

4.3.3 Reified constraints . 53

4.3.4 Half reification . 53

4.3.5 Selecting the propagation level . 55

4.3.6 Exceptions . 56

4.3.7 Unsharing arguments . 56

4.4 Constraint overview . 57

4.4.1 Domain constraints . 57

4.4.2 Membership constraints . 58

4.4.3 Simple relation constraints over integer variables 58

4.4.4 Simple relation constraints over Boolean variables 60

4.4.5 Arithmetic constraints . 61

4.4.6 Linear constraints . 62

4.4.7 Distinct constraints . 63

4.4.8 Counting constraints . 64

4.4.9 Number of values constraints . 66

4.4.10 Sequence constraints . 67

4.4.11 Channel constraints . 67

4.4.12 Element constraints . 68

4.4.13 Extensional constraints . 69

4.4.14 Sorted constraints . 72

4.4.15 Bin-packing constraints . 72

4.4.16 Geometrical packing constraints . 74

4.4.17 Circuit and Hamiltonian path constraints 74

4.4.18 Scheduling constraints . 77

4.4.19 Value precedence constraints . 80

4.5 Synchronized execution . 81

II

5 Set variables and constraints 83

5.1 Set variables . 83

5.2 Constraint overview . 86

5.2.1 Domain constraints . 86

5.2.2 Relation constraints . 87

5.2.3 Set operations . 88

5.2.4 Element constraints . 89

5.2.5 Constraints connecting set and integer variables 89

5.2.6 Set channeling constraints . 90

5.2.7 Convexity constraints . 91

5.2.8 Sequence constraints . 91

5.2.9 Value precedence constraints . 91

5.3 Synchronized execution . 92

6 Float variables and constraints 93

6.1 Float values and numbers . 93

6.2 Float variables . 94

6.3 Constraint overview . 97

6.3.1 Domain constraints . 97

6.3.2 Simple relation constraints . 98

6.3.3 Arithmetic constraints . 99

6.3.4 Linear constraints . 100

6.3.5 Channel constraints . 100

6.4 Synchronized execution . 100

7 Modeling convenience: MiniModel 103

7.1 Expressions and relations . 103

7.1.1 Integer expressions and relations . 104

7.1.2 Boolean expressions and relations . 107

7.1.3 Set expressions and relations . 109

7.1.4 Float expressions and relations . 112

7.1.5 Extending Boolean expressions and relations 112

7.2 Matrix interface for arrays . 114

7.3 Support for cost-based optimization . 116

7.4 Regular expressions for extensional constraints 117

7.5 Channeling functions . 118

7.6 Aliases for integer constraints . 119

7.7 Aliases for set constraints . 119

8 Branching 121

8.1 Branching basics . 121

8.2 Branching on integer and Boolean variables . 122

8.3 Branching on set variables . 127

III

8.4 Branching on float variables . 127
8.5 Local versus shared variable selection criteria . 130

8.5.1 Local variable selection criteria . 130
8.5.2 Selection using accumulated failure count 131
8.5.3 Selection using action . 132
8.5.4 Selection using CHB . 134

8.6 Random variable and value selection . 135
8.7 User-defined variable selection . 136
8.8 User-defined value selection . 137
8.9 Tie-breaking . 138
8.10 Lightweight Dynamic Symmetry Breaking . 140

8.10.1 Specifying Symmetry . 142
8.10.2 Notes . 143

8.11 Using branch filter functions . 143
8.12 Using variable-value print functions . 144
8.13 Assigning integer, Boolean, set, and float variables 145
8.14 Executing code between branchers . 147

9 Search 149

9.1 Hybrid recomputation . 149
9.1.1 Cloning . 150
9.1.2 Recomputation . 150
9.1.3 Hybrid recomputation . 151
9.1.4 Why recomputation is almost for free . 152
9.1.5 Adaptive recomputation . 152
9.1.6 Controlling recomputation . 153

9.2 Parallel search . 153
9.3 Search engines . 157

9.3.1 Search options . 158
9.3.2 Stop objects . 159

9.4 Restart-based search . 160
9.4.1 Restart-based search as a meta search engine 161
9.4.2 Cutoff generators . 162
9.4.3 Computing a next solution . 165
9.4.4 Master and slave configuration . 165
9.4.5 Large Neighborhood Search . 167

9.5 Portfolio search . 170
9.5.1 Simple portfolio search as a meta search engine 170
9.5.2 Master and slave configuration . 171
9.5.3 Parallel and sequential portfolios . 172
9.5.4 Mixed portfolios . 173

9.6 No-goods from restarts . 175
9.7 Tracing search . 178

IV

9.8 Using the CPProfiler . 182

10 Gist 185

10.1 The search tree . 185
10.2 Invoking Gist . 186

10.2.1 Standalone use . 186
10.2.2 Use as a Qt widget . 187

10.3 Using Gist . 187
10.3.1 Automatic search . 187
10.3.2 Interactive search . 188
10.3.3 Branch-and-bound search . 189
10.3.4 Inspecting and comparing nodes . 189
10.3.5 Zooming, centering, exporting, printing 192
10.3.6 Options and preferences . 194

11 Script commandline driver 197

11.1 Commandline options . 197
11.2 Scripts . 201

12 Groups and tracing 203

12.1 Propagator groups . 203
12.2 Brancher groups . 205
12.3 Variable tracing . 206

12.3.1 Creating a variable trace recorder . 207
12.3.2 Default variable tracers . 207
12.3.3 Using trace filters . 210
12.3.4 Selecting the events to trace . 210
12.3.5 Enabling and disabling variable trace recorders 211

12.4 General tracing . 211
12.4.1 Creating a general trace recorder . 211
12.4.2 Default general tracers . 212

12.5 Programming variable tracers . 213
12.5.1 Tracers for integer and Boolean variables 213
12.5.2 Variable tracers for set variables . 217
12.5.3 Variable tracers for float variables . 217

12.6 Programming general tracers . 218

C Case studies 221

13 Golomb rulers 223

13.1 Problem . 223
13.2 Model . 225
13.3 More information . 227

V

14 Magic sequence 229

14.1 Problem . 229

14.2 Model . 229

14.3 More information . 231

15 Photo alignment 233

15.1 Problem . 233

15.2 Model . 233

15.3 More information . 236

16 Locating warehouses 237

16.1 Problem . 237

16.2 Model . 238

16.3 More information . 241

17 Nonogram 243

17.1 Problem . 243

17.2 Model . 243

17.3 More information . 247

18 Social golfers 249

18.1 Problem . 249

18.2 Model . 249

18.3 More information . 252

19 Knight’s tour 253

19.1 Problem . 253

19.2 Model . 253

19.3 Branching . 256

19.4 More information . 258

20 Bin packing 261

20.1 Problem . 261

20.2 A naive model . 262

20.3 Improving propagation . 267

20.4 Improving branching . 268

20.5 More information . 274

21 Kakuro 275

21.1 Problem . 275

21.2 A naive model . 275

21.3 A working model . 280

21.4 More information . 283

VI

22 Crossword puzzle 285

22.1 Problem . 285
22.2 Model . 285
22.3 An optimized model . 291
22.4 More information . 293

P Programming propagators 299

23 Getting started 301

23.1 Constraint propagation in a nutshell . 301
23.2 Background reading . 304
23.3 What to implement? . 305
23.4 Implementing the less constraint . 310
23.5 Improving the Less propagator . 314
23.6 Propagation conditions . 318
23.7 Using propagator patterns . 322
23.8 Propagator obligations . 324
23.9 Waiving obligations . 325

24 Avoiding execution 327

24.1 Fixpoint reasoning reconsidered . 327
24.2 A Boolean disjunction propagator . 331
24.3 Dynamic subscriptions . 335

25 Reification and rewriting 339

25.1 Reification . 339
25.2 A fully reified less or equal propagator . 340
25.3 Supporting both full and half reification . 342
25.4 Rewriting during propagation . 345
25.5 Rewriting during cloning . 347

26 Domain propagation 351

26.1 Why domain operations are needed . 351
26.2 Iterator-based modification operations . 353
26.3 Taking advantage of iterators . 356
26.4 Modification event deltas . 358
26.5 Staging . 360

27 Advisors 365

27.1 Advisors for incremental propagation . 365
27.2 The samedom constraint . 368
27.3 General Boolean disjunction . 375
27.4 Forced propagator re-scheduling . 378

VII

28 Views 379

28.1 Integer views . 379

28.1.1 Minus views . 379

28.1.2 Offset views . 381

28.1.3 Constant and scale views . 382

28.2 Boolean views . 382

28.3 Integer propagators on Boolean views . 382

29 Propagators for set constraints 385

29.1 A simple example . 385

29.2 Modification events, propagation conditions, views, and advisors 389

30 Propagators for float constraints 393

30.1 A simple example . 393

30.2 Modification events, propagation conditions, views, and advisors 396

31 Managing memory 399

31.1 Memory areas . 399

31.2 Managing propagator state . 402

31.3 Shared objects and handles . 404

31.4 Local objects and handles . 406

B Programming branchers 409

32 Getting started 411

32.1 What to implement? . 411

32.2 Implementing a nonemin branching . 415

32.2.1 A naive brancher . 417

32.2.2 Improving status and choice . 419

32.3 Implementing a sizemin branching . 421

33 Advanced topics 423

33.1 Assignment branchers . 423

33.2 Supporting no-goods . 423

33.2.1 Returning no-good literals . 425

33.2.2 Implementing no-good literals . 427

33.3 Using variable views . 429

V Programming variables 431

34 Getting started 433

34.1 Overview . 433

VIII

34.2 Structure . 435

35 Variable implementations 439

35.1 Design decisions . 439

35.2 Base definitions . 442

35.3 Variable implementation . 445

35.4 Additional specification options . 450

36 Variables and variable arrays 453

36.1 Variables . 453

36.2 Variable arrays and variable argument arrays . 455

37 Views 459

37.1 View types . 459

37.2 Variable implementation views: integer view . 461

37.3 Constant views: constant integer view . 462

37.4 Derived views . 464

37.4.1 Minus views . 466

37.4.2 Offset views . 468

38 Variable-value branchings 471

38.1 Type, traits, action, and more . 471

38.2 Variable and value selection . 475

38.3 View selection creation . 477

38.4 Value selection and commit creation . 480

38.5 Branchings . 483

39 Variable tracing support 487

39.1 Trace views and deltas . 487

39.2 Tracers and trace recorders . 490

39.3 Trace post functions . 490

40 Putting everything together 493

40.1 Golomb rulers à la integer interval variables . 493

40.2 Configuring and compiling Gecode . 493

S Programming search engines 497

41 Getting started 499

41.1 Space-based search . 499

41.2 Binary depth-first search . 503

41.3 Depth-first search . 505

41.4 Branch-and-bound search . 507

IX

42 Recomputation 511

42.1 Full recomputation . 511
42.2 Recomputation invariants . 515

42.2.1 Choice compatibility . 515
42.2.2 Recomputation is not deterministic . 516

42.3 Branch-and-bound search . 517
42.4 Last alternative optimization . 519
42.5 Hybrid recomputation . 521
42.6 Adaptive recomputation . 524

43 An example engine 527

43.1 Engine design . 527
43.2 Engine implementation . 527
43.3 Exploration . 530
43.4 Recomputation . 533

Bibliography 537

Changelog 545

License 551

X

Figures

1.1 Gecode architecture . 3

1.2 Dependencies among different parts of this document 4

2.1 A Gecode model for Send More Money . 14

2.2 Using Gist for Send More Money . 25

2.3 Gist screen shots . 25

2.4 Using Gist for Send More Money with node inspection 26

2.5 A Gecode model for Send Most Money finding a best solution 27

3.1 A Gecode model for Send More Money using modeling support 36

3.2 A Gecode model for Send Most Money using a cost function 37

3.3 A Gecode model for Send Most Money using the script commandline driver 39

4.1 Integer relation types . 58

4.2 Boolean operation types . 60

4.3 Arithmetic constraints . 62

4.4 A DFA for the Swedish drinking protocol . 70

4.5 Representing edges and propagating circuit 75

4.6 Representing edges and propagating circuit with cost 76

5.1 Set relation types . 87

5.2 Set operation types . 88

6.1 Functions on float values . 95

6.2 Float relation types . 98

6.3 Arithmetic constraints . 99

7.1 Integer expressions . 105

7.2 Integer relations . 106

7.3 Boolean expressions . 107

7.4 Set expressions and relations . 110

7.5 Float expressions . 111

7.6 Float relations . 112

7.7 The class BoolDomExpr and the dom() function 113

7.8 Constructing regular expressions . 117

7.9 Aliases for integer constraints . 119

XI

8.1 Integer variable selection . 123

8.2 Integer value selection . 124

8.3 Boolean variable selection . 126

8.4 Boolean value selection . 126

8.5 Set variable selection . 128

8.6 Set value selection . 128

8.7 Float variable selection . 129

8.8 Float value selection . 130

8.9 Branch value functions . 137

8.10 Branch commit functions . 138

8.11 A Gecode model for Latin Squares with LDSB 141

8.12 Symmetric solutions of the Latin Square problem 141

8.13 Model sketch for branch filter function . 144

8.14 Value selection for assigning variables . 146

9.1 Example search tree . 150

9.2 Hybrid recomputation . 151

9.3 Output for Golomb rulers with eight workers 155

9.4 Output for Golomb rulers with one worker . 156

9.5 Search statistics . 157

9.6 Available search engines . 158

9.7 Search options . 159

9.8 Predefined stop objects . 160

9.9 Meta information . 166

9.10 Default master() and slave() functions . 167

9.11 Model sketch for LNS . 168

9.12 Search tree after cutoff 3 has been reached . 175

9.13 A simple tracer printing to std::cout . 179

9.14 Member function for node-events . 181

10.1 A search tree . 185

10.2 Gist, solving the Send More Money problem . 186

10.3 A hidden subtree in Gist . 188

10.4 The Node menu . 189

10.5 Branch information in Gist . 190

10.6 The Tools menu . 191

10.7 Inspecting a solution in Gist . 192

10.8 Using Gist for Send More Money with node comparison 193

10.9 Node statistics . 194

10.10 Gist preferences . 195

10.11 Displaying where Gist stores spaces in the tree 196

11.1 Predefined commandline options . 198

XII

11.2 Predefined commandline options, continued 199

11.3 User-definable commandline options . 199

12.1 Abridged output for variable tracing Send More Money 208

12.2 Abridged output for general tracing of Send More Money 212

12.3 An integer variable tracer printing to std::cout 214

12.4 A general tracer printing to std::cout . 218

13.1 An optimal Golomb ruler with 6 marks . 223

13.2 A constructed Golomb ruler with 6 marks . 223

13.3 A script for computing Golomb rulers . 224

14.1 A script for solving magic sequence puzzles . 230

14.2 Magic sequence puzzles with a global counting constraint 231

15.1 A script for the photo alignment problem . 234

16.1 A script for locating warehouses . 239

17.1 Example nonogram puzzle . 244

17.2 Solution to the example puzzle . 244

17.3 A script for solving nonogram puzzles . 245

18.1 A script for the social golfers’ problem . 250

19.1 8× 8-knight’s tour . 254

19.2 A script for the knight’s tour problem . 255

19.3 A brancher for Warnsdorff’s heuristic . 259

20.1 An example optimal bin packing . 261

20.2 Instance data for a bin packing problem . 262

20.3 Computing a lower bound for the number of bins 262

20.4 Computing an upper bound for the number of bins 263

20.5 An non-optimal bin packing found during upper bound computation 264

20.6 A naive script for solving a bin packing problem 265

20.7 A script with improved propagation for solving a bin packing problem . . . 268

20.8 A script with improved branching for solving a bin packing problem 269

20.9 CDBF brancher and branching . 270

20.10 CDBF choice . 273

21.1 A Kakuro puzzle . 276

21.2 Solution for Kakuro puzzle from Figure 21.1 276

21.3 A naive script and board specification for solving Kakuro puzzles 277

21.4 Propagation for the Kakuro puzzle . 280

21.5 A working script for solving Kakuro puzzles . 281

XIII

22.1 A crossword puzzle grid . 286
22.2 Solution for crossword puzzle grid from Figure 22.1 286
22.3 Crossword script . 287
22.4 Grid and words specification . 288
22.5 An optimized crossword script . 292
22.6 Comparison of Gecode model with COMBUS . 294
22.7 Comparison of Gecode model using restarts with COMBUS 296
22.8 Results for some hard words dictionary instances 296
22.9 Solution for instance words-21×21-10 . 297
22.10 Solution for instance words-23×23-06 . 297

23.1 Scheduling and executing propagators . 303
23.2 Propagators, views, and variable implementations 306
23.3 A constraint and propagator for less . 309
23.4 Summary of propagation cost functions . 312
23.5 Value-based modification functions for integer variable views 314
23.6 A better constraint and propagator for less . 315
23.7 Check and fail macros . 318
23.8 An even better constraint and propagator for less 319
23.9 A propagator for disequality . 321
23.10 Propagator patterns . 322
23.11 A concise constraint and propagator for less 323

24.1 A naive equality bounds propagator . 328
24.2 An equality bounds propagator with fixpoint reasoning 329
24.3 An idempotent equality bounds propagator . 329
24.4 An idempotent equality bounds propagator using modification events 330
24.5 Naive Boolean disjunction . 332
24.6 Propagation for naive Boolean disjunction . 334
24.7 Naive Boolean disjunction using a propagator pattern 335
24.8 Boolean disjunction with dynamic subscriptions 336
24.9 Resubscribing for Boolean disjunction with dynamic subscriptions 338

25.1 A constraint and propagator for fully reified less or equal 341
25.2 A constraint and propagator for full and half reified less or equal 343
25.3 Propagate function for full and half reified less or equal 344
25.4 A maximum propagator using rewriting . 346
25.5 A Boolean disjunction propagator using rewriting 348

26.1 An incorrect propagator for domain equal . 352
26.2 A naive propagator for domain equal . 353
26.3 A propagator for domain equal without sharing 355
26.4 A propagator for domain equal with offset . 357
26.5 A propagator for domain equal using bounds propagation 359

XIV

26.6 Stage transitions for the equality propagator 361
26.7 A propagator for domain equal using staging 362

27.1 A samedom propagator using advisors . 370
27.2 A samedom propagator using predefined view advisors 374
27.3 A Boolean disjunction propagator using advisors 376

28.1 Minimum and maximum constraints implemented by a Max propagator . . . 380
28.2 Domain equality with and without offset . 381
28.3 Disjunction and conjunction from same propagator 383
28.4 Less constraints for both integer and Boolean variables 384

29.1 A constraint and propagator for set intersection 386
29.2 Set view operations . 388
29.3 Set modification events and propagation conditions 391

30.1 A constraint and propagator for ternary linear 394
30.2 Most important float view operations . 395
30.3 Rounding operations on float numbers . 395
30.4 Float modification events and propagation conditions 397

31.1 Declaration of an Allocator class . 403
31.2 A simple shared object and handle . 405
31.3 A simple local object and handle . 407
31.4 A local object and handle with external resources 408

32.1 A branching and brancher for nonemin . 416
32.2 An improved brancher for nonemin . 420
32.3 A brancher for sizemin . 421

33.1 A brancher for assignmin . 424
33.2 Branching for nonemin with no-good support 426
33.3 Branchings for nonemin and nonemax . 429

34.1 The header file for integer interval variables 436

35.1 Variable implementation specification . 443
35.2 Modification event section . 444
35.3 Propagation condition section . 445
35.4 Variable implementation . 446
35.5 Summary of member functions predefined by variable implementations . . 450

36.1 Variable programmed from a variable implementation 454
36.2 Summary of member functions predefined by variables 455
36.3 Array traits for variable arrays . 456
36.4 Variable arrays . 457

XV

37.1 Summary of member functions predefined by views 460
37.2 Integer view . 461
37.3 Constant integer view . 463
37.4 Minus view . 465
37.5 Negation of modification events and propagation conditions 466
37.6 Offset view . 469

38.1 Part of header file concerned with branching 472
38.2 Variable selection class . 476
38.3 View selection creation function . 478
38.4 Size merit class . 479
38.5 Value selection and commit creation function 480
38.6 Branch function . 484
38.7 Branch function with tie-breaking . 485

39.1 Part of header file concerned with tracing . 488

40.1 Golomb rulers à la integer interval variables 494

41.1 Depth-first search for binary choices . 504
41.2 Depth-first search . 506
41.3 Branch-and-bound search . 508

42.1 Depth-first search using full recomputation . 512
42.2 Edge class for depth-first search using full recomputation 513
42.3 Example situations during recomputation . 516
42.4 Branch-and-bound search using full recomputation 518
42.5 Last alternative optimization (LAO) . 520
42.6 Depth-first search using full recomputation and LAO 520
42.7 Depth-first search using hybrid recomputation 522
42.8 Depth-first search using adaptive recomputation 525

43.1 Depth-first search engine . 528
43.2 Implementation of depth-first search engine . 529
43.3 Implementation of exploration . 531
43.4 Implementation of edges . 532
43.5 Implementation of path of edges . 533
43.6 Implementation of recomputation . 534

XVI

Tips

2.1 Space& versus Home . 15

2.2 Propagation is explicit . 19

2.3 Catching Gecode exceptions . 20

2.4 Cygwin with Microsoft Visual Studio . 22

2.5 Eclipse on Windows and Mac OS . 24

2.6 Gist scales . 26

2.7 Linking against Gist . 27

2.8 Compiling on Windows for x86 versus x64 . 29

2.9 Do not forget the library path . 31

2.10 Compatible compilers and installations for Gecode and Qt 32

3.1 Linking against the driver . 40

3.2 Aborting execution . 42

3.3 How Gecode has been configured . 42

3.4 Which version of Gecode are we using? . 42

4.1 Do not use views for modeling . 44

4.2 Small variable domains are beautiful . 46

4.3 Reversing argument arrays . 50

4.4 Dynamically constructing models . 51

4.5 Different propagation levels have different costs 56

4.6 Unsharing is expensive . 56

4.7 Boolean negation . 60

4.8 Shared integer arrays . 69

4.9 Shared arrays also provide STL-style iterators 69

4.10 When to use tuple sets rather than DFAs . 71

4.11 Tasks with duration zero . 78

4.12 Failing a space . 81

5.1 Still do not use views for modeling . 83

5.2 Small variable domains are still beautiful . 85

5.3 Reification by decomposition . 86

6.1 Transcendental and trigonometric functions and constraints 93

6.2 Still do not use views for modeling . 94

6.3 Small variable domains are still beautiful . 96

XVII

6.4 Weak propagation for strict inequalities (<, >) and disequality (6=) 98

7.1 Boolean precedences . 107
7.2 Reification of non-functional constraints . 108
7.3 Element for matrix can compromise propagation 115
7.4 Cost must be assigned for solutions . 116
7.5 Creating a DFA only once . 118

8.1 Variables are re-selected during branching . 125
8.2 Do not try all values . 125
8.3 Propagation is still explicit . 148

9.1 Search is indeterministic . 151
9.2 Values for cd and ad . 153
9.3 Be optimistic about parallel search . 154
9.4 Do not optimize by branching alone . 155
9.5 Number of threads for stop objects . 160
9.6 Controlling restart-based search with the commandline driver 162
9.7 Kill your branchers, or maybe not. 171
9.8 Always use parallel portfolios . 173
9.9 Controlling portfolios from the commandline 173
9.10 Mixing parallel and sequential portfolios . 174
9.11 Controlling no-goods with the commandline driver 177

12.1 Enabling tracing with a commandline option 208
12.2 Naming propagators, branchers, variables, and groups 217

13.1 Small variable domains are still beautiful . 225

16.1 Choose variables to avoid constraints . 238
16.2 Small variable domains are still beautiful . 240

23.1 Variables and views are passed by value . 305
23.2 Immediately return after subsumption . 314

24.1 Understanding ES_NOFIX . 330
24.2 View arrays also provide STL-style iterators . 333
24.3 View arrays have non-copying copy constructors 333
24.4 drop_fst() and drop_lst() are efficient . 337

26.1 Narrow is dangerous . 354
26.2 Iterators must be increasing . 354

27.1 Different types of advisors for the same propagator 369
27.2 Getting a propagator started with advisors . 371
27.3 Advisors and propagator obligations . 373

XVIII

27.4 Advisor space requirements . 375

28.1 Using using clauses . 380
28.2 Boolean variables are not integer variables . 384

31.1 Freeing memory explicitly . 401
31.2 Memory alignment . 402

32.1 Never execute . 418

35.1 Correctness matters . 440
35.2 Variable implementations must always be consistent 448

41.1 Printing information about alternatives. 501

XIX

XX

1 Introduction

This document provides an introduction to modeling and programming with Gecode, an
open, free, portable, accessible, and efficient environment for developing constraint-based
systems and applications.

The hands-on, tutorial-style approach will get you started very quickly. The focus is
on giving an overview of the key concepts and ideas required to model and program
with Gecode. Each concept is introduced using concrete C++ code examples that are de-
veloped and explained step by step. This document is complemented by the complete
Gecode reference documentation, as well as pointers to introductory and more advanced
material throughout the text.

The first part of this document (Part M) is about modeling with Gecode. It explains mod-
eling and solving constraint problems, and how to program, compile, link, and execute these
models. This is complemented by a collection of interesting case studies of how to model
with Gecode (Part C). The remaining, more advanced parts are about programming with
Gecode: they explain how to use Gecode for implementing constraints (Part P), branchings
(Part B), new variable types (Part V), and search engines (Part S).

1.1 What is Gecode?

Gecode is an open, free, portable, accessible, and efficient environment for developing
constraint-based systems and applications. Gecode is:

open Gecode is radically open for programming: it can be easily interfaced to other systems.
It supports the programming of new propagators (as implementation of constraints),
branching strategies, and search engines. New variables can be programmed at the
same level of efficiency as integer, set, and float variables that ship with Gecode.

free Gecode is distributed under the MIT license and is listed as free software by the FSF.
All of its parts — including reference documentation, implementations of global con-
straints, and examples — are available as source code for download.

portable Gecode is implemented in C++ that rigidly follows the C++ standard. It can be com-
piled with modern C++ compilers and runs on a wide range of platforms.

accessible Gecode comes with complete tutorial and reference documentation that allows
users to focus on different programming tasks with Gecode.

1

https://www.gecode.org/doc/6.2.0/reference/index.html
https://www.gecode.org/license.html
http://directory.fsf.org/project/gecode/

efficient Gecode offers excellent performance with respect to runtime, memory usage, and
scalability. For example, Gecode won all gold medals in the MiniZinc Challenge in
2012, 2011, 2010, 2009, and 2008.

parallel Gecode complies with reality in that it exploits the multiple cores of today’s com-
modity hardware for parallel search, giving an already efficient base system an addi-
tional edge.

alive Gecode has a sizeable user community and is being actively developed and maintained.
In order to give you an idea: there has been a release every two to three month since
the first release in December 2005.

1.2 What is this document?

We do not want to disappoint our readers, so let us get this out of the way as early as possible
– here is what this document is not. This document is very definitely neither

■ an introduction to constraint programming or modeling techniques, nor

■ a collection of interesting implementations of constraints, nor

■ an introduction to the architecture of constraint solvers, nor

■ a reference documentation of the Gecode API.

The reader is therefore expected to have some background knowledge in constraint program-
ming.

Furthermore, the document describes the C++ interface to Gecode, it is not about modeling
with any of the available interfaces to Gecode.

Keeping it simple. Throughout this document, we will use simple examples to explain the
concepts you have to understand in order to model and program with Gecode. However,
these simple examples demonstrate the complete array of techniques that are sufficient to
implement complex models, constraints, branchings, variables, and search engines. In fact,
Gecode itself is based on the very same techniques – you will learn how to develop code that
is just as good as (or maybe better than?) what Gecode itself provides.

Gecode architecture. This document follows the general architecure of Gecode, containing
one part for each major component. Figure 1.1 gives an overview of the Gecode architecture.
The kernel provides common functionality, upon which the modules for integer, set, and float
constraints as well as the search engines are built. The colored boxes refer to the topics
covered in this document.

2

http://www.g12.cs.mu.oz.au/minizinc/challenge2010/results2012.html
http://www.g12.cs.mu.oz.au/minizinc/challenge2010/results2011.html
http://www.g12.cs.mu.oz.au/minizinc/challenge2010/results2010.html
http://www.g12.cs.mu.oz.au/minizinc/challenge2009/results2009.html
http://www.g12.csse.unimelb.edu.au/minizinc/results.html
https://www.gecode.org/interfaces.html

Modeling (Part M)

Gecode kernel

Programming

propagators (Part P)

and branchers (Part B)

Int
module

Set
module

Float
module

Search
module

Programming

variables
(Part V)

Programming

search
engines

(Part S)

Figure 1.1: Gecode architecture

Modeling. The modeling part (Part M) of this document assumes some basic knowledge of
modeling and solving constraint problems, as well as some basic C++ skills. The document
restricts itself to simple and well known problems as examples. A constraint programming
novice should have no difficulty to concentrate on the how-to-model with Gecode in partic-
ular, rather than the how-to-model with constraint programming in general.

The modeling part starts with a very simple constraint model that already touches on
all the important concepts used in Gecode. There are detailed instructions how to com-
pile and link the example code, so that you can get started right away. After that, the dif-
ferent variable types, the most important classes of constraints (including pointers to the
Global Constraint Catalog [6], referred to by GCCAT) , and the infrastructure provided by
Gecode (such as search engines) are presented.

Case studies. This document includes a collection of case studies in Part C. The case stud-
ies mix modeling and programming with Gecode. Some case studies are just interesting
constraint models. Other case studies are constraint models that include the programming
of new constraints and/or branchings.

Programming. The programming parts of this document require the same knowledge as
the modeling part, plus some additional basic knowledge of how constraint propagation is
organized. Section 23.2 provides pointers to recommended background reading.

The programming parts of this document cover the following topics:

programming propagators Part P describes in detail how new propagators (as implementa-
tions of constraints) can be programmed using Gecode. The part gives a fairly complete
account of concepts and techniques for programming propagators.

3

http://www.emn.fr/z-info/sdemasse/gccat/

Modeling Programming

Modeling (Part M)

Case studies (Part C)

Propagators (Part P)

Branchers (Part B)

Variables (Part V)

Search engines (Part S)

Figure 1.2: Dependencies among different parts of this document

programming branchers Part B describes how new branchers (as implementations of
branchings for search) can be programmed using Gecode. This part is short and
straightforward.

programming variables Gecode supports the addition of new variables types: the modules
for integer, Boolean, set, and float variables use exactly the same programming inter-
face as is available to any user. This interface is described in Part V.

programming search Part S describes how to program new search engines (Gecode comes
with the most important search engines). The programming interface is simple yet very
powerful as it is based on concurrency-enabled techniques such as recomputation and
cloning.

1.3 How to read this document?

The dependencies among the different parts of this document are sketched in Figure 1.2. Ev-
ery part starts with a short overview section and sketches what constitutes the basic material
of a part. A part only requires the basic material of the parts it depends on.

The dashed arrows from programming propagators (Part P) and programming branchers
(Part B) capture that some but not all case studies require knowledge on how to program

4

propagators and branchers. The individual case studies provide information on the required
prerequisites.

Downloading example programs. All example program code used in this document is
available for download, just click the download link in the upper right corner of an example.

Note that the code available for download is licensed under the same license as Gecode
and not under the same license as this document. By this, you can use an example program
as a starting point for your own programs.

If you prefer to download all example programs at once, you can do so here:

■ example programs as gzipped tar archive

■ example programs as 7z archive

1.4 Do I need to be a C++ wizard?

You very definitely do not have to be a C++ wizard to program Gecode models, some basic C++

knowledge will do. Modeling constraint problems typically involves little programming and
tends to follow a common and simple structure that is presented in this document. It should
be sufficient to have a general idea of programming and object-oriented programming.

Even programming with Gecode requires only basic C++ knowledge. The implementation
of propagators, branchings, variables, and search engines follows simple and predictable
recipes. However, this estimate refers to the aspects of using the concepts and techniques
provided by Gecode. Of course, implementing truly advanced propagation algorithms inside
a propagator will be challenging!

If you want to brush up your C++ knowledge, then brushing up your knowledge about the
following topics might be most rewarding when using Gecode:

■ Classes and objects, inheritance, virtual member functions: models are typically imple-
mented by inheritance from a Gecode-provided base class.

■ Overloading and operator overloading: post functions for constraints and support for
posting symbolic expressions and relations rely on overloading (several functions with
different argument types share the same function name).

■ Exceptions: Gecode throws exceptions if post functions are used erroneously, for exam-
ple, when numerical overflow could occur or when parameters are used inconsistently.

■ Templates: while the modeling layer uses only few generic classes implemented as
templates, programming with Gecode requires some basic knowledge about how to
program with templates in C++.

Any textbook covering these topics should be well suited, for example, [31] for a general
introduction to C++, and [74] for an introduction to C++ for Java programmers.

5

https://www.gecode.org/license.html
https://www.gecode.org/doc/6.2.0/MPG.tar.gz
https://www.gecode.org/doc/6.2.0/MPG.7z

1.5 Can you help me?

Gecode has a lively and sizeable user community that can be tapped for help. You can ask
questions about Gecode on the discussion forum. But, please make sure to not waste your
time and the time of others:

■ Please check this document and the Gecode reference documentation before asking a
question.

■ Please check whether a similar question has been asked before.

■ Please focus on questions specific to Gecode. For general questions about constraint
programming more suitable forums exist.

■ Please provide sufficient detail: describe your platform (operating system, compiler,
Gecode version) and your problem (what does not work, what do you want to do,
what is the problem you observe) as accurately as you can.

■ Please do not contact the developers for general Gecode questions, we will not answer.
First, we insist on the benefit to the entire user community to see questions and answers
(and the contribution to the mailing list archive). Second, more importantly, our users
are known to have very good answers indeed. Remember, they – in contrast to the
developers – might be more familiar with your user perspective on Gecode.

■ Never ask for solutions to homework. The only more offensive thing you could do is to
provide a solution on the mailing list if someone has violated the no homework policy!

1.6 Does Gecode have bugs?

Yes, of course! But, Gecode is very thoroughly tested (tests cover almost 100%) and exten-
sively used (several thousand users). If something does not work, we regret to inform you
that this is most likely due to your program and not Gecode. Again, this does not mean that
Gecode has no bugs. But it does mean that it might be worth searching for errors in your

program first.
Likewise, all major program fragments in this document (those that can be downloaded)

have been carefully tested as well.
And, yes. Please take our apologies in advance if that somewhat bold claim does turn out

to be false... If you have accepted our apologies, you can submit your bug report here.

1.7 How to refer to this document?

We kindly ask you to refer to the individual parts of this document with their respective
authors (each part has a dedicated set of authors). BIBTEX entries for the individual parts are
available here.

6

https://www.gecode.org/community.html
https://www.gecode.org/doc/6.2.0/reference/index.html
https://github.com/Gecode/gecode/issues
https://www.gecode.org/doc/6.2.0/MPG.bib

If you refer to concepts introduced in Gecode, we kindly ask you to refer to the relevant
academic publications.

1.8 Do you have comments?

If you have comments, suggestions, bug reports, wishes, or any other feedback for this doc-
ument, please send a mail with your feedback to mpg@gecode.org.

7

mailto:mpg@gecode.org

8

M

Modeling
Christian Schulte, Guido Tack, Mikael Z. Lagerkvist

This part explains modeling and solving constraint problems, and how to program, compile,
link, and execute constraint models.

Basic material. The basic material needed for modeling with Gecode is as follows:

■ Chapter 2 (Getting started) provides an overview of how to program, compile, link,
and execute a constraint model in Gecode.

■ Chapter 3 (Getting comfortable) discusses functionality in Gecode that makes model-
ing and execution of models more convenient.

■ The three first sections of Chapter 4 (Integer and Boolean variables and constraints)
explain integer and Boolean variables (Section 4.1), variable and argument arrays
(Section 4.2), and how constraints are posted (Section 4.3).

■ The first section of Chapter 5 (Set variables and constraints) gives an overview of set
variables (Section 5.1).

■ The first section of Chapter 6 (Float variables and constraints) gives an overview of
float variables (Section 6.2).

■ The first sections of Chapter 8 (Branching) explain branching: basics (Section 8.1),
branchings for integer and Boolean variables (Section 8.2), branchings for set variables
(Section 8.3), and branchings for float variables (Section 8.4).

■ Even though not strictly necessary for modeling, it is recommended to also read
Section 9.1 and Section 9.2 that explain how search (and in particular parallel search)
works in Gecode.

Part C features a collection of example models for Gecode as further reading.

Overview material. The remaining chapters and sections provide an overview of the avail-
able functionality for modeling and solving:

■ Constraints on integer and Boolean variables are summarized in Section 4.4 and
Section 4.5 of Chapter 4 (Integer and Boolean variables and constraints).

■ Section 5.2 and Section 5.3 of Chapter 5 (Set variables and constraints) summarize
constraints on set variables.

■ Section 6.3 and Section 6.4 of Chapter 6 (Float variables and constraints) summarize
constraints on float variables.

■ Chapter 7 (Modeling convenience: MiniModel) provides an overview of modeling con-
venience implemented by MiniModel.

■ The remaining sections of Chapter 8 (Branching) discuss more advanced topics for
branchings: local versus shared variable selection (Section 8.5), random selection
(Section 8.6), user-defined variable (Section 8.7)and value (Section 8.8)selection, tie-
breaking (Section 8.9), assigning variables (Section 8.13), and executing code between
branchers (Section 8.14).

■ Section 9.3 of Chapter 9 (Search) summarizes how to use search engines.

■ Chapter 10 (Gist) summarizes how to use Gist as a graphical and interactive search
tool for developing constraint models.

■ Chapter 11 (Script commandline driver) summarizes the commandline driver for Ge-
code models.

■ Chapter 12 (Groups and tracing) explains how to use groups for tracing constraint
propagation.

2 Getting started

This chapter provides a basic overview of how to program, compile, link, and execute a
constraint model in Gecode. The chapter restricts itself to the fundamental concepts available
in Gecode, the following chapter presents functionality that makes programming models
more comfortable.

Overview. Section 2.1 explains the basics of how a model is programmed in Gecode. This
is followed in Section 2.2 by a discussion of how search is used to find solutions of a model.
How a model is compiled, linked, and executed is explained for several different operating
systems in Section 2.3. Section 2.4 shows how Gist as a graphical and interactive search
tool can be used for developing constraint models. Search for a best solution of a model is
explained in Section 2.5.

The chapter also includes an explanation of how to obtain Gecode in Section 2.6 which
covers both installation of binary packages available for some platforms and compilation of
source packages. There is no need to say, that this section is very important reading!

2.1 A first Gecode model

Models in Gecode are implemented using spaces. A space is home to the variables, propagators

(implementations of constraints), branchers (implementations of branchings, describing the
search tree’s shape, also known as labelings), and – possibly – an order determining a best
solution during search.

Not surprisingly in an object-oriented language such as C++, an elegant approach to pro-
gramming a model is by inheritance: a model inherits from the class Space (implementing
spaces) and the subclass constructor implements the model. In addition to the constructor,
a model must implement a copy constructor and a copy function such that search for that
model works (to be discussed later).

Send More Money. The model we choose as an example is Send More Money: find distinct
digits for the letters S, E, N , D, M , O, R, and Y such that the well-formed equation (no
leading zeros) SEN D+MORE = MON EY holds.

The program (with some parts yet to be presented) is shown in Figure 2.1. Note that
clicking a blue line starting with ◮ jumps to the corresponding code. Clicking [DOWNLOAD]

in the upper right corner of the program provides access to the complete program text.

13

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html

SEND MORE MONEY ≡ [DOWNLOAD]

#include <gecode/int.hh>

#include <gecode/search.hh>

using namespace Gecode;

class SendMoreMoney : public Space {

protected:

IntVarArray l;

public:

SendMoreMoney(void) : l(*this, 8, 0, 9) {

IntVar s(l[0]), e(l[1]), n(l[2]), d(l[3]),

m(l[4]), o(l[5]), r(l[6]), y(l[7]);

◮ NO LEADING ZEROS

◮ ALL LETTERS DISTINCT

◮ LINEAR EQUATION

◮ POST BRANCHING

}

◮ SEARCH SUPPORT

◮ PRINT SOLUTION

};

◮MAIN FUNCTION

Figure 2.1: A Gecode model for Send More Money

14

https://www.gecode.org/doc/6.2.0/MPG/send-more-money.cpp

The program starts by including the relevant Gecode headers. To use integer vari-
ables and constraints, it includes <gecode/int.hh> and to access search engines it includes
<gecode/search.hh>. All Gecode functionality is in the scope of the namespace Gecode,
for convenience the program makes all functionality of the Gecode namespace visible by
using namespace Gecode.

As discussed, the model is implemented as the class SendMoreMoney inheriting from the
class Space. It declares an array l of integer variables and initializes this array to have 8

newly created integer variables as elements, where each variable in the array can take values
from 0 to 9. Note that the constructor for the variable array l takes the current space (that is,

*this) as first argument. This is very common: any function that depends on a space takes
the current space as argument (called home space) Examples are constructors for variables
and variable arrays, functions that post constraints, and functions that post branchings.

To simplify the posting of constraints, the constructor defines a variable of type IntVar

for each letter. Note the difference between creating a new integer variable (as done with
creating the array of integer variables together with creating a new integer variable for each
array element) and referring to the same integer variable through different C++ variables of
type IntVar. This difference is discussed in more detail in Section 4.1.

Posting constraints. For each constraint there is a constraint post function that creates prop-

agators implementing the constraint (in the home space that is passed as argument).

Tip 2.1 (Space& versus Home). Actually, when you check the reference documentation, you
will see that these functions do not take an argument of type Space& but of type Home instead.
An object of type Home actually stores a reference to a space of type Space& (and a reference
of type Space& is automatically coerced to an object of type Home). Additionally, a Home

object might store other information that is useful for posting propagators and branchers.
However, this is nothing you need to be concerned with when modeling with Gecode. Just
think that Home reads as Space&. Using Home is important when programming propagators
and branchers, see Section 23.5. ◭

The first constraints to be posted enforce that the equation is well formed in that it has
no leading zeros:

NO LEADING ZEROS ≡
rel(*this, s, IRT_NQ, 0);

rel(*this, m, IRT_NQ, 0);

The family of rel post functions (functions with name rel overloaded with different
argument types) implements simple relation constraints such as equality, inequalities, and
disequality (see Section 4.4.3 and Simple relation constraints over integer variables). The
constant IRT_NQ requests a disequality constraint.

All letters are constrained to take pairwise distinct values by posting a distinct con-
straint (also known as alldifferent constraint):

15

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntRelInt.html

ALL LETTERS DISTINCT ≡
distinct(*this, l);

See Section 4.4.7 and Distinct constraints for more information on the distinct constraint.

The constraint that SEN D+MORE = MON EY is posted as a linear equation where the
individual letters are scaled to their appropriate decimal positions:

LINEAR EQUATION ≡
IntArgs c(4+4+5); IntVarArgs x(4+4+5);

c[0]=1000; c[1]=100; c[2]=10; c[3]=1;

x[0]=s; x[1]=e; x[2]=n; x[3]=d;

c[4]=1000; c[5]=100; c[6]=10; c[7]=1;

x[4]=m; x[5]=o; x[6]=r; x[7]=e;

c[8]=-10000; c[9]=-1000; c[10]=-100; c[11]=-10; c[12]=-1;

x[8]=m; x[9]=o; x[10]=n; x[11]=e; x[12]=y;

linear(*this, c, x, IRT_EQ, 0);

The linear constraint (which, again, exists in many overloaded variants) posts the linear
equation (as instructed by IRT_EQ)

|c|−1∑

i=0

ci · xi = 0

with coefficients c, integer variables x, and right-hand side constant 0 (see Section 4.4.6
and Linear constraints over integer variables). Here, |c| denotes the size (the number of el-
ements) of the array c (which can be computed by c.size()). Post functions are designed
to be as general as possible, hence the variant of linear that takes an array of coefficients
and an array of integer variables as arguments. Other variants of linear exist that do not
take coefficients (all coefficients are one) or accept an integer variable as the right-hand side
instead of an integer constant.

Note that the linear equation could have been expressed simpler by using standard ini-
tializer lists as in:

IntArgs c({ 1000, 100, 10, 1,

1000, 100, 10, 1,

-10000, -1000, -100, -10, -1});

IntVarArgs x({ s, e, n, d,

m, o, r, e,

m, o, n, e, y});

Section 3.1 demonstrates additional support for posting linear expressions constructed
from the usual arithmetic operators such as +, -, and *.

16

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntDistinct.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntLI.html

Posting branchings. Branchings determine the shape of the search tree. Common branch-
ings take a variable array of the variables to be assigned values during search, a variable
selection strategy, and a value selection strategy.

Here, we select the variable with a smallest domain size first (INT_VAR_SIZE_MIN()) and
assign the smallest value of the selected variable first (INT_VAL_MIN()):

POST BRANCHING ≡
branch(*this, l, INT_VAR_SIZE_MIN(), INT_VAL_MIN());

A branching is implemented by a brancher (like a constraint is implemented by a propa-
gator). A brancher creates a number of choices where each choice is defined by a number of
alternatives. For example, the brancher posted above will create as many choices as needed
to assign all variables in the integer variable array l. Each of the choices is based on the
variable selected by the brancher, say x , and the value selected by the brancher, say n. Then
the alternatives of a choice are x = n and x 6= n and are tried by search in that order.

A space can have several branchers, where the brancher that is posted first is also used
first for search. More information on branchings can be found in Chapter 8.

Search support. As mentioned before, a space must implement an additional copy() func-
tion that is capable of returning a fresh copy during search. Search in Gecode is based on
a hybrid of recomputation and cloning (see Chapter 9). Cloning during search relies on the
capability of a space to create a copy of itself.

To avoid confusion, by cloning we refer to the entire process of creating a clone of a
space. By copying, we refer to the creation of a copy of a particular object during cloning, for
example, a variable or a space.

SEARCH SUPPORT ≡
SendMoreMoney(SendMoreMoney& s) : Space(s) {

l.update(*this, s.l);

}

virtual Space* copy(void) {

return new SendMoreMoney(*this);

}

The actual copy() function is straightforward and uses an additional copy constructor.
The copy() function is virtual such that cloning (used on behalf of a search engine) can
create a copy of a space even though the space’s exact subclass is not known to cloning.

The obligation of the copy constructor is to invoke the copy constructor of the parent class,
and to copy all data structures that contain variables. For SendMoreMoney this amounts to
invoking Space(s) and updating the variable array. An exception of type SpaceNotCloned

is thrown if the copy constructor of the Space class is not invoked. Please keep in mind that
the copy constructor is run on the copy being created and is passed the space that needs to
be copied as argument. Hence, updating the variable array l in the copy copies the array
s.l from the space s being cloned (including all variables contained in the array). More on
updating variables and variable arrays can be found in Section 4.1.8.

17

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SpaceNotCloned.html

Printing solutions. Finally, the following prints the variable array l:

PRINT SOLUTION ≡
void print(void) const {

std::cout << l << std::endl;

}

In a real application, one would use the solution in some other parts of the program. The
point is that the space acts as a closure for the solution variables: the space maps member
names to objects. The space for an actual solution is typically different from the space created
initially. This is due to the fact that search for a solution returns a space that has been obtained
by constraint propagation and cloning. The space members that refer to the solution variables
(the member l in our example) provide the means to access a solution independent of a
particular space.

2.2 Searching for solutions

Let us assume that we want to search for all solutions and that search is controlled by the
main function of our program. Search consists of two parts:

■ create a model and a search engine for that model; and

■ use the search engine to find all solutions.

Hence, our main function looks as follows:

MAIN FUNCTION ≡
int main(int argc, char* argv[]) {

◮ CREATE MODEL AND SEARCH ENGINE

◮ SEARCH AND PRINT ALL SOLUTIONS

return 0;

}

Creating a model is almost obvious: create an object of the subclass of Space that im-
plements the model. Then, create a search engine (we will be using a search engine DFS for
depth-first search) and initialize it with a model. Search engines are generic with respect to
the type of model, implemented as a template in C++. Hence, we use a search engine of type
DFS<SendMoreMoney> for the model SendMoreMoney.

When the engine is initialized, it takes a clone of the model passed to it (m in our example).
As the engine takes a clone, several engines can be used without recreating the model. As we
are interested in a single engine, we immediately delete the model m after the search engine
has been initialized.

CREATE MODEL AND SEARCH ENGINE ≡
SendMoreMoney* m = new SendMoreMoney;

DFS<SendMoreMoney> e(m);

delete m;

18

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFS.html

Tip 2.2 (Propagation is explicit). A common misconception is that constraint propagation is
performed as soon as a space is created or as soon as a constraint is posted. Executing the
following code

SendMoreMoney* m = new SendMoreMoney;

m->print();

prints

{[1..9], [0..9], [0..9], [0..9], [1..9], [0..9], [0..9], [0..9]}

That is, only very simple and cheap propagation (nothing but modifying the domain of some
variables) has been performed.

Constraint propagation is explicit and must be requested by the status() member func-
tion of a space (the function also returns information about the result of propagation but this
is of no concern here). Requesting propagation by

(void) m->status();

m->print();

prints

{9, [4..7], [5..8], [2..8], 1, 0, [2..8], [2..8]}

◭

A search engine first performs constraint propagation as only spaces that have been prop-
agated can be cloned (so as to not duplicate propagation for the original and for the clone).

The DFS<SendMoreMoney> search engine has a simple interface: the engine features a
next() function that returns the next solution or NULL if no more solutions exist. As we are
interested in all solutions, a while loop iterates over all solutions that are found by the search
engine:

SEARCH AND PRINT ALL SOLUTIONS ≡
while (SendMoreMoney* s = e.next()) {

s->print(); delete s;

}

As you can see, a solution is nothing but a model again. A search engine ensures that
constraint propagation is performed and that all variables are assigned as described by the
branching(s) of the model passed to the search engine. When a search engine returns a
model, the responsibility to delete the solution model is with the client of the search engine.

It is straightforward to see how one would search for a single solution instead: replace
while by if. DFS is but one search engine and the behavior of a search engine can be config-
ured (for example: how cloning or recomputation is used; how search can be interrupted)
and it can be queried for statistical information. Search engines are discussed in more detail
in Chapter 9.

19

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFS.html

Tip 2.3 (Catching Gecode exceptions). Posting constraints, posting branchings, creating vari-
ables, and so on with Gecode might throw exceptions (for example, potential numerical over-
flow, illegal use of arguments). It is good practice to construct your programs right from the
start to catch all these exceptions.

That is, you should wrap the entire body of the main function but the return statement
into a try statement as follows:

try {

· · ·
} catch (Exception e) {

std::cerr << "Gecode exception: " << e.what() << std::endl;

return 1;

}

return 0;

Even though this is good practice, the example programs in this document do not follow this
advice, so as to keep the programs more readable. ◭

2.3 Compiling, linking, and executing

This section assumes that you have Gecode with the right version (this document uses
Gecode 6.2.0) already installed on your computer. If that is not the case, you should visit the
download section on Gecode’s website and read Section 2.6 on how to install and/or compile
Gecode.

Naturally, the following sections are platform-specific.

2.3.1 Microsoft Visual Studio

Gecode uses a technique called auto-linking with Visual Studio: by including Gecode header
files, the compiler/linker knows which library and DLL must be linked against. Hence, it is
sufficient to provide information to the compiler where the libraries reside.

The library and DLL names encode the Gecode version, the platform (x86, x64, or ia64),
and whether Gecode has been built as release (optimized) or debug. That has the advantage
that a single set of header files can be shared among different platforms and builds and the
appropriate libraries and DLLs are selected automatically.

In the following we assume that you are using one of the pre-compiled Windows packages
we provide (see Section 2.6.1). The packages define the environment variable %GECODEDIR%

where Gecode has been installed, and update the Path environment variable so that Gecode
DLLs are found for execution.

Commandline. In the following we assume that you use the Visual Studio Command
Prompt. When compiling and linking with cl, you have to take the following into account:

20

https://www.gecode.org/download.html

■ As Gecode uses exceptions, you have to add /EHsc as option on the commandline.

■ You have to link dynamically against multithreaded libraries. That is, you have to add
to the commandline either /MD (release build) or /MDd (debug build).

■ If you want a release build, you need to switch off assertions by defining /DNDEBUG.

■ You should instruct the compiler cl to search for the Gecode header files by adding
/I"%GECODEDIR%\include" as an option.

■ When using cl for linking, you should add at the very end of the commandline:
/link /LIBPATH:"%GECODEDIR%\lib".

■ By default, cl warns if this is used in an initializer list (Gecode uses this for the ini-
tialization of variables and variable arrays). You can suppress the warning by passing
/wd4355.

The full command for compiling send-more-money.cpp as a release build (including op-
timization with /Ox) is

cl /DNDEBUG /EHsc /MD /Ox /wd4355 -I"%GECODEDIR%\include" \
-c -Fosend-more-money.obj -Tpsend-more-money.cpp

where the \ at the end of a line means that the line actually continues on the next line. The
following command links the program:

cl /DNDEBUG /EHsc /MD /Ox /wd4355 -I"%GECODEDIR%\include" \
-Fesend-more-money.exe send-more-money.obj \
/link /LIBPATH:"%GECODEDIR%\lib"

Integrated development environment. When your Microsoft Visual Studio solution uses
Gecode, all necessary settings can be configured in the properties dialog of your solution. We
assume that Gecode is installed in the default location "<GECODEDIR>".1

■ You must use dynamic linking against a multithreaded library. That is, either /MD (re-
lease build) or /MDd (debug build). Depending on whether /MD or /MDd is used, release
or debug libraries and DLLs will be used automatically.

■ As Gecode uses exceptions, you have to enable /EHsc as option (this is true by default).

■ If you want a release build, you have to switch off assertions by defining /DNDEBUG (this
is true by default).

■ Configuration Properties, C++, General: set the "Additional Include Directories" to in-
clude "<GECODEDIR>\include" as the directory containing the Gecode header files.

1Unfortunately, the development environment does not resolve %GECODEDIR% automatically. So you have to
replace "<GECODEDIR>" in the following by the path where Gecode has been installed.

21

■ Configuration Properties, Linker, General: set the "Additional Library Directories" to
"<GECODEDIR>\lib" as the path containing the libraries.

Tip 2.4 (Cygwin with Microsoft Visual Studio). A setup that works well for us is to install
Cygwin and Microsoft Visual Studio (Microsoft distributes a free Community Edition).

The easiest way to use the Microsoft Visual Studio C++ compiler (cl) from Cygwin is to
add a line that loads the file vcvarsall.bat to the Cygwin.bat file that starts Cygwin. The
file vcvarsall.bat comes with Microsoft Visual Studio (for example, it is used to start the
Visual Studio Command Prompt). On my machine using the Visual Studio 2017 Community
Edition, the added line is

call "c:\Program Files (x86)\Microsoft Visual Studio\2017\Community\· · ·
VC\Auxiliary\Build\vcvarsall.bat" x86

for the 32-bit compiler version (x86) and

call "c:\Program Files (x86)\Microsoft Visual Studio\2017\Community\· · ·
VC\Auxiliary\Build\vcvarsall.bat" x64

for the 64-bit compiler version (x64), where · · · menas that line continues. The line needs
to be after the echo off command at the beginning of the file.

Or, you start the Visual Studio Command Prompt first, and then start the bash shell by
hand with

chdir c:\Cygwin\bin
bash --login -i

provided that Cygwin is installed in c:\Cygwin. ◭

2.3.2 Apple Mac OS

These compilation instructions assume that you use the Gecode binary package for Mac OS
(see Section 2.6.1). If you compiled and installed Gecode from the source package, please
read Section 2.3.3.

Commandline. When compiling your code using the gcc compiler (invoking it as g++),
the Gecode header files are found automatically, they are on the default header search
path. For linking against the Gecode framework, just add -F/Library/Frameworks and
-framework gecode as options. Note that only versions 4.2 or better of gcc are supported.

The following command compiles and links send-more-money.cpp as a release build
(including optimization):

g++ -std=c++11 -F/Library/Frameworks -O3 -c send-more-money.cpp

g++ -std=c++11 -F/Library/Frameworks -framework gecode \
-o send-more-money send-more-money.cpp

22

http://www.cygwin.com
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx

XCode. You can easily use Gecode within the XCode development environment by choosing
Add Â Existing Frameworks. . . from the context menu on your target. Then pick the gecode

framework from the list. You may have to edit your project settings to choose Mac OS 10.6

as the base SDK.

2.3.3 Linux and relatives

On Linux (and similar operating systems), Gecode is installed as a set of shared libraries.
The default installation directory is "/usr/local", which means that the header files can
be found in "/usr/local/include" and the libraries in "/usr/local/lib". Depending on
your Linux distribution, a binary package may have been installed under the "/usr" path
instead. If you installed Gecode from the source package, you may have chosen a different
installation directory. For now, assume that Gecode is installed in "<dir>".

Commandline. To compile your code using the gcc compiler, you have to add the option
-I<dir>/include so that gcc can find the header files. Note that only versions 4.2 or better
of gcc are supported.

For linking, the path has to be given as -L<dir>/lib, and in addition the individual
Gecode libraries must be linked. You always have to link against the support and kernel
libraries, using -lgecodesupport -lgecodekernel. For the remaining libraries, the rule of
thumb is that if you include a header file <gecode/FOO.hh>, then -lgecodeFOO must be given
as a linker option. For instance, if you use integer variables and include gecode/int.hh, you
have to link using -lgecodeint.

Some linkers require the list of libraries to be sorted such that libraries appear before all
libraries they depend on. In this case, use the following order (and omit libraries you don’t
use):

1. -lgecodeflatzinc

2. -lgecodedriver

3. -lgecodegist

4. -lgecodesearch,

5. -lgecodeminimodel

6. -lgecodeset

7. -lgecodefloat

8. -lgecodeint

9. -lgecodekernel

10. -lgecodesupport

23

A complete example for compiling and linking the file send-more-money.cpp is as fol-
lows.

g++ -I<dir>/include -c send-more-money.cpp

g++ -o send-more-money -L<dir>/lib send-more-money.o \
-lgecodesearch -lgecodeint -lgecodekernel -lgecodesupport

The \ at the end of a line means that the line actually continues on the next line.

In order to run programs that are linked against Gecode, the Gecode libraries must be
found on the library path. They either have to be installed in one of the default locations
(such as /usr/lib), or the environment variable LD_LIBRARY_PATH has to be set to include
<dir>/lib.

Eclipse development environment. If you use the Eclipse IDE with the CDT (C/C++ devel-
opment tools), you have to configure the paths to the Gecode header files and libraries.

In the Project menu, select the Properties dialog. Under GCC C++ Compiler, add
<dir>/include to the Directories. Under GCC C++ Linker, add <dir>/lib to the Library search

path, and the Gecode libraries you have to link against to the Libraries field.

In order to run programs that link against Gecode from within the Eclipse CDT, select
Open Run Dialog from the Run menu. Either add a new launch configuration, or modify
your existing launch configuration. In the Environment tab, add the environment variable
LD_LIBRARY_PATH=<dir>/lib.

Tip 2.5 (Eclipse on Windows and Mac OS). If you use Eclipse on Windows or Mac OS, the
procedure should be similar, except that you do not have to add the environment variable
to the launch configuration, and on Windows you do not need to specify the libraries to link
against. ◭

2.4 Using Gist

When developing a constraint model, the usual outcome of a first modeling attempt is that
the model has no solutions or searching for a solution takes too much time to be feasible.
What one really needs in these situations is additional insight as to: why does the model
have no solutions, why is propagation not sufficient, or why is the branching not appropriate
for the problem?

Gecode offers Gist as a graphical and interactive search tool with which you can explore
any part of the search tree of a model step by step or automatically and inspect the nodes of
the search tree.

Using Gist is absolutely straightforward. Figure 2.2 shows how Gist is used for the Send
More Money problem. As before, a space m for the model is created. This space is passed
to Gist, where Gist is instructed to work in dfs (depth-first search) mode. The call to
Gecode::dfs terminates only after Gist’s window is closed.

24

http://www.eclipse.org/
http://www.eclipse.org/cdt/

SEND MORE MONEY WITH GIST ≡ [DOWNLOAD]

#include <gecode/int.hh>

#include <gecode/gist.hh>

using namespace Gecode;

class SendMoreMoney : public Space {

· · ·
};

int main(int argc, char* argv[]) {

SendMoreMoney* m = new SendMoreMoney;

Gist::dfs(m);

delete m;

return 0;

}

Figure 2.2: Using Gist for Send More Money

Figure 2.3: Gist screen shots

25

https://www.gecode.org/doc/6.2.0/MPG/send-more-money-with-gist.cpp

SEND MORE MONEY WITH GIST INSPECTION ≡ [DOWNLOAD]

#include <gecode/int.hh>

#include <gecode/gist.hh>

· · ·
class SendMoreMoney : public Space {

· · ·
void print(std::ostream& os) const {

os << l << std::endl;

}

};

int main(int argc, char* argv[]) {

SendMoreMoney* m = new SendMoreMoney;

Gist::Print<SendMoreMoney> p("Print solution");

Gist::Options o;

o.inspect.click(&p);

Gist::dfs(m,o);

delete m;

return 0;

}

Figure 2.4: Using Gist for Send More Money with node inspection

Figure 2.3 shows two screenshots of Gist. The left-hand side shows how Gist starts (with
no node of the tree yet explored). The right-hand side shows the fully explored search tree
of Send More Money.

Gist is so intuitive that our recommendation is to just play a little with it. If you want to
know more about Gist, consult Chapter 10.

One additional feature of Gist that comes in handy when developing constraint models
is to inspect nodes of the search tree by double-clicking them. Figure 2.4 shows a modified
program that instructs Gist to use the print() function of SendMoreMoneywhenever a node is
double-clicked. Note that the print function has been changed to take a standard out-stream
to print on as argument.

Tip 2.6 (Gist scales). Do not be afraid to use Gist even on large problems. You can expect
that per Gigabyte of main memory, Gist can maintain around eight to ten million nodes. And
the runtime overhead is low (in our experiments, around 15% compared to the commandline
search engine using one thread). Just be sure to increase the display refresh rate for larger
trees (see Section 10.3.6). ◭

Section 3.3 explains how to use a commandline driver that supports to execute the same
constraint model with different search engines (for example, DFS or Gist) by passing options
on the commandline.

26

https://www.gecode.org/doc/6.2.0/MPG/send-more-money-with-gist-inspection.cpp

SEND MOST MONEY ≡ [DOWNLOAD]

· · ·
class SendMostMoney : public Space {

· · ·
◮ CONSTRAIN FUNCTION

};

◮MAIN FUNCTION

Figure 2.5: A Gecode model for Send Most Money finding a best solution

Tip 2.7 (Linking against Gist). As discussed in Section 2.3, when you use Gist on a platform
(Linux and relatives) that requires to state all libraries to link against, you also have to link
against the library for Gist (that is, for Linux and relatives by adding -lgecodegist to the
compiler options on the commandline). ◭

2.5 Best solution search

The last aspect to be discussed in this chapter is how to search for a best solution. We are
using a model for Send Most Money as an example: find distinct digits for the letters S, E, N ,
D, M , O, T , and Y such that the well-formed equation (no leading zeros) SEN D+MOST =

MON EY holds and that MON EY is maximal.

Searching for a best solution requires a best solution search engine and a function that
constrains a space to yield a better solution. A Gecode model for Send Most Money is shown
in Figure 2.5. The model differs from Send More Money only by using a different linear
equation and the additional constrain() function.

Assume a new solution, say b, is found during best solution search: on the current search
node s (a space) the member function constrain() is called and the so-far best solution
b is passed as argument (that is, s.constrain(b) is executed). The constrain() member
function must add a constraint to s such that s can only yield a better solution than b during
search. For Send Most Money, the constrain() member function is as follows:

27

https://www.gecode.org/doc/6.2.0/MPG/send-most-money.cpp

CONSTRAIN FUNCTION ≡
virtual void constrain(const Space& _b) {

const SendMostMoney& b = static_cast<const SendMostMoney&>(_b);

IntVar e(l[1]), n(l[2]), m(l[4]), o(l[5]), y(l[7]);

IntVar b_e(b.l[1]), b_n(b.l[2]), b_m(b.l[4]),

b_o(b.l[5]), b_y(b.l[7]);

int money = (10000*b_m.val()+1000*b_o.val()+100*b_n.val()+

10*b_e.val()+b_y.val());

IntArgs c(5); IntVarArgs x(5);

c[0]=10000; c[1]=1000; c[2]=100; c[3]=10; c[4]=1;

x[0]=m; x[1]=o; x[2]=n; x[3]=e; x[4]=y;

linear(*this, c, x, IRT_GR, money);

}

First, the integer value of money in the so-far best solution is computed from the values of
the variables. Note that the search engine does not know what model it searches a solution
for. The search engine passes a space _b that the constrain member function must cast into
a SendMostMoney space. Then the constraint is added that a better solution must yield more
money.

Using a best solution search engine. The main function now uses a branch-and-bound
search engine rather than a plain depth-first engine:

MAIN FUNCTION ≡
int main(int argc, char* argv[]) {

SendMostMoney* m = new SendMostMoney;

BAB<SendMostMoney> e(m);

· · ·
}

The loop that iterates over all solutions found by the branch-and-bound search engine
is exactly the same as before. That means that solutions are found and printed with an
increasing value of MON EY . The best solution is printed last.

The branch-and-bound engine BAB (see also Section 9.3) calls the constrain() mem-
ber function defined by the model. Note that every space defines a default constrain()
member function (to keep the design of models simple). If a model does not re-define the
constrain() member function (either directly or indirectly bu inheriting a constrain()

function), the default function will do nothing.

Using Gist for best solution search is straightforward. Instead of using Gist::dfs, one
uses Gist::bab to put Gist into branch-and-bound mode.

In Section 3.2 it is discussed how a simple cost() function can be used for best solution
search instead of a more general constrain() function.

28

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BAB.html

2.6 Obtaining Gecode

This section explains how to obtain Gecode. There are two basic options: install Gecode as
a binary package (explained in Section 2.6.1) or compile Gecode from its source (explained
in Section 2.6.2 and Section 2.6.3).

We recommend to use the pre-compiled binaries we provide, unless you like to tinker.
The advantage of the packages we provide is that required and additional software for those
platforms not having automatic package management (for example, Microsoft Windows) and
reference documentation in platform-specific format are already included.

2.6.1 Installing Gecode

Naturally the following sections are platform specific.

Installing Gecode on Windows

The pre-compiled Gecode binaries available for download require Microsoft Visual Studio.
Note that Visual Express Editions are available free of charge from Microsoft.

Pre-compiled binaries are available for several versions of Microsoft Visual C++. The binary
packages include everything needed (in particular, Qt for Gist).

Tip 2.8 (Compiling on Windows for x86 versus x64). The download section on Gecode’s
website offers Windows packages for two different platforms: one for x86 (32 bit) and one
for x64 (64 bit). When downloading and installing one of these packages you should make
sure that the package’s platform matches the compiler you are using (the Windows platform
does not matter). Some freely available Express Editions of Visual Studio only support x86.
◭

Installing Gecode on Apple Mac OS

The pre-compiled Gecode binaries for Mac OS require the XCode developer tools, version 3.1
or higher. XCode is available from the Mac OS install DVD, or from the Apple Mac Dev Center.

The binary packages include the Qt library (necessary for Gist).

After installing these prerequisites, simply download and open the Gecode disk image for
Mac OS, double-click the installer package, and follow the instructions.

Installing Gecode on Linux and relatives

The Debian and Ubuntu Linux distributions come with pre-compiled packages for Gecode.
These packages (and all the packages they depend on) can be installed with the usual package
management tools (for example, apt-get). Note that we do not maintain these packages,
and that the repositories do not always provide the most up-to-date version.

29

http://www.microsoft.com/Express
https://www.gecode.org/download.html
http://developer.apple.com/devcenter/mac/index.action

If the Linux distribution of your choice does not provide a binary package for Gecode, or
does not contain the latest version, please refer to the next section for instructions how to
compile Gecode from the source.

2.6.2 Compiling Gecode

Gecode can be built on all recent versions of Windows, Linux, and MacOS X. Porting to other
Unix flavors should be easy, if any change is necessary at all. The Gecode source code is
available from the download section of the Gecode web site.

Prerequisites. In order to compile Gecode, you need a standard Unix toolchain including
the following programs: a bash-compatible shell, GNU make, sed, cp, diff, tar, perl, grep.

These are available in all standard installations of Linux. On MacOS X, you need to install
the XCode developer tools, version 3.1 or higher. XCode is available from the Mac OS install
DVD, or from the Apple Mac Dev Center. For Windows, we require the Cygwin environment
that provides all necessary tools (see also Tip 2.4).

We currently support:

■ Microsoft Visual C++ compilers for Windows. The Microsoft Visual C++ Express Edition
is available free of charge from Microsoft.

■ GNU Compiler Collection (gcc) for Unix flavors such as Linux and MacOS X. The GNU
gcc is open source software and available from the GCC home page. It is included in
all Linux distributions and the Apple MacOS X developer tools.

Important: Gecode requires at least version 4.2 of gcc.

■ Intel C++ compiler, although we do not test the binaries produced by it.

Configuring the sources. After unpacking the sources, you need to run the configure

script in the toplevel directory. This script (which uses GNU autoconf) acquires information
about the system you try to compile Gecode on.

To setup Gecode for your particular system, you may need to add one or more of the
following options to configure:

■ To install Gecode somewhere else than the default /usr/local, please use the com-
mandline --prefix=[· · ·] switch.

■ You can enable and disable the individual modules Gecode consists of by using
--enable-[MODULE] and --disable-[MODULE].

You can get a list of all supported configuration options by calling configure with the
--help switch. Section 2.6.3 explains the configuration options in more detail, if the defaults
do not work for you.

30

https://www.gecode.org/download.html
http://developer.apple.com/devcenter/mac/index.action
http://www.cygwin.com/
http://www.microsoft.com/Express
http://gcc.gnu.org/

Compiling the sources. After successful configuration, simply invoking

make

in the toplevel Gecode directory will compile the whole library and the examples.

Installation. After a successful compilation, you can install the Gecode library and all
header files necessary for compiling against it by invoking

make install

in the build directory.

Tip 2.9 (Do not forget the library path). In order to run programs that are linked against
Gecode (such as the Gecode examples), the libraries must be found on the library path. See
Section 2.3.3 for details. ◭

Running the examples. After compiling the examples, they can be run directly from the
command line. For instance, try the Golomb Rulers Problem:

./examples/golomb

or (when running Windows):

./examples/golomb.exe

On some platforms, you may need to set environment variables like LD_LIBRARY_PATH

(Linux) or DYLD_LIBRARY_PATH (Mac OS) to the toplevel compile directory or the installation
directory (where the dynamic libraries are placed after compilation).

Compilation with Gist. The Gecode Interactive Search Tool (Gist) is a graphical search
engine for Gecode, built on top of the Qt GUI toolkit.

In order to compile Gecode with Gist, you need an installation of the Qt library including
the development header files. The Qt binary packages for Windows and Mac OS (available
from the Nokia Qt web pages) as well as the Qt packages in the usual Linux distributions
contain everything that is necessary. You can however also compile Qt from its sources,
available from Nokia under both free and commercial licenses.

Please note that if you develop closed-source software with Gecode and Gist, you

will have to either comply with the LGPL, or obtain a commercial license for Qt from

Nokia!

If you are developing on Windows using the Microsoft Visual C++ compiler, make sure to
compile the Qt library with the same compiler.

After installing Qt, make sure that the qmake tool is in your shell path. The Gecode
configure script will then detect the presence of Qt and automatically compile with support
for Gist.

31

http://qt.nokia.com/
http://qt.nokia.com/
http://qt.nokia.com/

Tip 2.10 (Compatible compilers and installations for Gecode and Qt). Please make sure that
the compiler with which Qt has been compiled is compatible with the compiler you intend
to use for Gecode (most likely, the requirement is that both packages must be compiled with
the very same compiler).

In particular, make sure that this is true when you install a Qt binary package. Watch out
for pre-installed Qt packages! For example: the Qt packages on Windows available through
Cygwin should be disabled or deinstalled when you want to use Qt and Gecode with the
Microsoft Visual C++ compiler. ◭

Compilation with support for trigonometric and transcendental float constraints. By
default, trigonometric and transcendental float constraints are disabled (see also Tip 6.1).
To enable them, Gecode must be configured to use the GMP (or MPIR instead) and MPFR
libraries. After having installed the libraries, the following commandline options instruct
configure to use these packages:

■ -with-gmp-include=· · · : the directory where the header files of GMP or MPIR are
installed.

■ -with-gmp-lib=· · · : the directory where the library files of GMP or MPIR are installed.

■ -with-mpfr-include=· · · : the directory where the header files of MPFR are installed.

■ -with-mpfr-lib=· · · : the directory where the library files of MPFR are installed.

2.6.3 Advanced configuration and compilation

If the instructions from the previous section do not work for your system, please have a look
at the following example configurations and advanced options to configure Gecode to your
needs.

Example configurations

To compile only the Gecode library without examples on a Unix machine, use

./configure --disable-examples

To compile on a Unix machine using a different than the default gcc compiler, and install
under /opt/gecode, use

./configure --prefix=/opt/gecode CC=gcc-4.2 CXX=g++-4.2

To compile a debug build on Unix, turning on all assertions and not inlining anything, use

./configure --enable-debug

32

http://gmplib.org/
http://www.mpir.org/
http://www.mpfr.org/

To compile on a system using a different than the default compiler, and a /bin/sh that is not
bash compatible (for example, on a Solaris machine), use

./configure --with-host-os=linux \
CC="gcc-4.2" CXX="g++-4.2" \
SHELL="/bin/bash"

make SHELL="/bin/bash"

You can compile as universal binary on a Mac OS machine. Configure with

./configure --with-architectures=i386,ppc

For building universal binaries on a PowerPC machine, you have to supply the path to the
universal SDK (which is the default on Intel based Macs):

./configure --with-architectures=i386,ppc \
--with-sdk=/Developer/SDKs/MacOSX10.4u.sdk

Disabling the default memory allocator. By default, Gecode uses a default memory allo-
cator based on the C standard library functions malloc() and free(). This default allocator
can be disabled by

./configure --disable-allocator

If the default allocator is disabled, one must supply the implementation of an allocator,
this is explained in Section 31.1.

Passing options for compilation. Additional options for compilation can be passed to the
compiler from the make commandline via the variable CXXUSR. For example, to pass to gcc

the additional option -mtune=i686 the following can be used:

make CXXUSR="-mtune=i686"

Compiling in a separate directory. The Gecode library can be built in a separate directory.
This is useful if you do not want to clutter the source tree with all the object files and libraries.

Configuring Gecode in a separate directory is easy. Assume that the sources can be found
in directory $GSOURCEDIR, change to the directory where you want to compile Gecode and
call

$GSOURCEDIR/configure [options]

This will generate all necessary files in the new build directory.

33

Dependency management. The dependencies between source files are not handled auto-
matically. If you are using a Gecode version from our subversion repository or if you modified
any of the source files, you will have to call make depend before compilation in order to de-
termine the source dependencies.

Dependency management is only needed for recompiling Gecode after changing some-
thing. In an unmodified version (or after a make clean) all files are compiled anyway.

Compiling for unsupported platforms. If you want to try compiling Gecode on a platform
that we do not mention, you can override the platform tests during configure. There are
two options to specify the type of platform:

■ --with-host-os=[linux|darwin|windows]

■ --with-compiler-vendor=[gnu|microsoft]

Using the first option, you can state that your platform should behave like Linux, Darwin
(which is actually BSD), or Windows. This affects mainly the filenames and the tools used to
generate shared and static libraries.

The second option says that your compiler can be used very much like the gnu compiler
gcc, or the Microsoft compiler cl. Please let us know of any successful attempt at compiling
Gecode on other platforms.

Useful Makefile targets

The main Gecode Makefile supports the following useful targets:

■ all compiles all parts of the library that were enabled during configure, and the
examples if enabled.

■ install installs library, headers and examples (if enabled) into the prefix given at
configure.

■ clean removes object files.

■ veryclean removes object files, libraries, and all files generated during make.

■ distclean removes object files, libraries, and all generated files.

■ depend generates dependencies between source files.

■ test compiles the test suite.

■ doc generates the reference documentation using doxygen.

■ installdoc installs the documentation.

■ distdoc creates tgz and zip archives of the documentation.

34

3 Getting comfortable

This chapter provides an overview of some functionality in Gecode that makes modeling and
execution of models more convenient.

Overview. Expressions constructed from standard arithmetic operators for posting linear
constraints are discussed in Section 3.1, cost functions for best solution search are discussed
in Section 3.2, and a script commandline driver that supports the most common options for
running models from the commandline is discussed in Section 3.3.

3.1 Posting linear constraints de-mystified

As mentioned in the previous chapter, Gecode comes with simple modeling support for post-
ing constraints defined by linear expressions and relations. The parts of the program for
Send More Money from Figure 2.1 that change are shown in Figure 3.1. In order to use the
modeling support, we have to include the MiniModel header.

The MiniModel module also supports Boolean expressions and relations, and much more,
see Chapter 7 for more information. The module in itself does not implement any constraints.
The function rel takes the description of the linear constraint, analyzes it, and posts a linear
constraint by using the same linear function we have been using in Section 2.1.

3.2 Using a cost function

Figure 3.2 uses the class IntMaximizeSpace for cost-based optimization for Send Most
Money. The class is also included in Gecode’s MiniModel module (see Section 7.3 and
Support for cost-based optimization).

The IntMaximizeSpace class is a sub-class of Space that defines a constrain() member
function based on the cost of a space. Our model must implement a virtual cost() function
that returns an integer variable defining the cost (the function must be const). In our exam-
ple, we extend the model to maintain the cost (the amount of money) in a dedicated variable
money (note that this variable must also be updated during cloning).

35

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelOptimize.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html

SEND MORE MONEY DE-MYSTIFIED ≡ [DOWNLOAD]

#include <gecode/int.hh>

#include <gecode/minimodel.hh>

#include <gecode/search.hh>

· · ·
class SendMoreMoney : public Space {

protected:

IntVarArray l;

public:

SendMoreMoney(void) : l(*this, 8, 0, 9) {

· · ·
rel(*this, 1000*s + 100*e + 10*n + d

+ 1000*m + 100*o + 10*r + e

== 10000*m + 1000*o + 100*n + 10*e + y);

· · ·
}

· · ·
};

· · ·

Figure 3.1: A Gecode model for Send More Money using modeling support

36

https://www.gecode.org/doc/6.2.0/MPG/send-more-money-de-mystified.cpp

SEND MOST MONEY WITH COST ≡ [DOWNLOAD]

· · ·
class SendMostMoney : public IntMaximizeSpace {

protected:

IntVarArray l;

IntVar money;

public:

SendMostMoney(void)

: l(*this, 8, 0, 9), money(*this,0,100000) {

· · ·
rel(*this, money == 10000*m + 1000*o + 100*n + 10*e + y);

· · ·
}

SendMostMoney(SendMostMoney& s) : IntMaximizeSpace(s) {

l.update(*this, s.l);

money.update(*this, s.money);

}

· · ·
◮ COST FUNCTION

};

· · ·

Figure 3.2: A Gecode model for Send Most Money using a cost function

37

https://www.gecode.org/doc/6.2.0/MPG/send-most-money-with-cost.cpp

The cost function then just returns the amount of money as follows:

COST FUNCTION ≡
virtual IntVar cost(void) const {

return money;

}

3.3 Using the script commandline driver

In order to experiment from the commandline with different model variants, different search
engines, and so on, it is convenient to have support for passing different option values on the
commandline that then can be used by a model. Gecode comes with a simple commandline
driver that defines Script as a subclass of Space for modeling and support for commandline
options.

Defining a script class. Suppose that we want to experiment with two different variants of
Send Most Money with a cost function: the first variant uses the model from Section 3.2 and
the second variant models the equation SEN D+MOST = MON EY by using carry variables.

Using carry variables with several linear equations instead of a single linear equation is
straightforward. A carry variable is an integer variable with value 0 or 1 and each column
in the equation SEN D + MOST = MON EY is modeled by a linear equation involving the
appropriate carry variable as follows:

USING CARRIES ≡
{

IntVar c0(*this, 0, 1), c1(*this, 0, 1),

c2(*this, 0, 1), c3(*this, 0, 1);

rel(*this, d + t == y + 10 * c0);

rel(*this, c0 + n + s == e + 10 * c1);

rel(*this, c1 + e + o == n + 10 * c2);

rel(*this, c2 + s + m == o + 10 * c3);

rel(*this, c3 == m);

}

Figure 3.3 shows a model for Send Most Money that uses the IntMaximizeScript class as
base class (see Script classes) rather than IntMaximizeSpace (likewise, the driver module
also offers a Script class to be used instead of Space). There are three main differences
between IntMaximizeScript and IntMaximizeSpace (Script and Space):

1. The constructor must accept a constant argument of type Options (actually, it must
accept a constant argument of the type that is specified for the run member function to
be explained below) that is used to pass values computed from options passed on the
commandline.

38

https://www.gecode.org/doc/6.2.0/reference/group__TaskDriverScript.html

SEND MOST MONEY WITH DRIVER ≡ [DOWNLOAD]

#include <gecode/driver.hh>

#include <gecode/int.hh>

#include <gecode/minimodel.hh>

using namespace Gecode;

class SendMostMoney : public IntMaximizeScript {

· · ·
public:

enum {

MODEL_SINGLE, MODEL_CARRY

};

SendMostMoney(const Options& opt)

: IntMaximizeScript(opt),

l(*this, 8, 0, 9), money(*this,0,100000) {

· · ·
switch (opt.model()) {

case MODEL_SINGLE:

· · ·
break;

case MODEL_CARRY:

◮ USING CARRIES

break;

}

· · ·
}

· · ·
virtual void print(std::ostream& os) const {

os << l << std::endl;

}

};

int main(int argc, char* argv[]) {

◮ COMMANDLINE OPTIONS

◮ RUN SCRIPT

return 0;

}

Figure 3.3: A Gecode model for Send Most Money using the script commandline driver

39

https://www.gecode.org/doc/6.2.0/MPG/send-most-money-with-driver.cpp

2. The constructor of a subclass of IntMaximizeScript or any other script class must call
the constructor IntMaximizeScript with an argument of type Options.

3. A subclass of IntMaximizeScript must define a virtual print function that accepts a
standard output stream as argument.

Note that one has to include <gecode/driver.hh> for a model that uses the script com-
mandline driver. However, neither <gecode/search.hh> nor <gecode/gist.hh> need to be
included as search is handled by the commandline driver.

Tip 3.1 (Linking against the driver). As discussed in Section 2.3, when you use the com-
mandline driver on a platform (Linux and relatives) that requires to state all libraries to link
against, you also have to link against the library for the commandline driver (that is, for Linux
and relatives by adding -lgecodedriver to the compiler options on the commandline). ◭

The class SendMostMoney defines an enumeration type with values MODEL_SINGLE (for
a model where a single linear equation is posted for SEN D + MOST = MON EY) and
MODEL_CARRY (for a model where several linear equations using carry variables are posted
for SEN D+MOST = MON EY). The options object opt provides a member function model

that returns an enumeration value and posts the constraints accordingly.

Defining commandline options. The mapping between strings passed on the command-
line and the values MODEL_SINGLE and MODEL_CARRY is established by configuring an object
of class Options accordingly as follows:

COMMANDLINE OPTIONS ≡
Options opt("SEND + MOST = MONEY");

opt.model(SendMostMoney::MODEL_SINGLE,

"single", "use single linear equation");

opt.model(SendMostMoney::MODEL_CARRY,

"carry", "use carry");

opt.model(SendMostMoney::MODEL_SINGLE);

opt.solutions(0);

opt.parse(argc,argv);

This code creates a new Option object opt where the string "SEND + MOST = MONEY"

serves as identification (such as when requesting to print help about the available comman-
dline options).

The first call to opt.model() defines that single is a legal value for the option switch
-model, that the string use single linear equation is the help text for the option
value, and that the corresponding value (that is, the value returned by opt.model()) is
SendMostMoney::MODEL_SINGLE. The last call to opt.model defines the default value.

As we are performing best solution search, we want to compute all possible solutions.
This is done by setting opt.solutions to 0 (the default value is 1 for searching for the first
solution). Note that this default value can be changed on the commandline by passing an

40

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Options.html

integer as value for the -solutions commandline option. Parsing the commandline by parse
now takes the configured values for the commandline options -model and -solutions into
account.

The Options class supports most options that are useful for propagation, search, and so
on similar to the model option. The full details are explained in Chapter 11.

The last piece of our model is calling the static run method of the script class by passing
as template arguments our script class type SendMostMoney, BAB as the search engine we
would like to use, and the type of options Options (as mentioned before, the constructor of
the script must accept a single argument of this type).

RUN SCRIPT ≡
Script::run<SendMostMoney,BAB,Options>(opt);

Running the script from the commandline. Suppose that we have compiled our script ex-
ample as the file send-most-money-with-driver.exe (for some platforms, just drop .exe).
Then

send-most-money-with-driver.exe

prints something along the lines

SEND + MOST = MONEY

{9, 3, 4, 2, 1, 0, 5, 7}

{9, 3, 4, 2, 1, 0, 6, 8}

{9, 4, 5, 2, 1, 0, 6, 8}

{9, 5, 6, 3, 1, 0, 4, 7}

{9, 6, 7, 2, 1, 0, 3, 5}

{9, 6, 7, 3, 1, 0, 5, 8}

{9, 7, 8, 2, 1, 0, 3, 5}

{9, 7, 8, 2, 1, 0, 4, 6}

Initial

propagators: 3

branchers: 1

Summary

runtime: 0.024 (24.000000 ms)

solutions: 8

propagations: 109

nodes: 33

failures: 9

restarts: 0

no-goods: 0

peak depth: 8

41

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Options.html

If we want to try the model with carry variables we can do that by running

send-most-money-with-driver.exe -model carry

We can also use Gist by giving a different mode of execution:

send-most-money-with-driver.exe -mode gist

As we call run with BAB as type of search, Gist will automatically start in branch-and-bound
mode. Other supported modes are solution (the default mode shown above), time for
printing average runtimes, and stat for just printing an execution statistics but no solutions.

Another important commandline option is -help which prints the options supported by
the script together with some configuration information. The full details are explained in
Chapter 11.

Tip 3.2 (Aborting execution). In the solution and stat modes, the driver aborts the search
gracefully if you send it a SIGINT signal, for example by pressing Ctrl-C on the command line.
So if your model runs a long time without returning solutions, you can press Ctrl-C and still
see the statistics that tell you how deep the search tree was up to that point, or how many
nodes the search has explored.

When you press Ctrl-C twice, the process is interrupted immediately. This can be useful
when debugging programs, e.g. if the process is stuck in an infinite loop. Alternatively, you
can make the driver ignore Ctrl-C altogether, so that it immediately interrupts your program,
using the commandline option -interrupt false. ◭

Tip 3.3 (How Gecode has been configured). Depending on the hardware and software plat-
form on which Gecode has been compiled, some features (such as Gist, thread support for
parallel search, trigonometric and transcendental constraints for floats) might not be avail-
able. For example, if Gist is not supported, the request for -mode gist will be silently ignored
and the normal mode (-mode solution) is used instead.

To find out which features are available, just invoke a program using the commandline
driver with the -help option. At the beginning of the printed text, you will find a short
configuration summary.

Note that all features are enabled for the precompiled binaries that are available from the
Gecode webpages. ◭

Tip 3.4 (Which version of Gecode are we using?). Some programs might have to deal with
incompatible changes between different versions of Gecode. The Gecode-defined macro
GECODE_VERSION_NUMBER can be used to find out which version of Gecode is used during
compilation. The macro’s value is defined as 100000× x + 100× y + z for Gecode version
x .y.z. ◭

42

4 Integer and Boolean
variables and constraints

This chapter gives an overview of integer and Boolean variables and the constraints avail-
able for them in Gecode. The chapter focuses on variables and constraints, a discussion of
branching for integer and Boolean variables can be found in Section 8.2.

The chapter does not make an attempt to duplicate the reference documentation (see
Using integer variables and constraints). It is concerned with the most important ideas and
principles underlying integer and Boolean variables and constraints. In particular, the chapter
provides entry points into the reference documentation and points to illustrating examples.

Overview. Section 4.1 details how integer and Boolean variables (and variables in general)
can be used for modeling. Variable arrays and argument arrays are discussed in Section 4.2.
Important aspects of how constraints are posted in Gecode are explained in Section 4.3.
These sections belong to the basic reading material of Part M.

The remaining sections Section 4.4 and Section 4.5 provide an overview of the constraints
that are available for integer and Boolean variables in Gecode.

Important. Do not forget to add

#include <gecode/int.hh>

to your program when you want to use integer or Boolean variables and constraints.

Convention. All program fragments and references to classes, namespaces, and other en-
tities assume that declarations and definitions from the Gecode namespace are visible: for
example, by adding

using namespace Gecode;

to your program.

The variable home refers to a space reference (of type Space&) and defines the home space
in which new variables, propagators, and branchers are posted. Often (as in Chapter 2 and
Chapter 3) home will be *this, referring to the current space.

43

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelInt.html

4.1 Integer and Boolean variables

Variables in Gecode are for modeling. They provide operations for creation, access, and
update during cloning. By design, the only way to modify (constrain) a variable is by post
functions for constraints and branchers.

Integer variables are instances of the class IntVarwhile Boolean variables are instances of
the class BoolVar. Integer variables are not related to Boolean variables. A Boolean variable
is not an integer variable with a domain that is included in {0, 1}. The only way to get an
integer variable that is equal to a Boolean variable is by posting a channeling constraint
between them (see Section 4.4.11).

Tip 4.1 (Do not use views for modeling). If you — after some browsing of the reference
documentation — should come across integer views such as IntView, you might notice that
views have a richer interface than integer variables. You might feel that this interface looks
too powerful to be ignored. Now, you really should put some trust in this document: views
are not for modeling.

The more powerful interface only works within propagators and branchers, see Part P
and Part B. ◭

4.1.1 Creating integer variables

A variable provides a read-only interface to a variable implementation where the same variable
implementation can be referred to by arbitrarily many variables.

New integer variables are created by using a constructor. A new integer variable x is
created by

IntVar x(home, -4, 20);

This declares a variable x of type IntVar in the space home, creates a new integer variable

implementation with domain {−4, . . . , 20}, and points x to the newly created integer variable
implementation.

The domain of a variable can also be specified by an integer set IntSet, for example by

IntVar x(home, IntSet(-4, 20));

which creates a new variable with domain {−4, . . . , 20}. An attempt to create an integer
variable with an empty domain throws an exception of type Int::VariableEmptyDomain.

Integer sets can be initialized by an array of integers, for example

int v[] = {1,2,3,4};

IntSet c(v, 4);

initializes c to have the four elements (as defined by the second argument 4 in the constructor
call) {1,2,3,4}, whereas

44

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntSet.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1VariableEmptyDomain.html

int r[][2] = {{1,2},{5,7}};

IntSet d(r, 2);

initializes d to have the elements {1,2,5,6,7} where r is an array of pairs expressing ranges
of values. The same can be expressed with initializer lists as in

IntSet c({1,2,3,4});

IntSet d({{1,2},{5,7}});

Please note the difference between IntSet({1,3}) and IntSet(1,3): the former has the
elements {1,3}. while the latter has the elements {1,2,3}.

The default or copy constructor of a variable does not create a new variable (that is, a
new variable implementation). Instead, the variable does not refer to any variable imple-
mentation (default constructor) or to the same variable implementation (copy constructor).
For example, in

IntVar x(home, 1, 4);

IntVar y(x);

both x and y refer to the same integer variable implementation. Using a default constructor
and an assignment operator is equivalent:

IntVar x(home, 1, 4);

IntVar y;

y=x;

4.1.2 Limits for integer values

The set of values for an integer variable is a subset of the values of the type int. The set
of values is symmetric: −Int::Limits::min = Int::Limits::max for the smallest possi-
ble integer variable value Int::Limits::min and the largest possible integer variable value
Int::Limits::max. Moreover, Int::Limits::max is strictly smaller than the largest possi-
ble integer value INT_MAX and Int::Limits::min is strictly larger than the smallest possible
integer value INT_MIN. These limits are defined in the namespace Int::Limits.

Any attempt to create a variable with values outside the defined limits throws an exception
of type Int::OutOfLimits. The same holds true for any attempt to use an integer value
outside the defined limits when posting a constraint or brancher.

4.1.3 Variable domains are never empty

An important invariant in Gecode is that the domain of a variable is never empty. When a
variable domain should become empty during propagation, the space is failed but the vari-
able’s domain is kept. In fact, this is the very reason why an attempt to create a variable with
an empty domain, for example by

IntVar x(home, 1, 0);

45

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Int_1_1Limits.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1OutOfLimits.html

throws an exception of type Int::VariableEmptyDomain.

Tip 4.2 (Small variable domains are beautiful). It is not an omission that an integer variable
has no constructor that creates a variable with the largest possible domain. One could argue
that a constructor like that would come in handy for creating temporary variables. After all,
one would not have to worry about the exact domain!

Sorry, but one has to worry. The apparent omission is deliberate to make you worry
indeed. For many propagators posted for a constraint a small domain is essential. For ex-
ample, when posting a linear constraint (as in Section 2.1), variable domains that are too
large might result in an exception of type Int::OutOfLimits as during propagation numeri-
cal overflow might occur (even if Gecode resorts to a number type supporting larger numbers
than int for propagating linear). Moreover, the runtime of other propagators (for example,
many domain propagators such as domain consistent distinct) depend critically on the size
of a domain. Again, Gecode tries to be clever in most of the cases. But, it is better to make it
a habit to think about initial variable domains carefully (please remember: better safe than
sorry).

For examples where small variable domains matter, see Tip 13.1 and Tip 16.2. ◭

4.1.4 Creating Boolean variables

The only difference between integer and Boolean variables is that Boolean variables can only
take the values 0 or 1. Any attempt to create a Boolean variable with values different from 0

or 1 throws an exception of type Int::NotZeroOne.

Convention. If Boolean variables are not explicitly mentioned in the following, the same
functionality for integer variables is also available for Boolean variables and has the same
behavior.

4.1.5 Variable access functions

Variables provide member functions for access, such as x.min() for the minimum value of
the current domain for an integer or Boolean variable x. In particular, the member function
x.val() accesses the integer value of an already assigned variable (if the variable is not yet
assigned, an exception of type Int::ValOfUnassignedVar is thrown). In addition, variables
can be printed by the standard output operator <<.

4.1.6 Iterating over integer variable domains

The entire domain of an integer variable can be accessed by a value iterator IntVarValues

or a range iterator IntVarRanges. For example, the loop

for (IntVarValues i(x); i(); ++i)

std::cout << i.val() << ’ ’;

46

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1VariableEmptyDomain.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1OutOfLimits.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1NotZeroOne.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ValOfUnassignedVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVarValues.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVarRanges.html

uses the value iterator i to print all values of the domain of the integer variable x. The
call operator i() tests whether there are more values to iterate for i, the prefix increment
operator ++i moves the iterator i to the next value, and i.val() returns the current value
of the iterator i. The values are iterated in strictly increasing order.

Similarly, the following loop

for (IntVarRanges i(x); i(); ++i)

std::cout << i.min() << ".." << i.max() << ’ ’;

uses the range iterator i to print all ranges of the integer variable x. Given a finite set of
integers d, the range sequence of d is the shortest (and unique) sequence of ranges (intervals)

〈[n0 .. m0]}, . . . , [nk .. mk]}〉

such that the sequence is ordered and non-adjacent (mi + 1 < ni+1 for 0 ≤ i < k). A range
iterator iterates over the ranges in the range sequence of a variable’s domain. Like a value
iterator, a range iterator implements the call operator i() to test whether there are more
ranges to iterate for i and the prefix increment operator ++i to move i to the next range.
As a range iterator i iterates over ranges, it implements the member functions i.min() and
i.max() for the minimal, respectively maximal, value of the current range.

Iteration of values and ranges for Boolean variables is not available (as it is not needed).

4.1.7 When to inspect a variable

Note that one must not change the domain of a variable (for example, by posting a constraint
on that variable) while an iterator for that variable is still in use. This is the same as for most
iterators, for example, for iterators in the C++ Standard Template Library (STL).

Otherwise, a variable can always be inspected: at any place (that is, not only in member
functions of the variable’s home) and at any time (regardless of the status of a space). If
the variable’s home is failed, the variable can still be inspected. However, it might be the
case that the variable domain has more values than expected. For example, after creating a
variable x with the singleton domain {0} and posting the constraint that x must be different
from 0 by (read Tip 2.2 about status()):

IntVar x(home, 0, 0);

rel(home, x, IRT_NQ, 0);

(void) home.status();

the space home is failed but the variable x still contains the value 0 in its domain.

4.1.8 Updating variables

As discussed in Section 2.1, a variable must be updated during cloning in the copy constructor
used by a space’s copy() member function. For example, a variable x is updated by

47

x.update(home, y);

where y is the variable from which x is to be updated. While x belongs to home, y belongs to
the space being cloned.

A space only needs to update the variables that are part of the solution, so that their
values can be accessed after a solution space has been found. Temporary variables do not
need to be copied.

Assume that we want to constrain the integer variable p to be the product of x, y, and z.
Gecode only offers multiplication of two variables, hence a temporary variable t is created
(assume also that we know that the values for t are between 0 and 1000):

IntVar t(home, 0, 1000);

mult(home, x, y, t);

mult(home, t, z, p);

Here, t does not require updating. The multiplication propagators created by mult take care
of updating the variable implementation of t.

4.2 Variable and argument arrays

Gecode has very few proper data structures. The proper data structures for integer and
Boolean variables are the variables themselves, integer sets, and arrays of variables. Proper
means that these data structures can be updated and hence be stored in a space.

Of course, data structures that themselves do not contain proper data structures can be
stored in a space, such as integers, pointers, and strings.

Gecode supports the programming of new proper data structures, this is discussed in
Section 31.3.

4.2.1 Integer and Boolean variable arrays

Integer variable arrays of type IntVarArray can be used like variables. For example,

IntVarArray x(home, 4, -10, 10);

creates a new integer variable array with four variables containing newly created variables
with domain {−10, . . . , 10}. Boolean variable arrays of type BoolVarArray are analogous.

Creation of a variable array allocates memory from the home space. The memory is freed
when the space is deleted (not when the destructor of the variable array is called). Variable
arrays can be created without creating new variables by just passing the size. That is,

IntVarArray x(home, 4);

for (int i=0; i<4; i++)

x[i] = IntVar(home, -10, 10);

48

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVarArray.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolVarArray.html

is equivalent to the previous example.

The other operations on variable arrays are as one would expect. For example, one can
check whether all variables are assigned using the assigned() function. More importantly,
variable arrays like variables have an update function and variable arrays must be updated
during cloning. In the following, we will refer to the size of a variable array x by |x| (which
can be computed by x.size()).

Matrix interface. Many models are naturally expressed by using matrices. Gecode offers
support that superimposes a matrix interface for modeling on an array, see Section 7.2.

4.2.2 Argument arrays

As mentioned above, the memory allocated for a variable array is freed only when its home
space is deleted. That makes variable arrays unsuited for temporary variable arrays, in par-
ticular for arrays that are built dynamically or used as arguments for post functions.

For this reason, Gecode provides argument arrays: IntVarArgs for integer variables,
BoolVarArgs for Boolean variables, IntArgs for integers, and IntSetArgs for integer sets
(see Argument arrays). Internally, they allocate space from the heap1 and the memory is
freed when their destructor is executed.

Argument arrays can be created empty:

IntVarArgs x;

with a certain size but without initializing the elements:

IntVarArgs x(5);

using standard initializer lists (assuming that a, b, c, and d are integer variables):

IntVarArgs x({a,b,c,d});

or fully initialized:

IntVarArgs x(home,5,0,10);

For a typical example, consider Section 2.1 where an integer argument array and an in-
teger variable argument array are used to pass coefficients and variables to the linear post
function.

1Actually, if an argument array has few fields it uses some space that is part of the object implementing the
array rather than allocating memory from the heap. Hence, small argument arrays reside entirely on the stack.

49

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntArgs.html

Dynamic argument arrays. In contrast to variable arrays, argument arrays can grow dy-
namically by adding elements or whole arrays using operator<<:

IntVarArgs x;

x << IntVar(home,0,10);

IntVarArgs y;

y << IntVar(home,10,20);

y << x;

linear(home, IntVarArgs()<<x[0]<<x[1], IRT_EQ, 0);

Furthermore, argument arrays can be concatenated using operator+:

IntVarArgs z = x+y;

Slices. It is sometimes necessary to post constraints on a subsequence of the variables in an
array. This is made possible by the slice(start,inc,n) method of variable and argument
arrays. The start parameter gives the starting index of the subsequence. The inc optional
parameter gives the increment, i.e., how to get from one element to the next (its default is 1).
The n parameter gives the maximal length of the resulting array (its default is −1, meaning
as long as possible).

The following examples should make this clearer. Assume that the integer variable argu-
ment array x is initialized as follows:

IntVarArgs x(home, 10, 0, 10);

Then the following calls of slice() return:

■ x.slice(5) returns an array with elements x[5],x[6],· · ·,x[9].

■ x.slice(5,1,3) returns x[5],x[6],x[7].

■ x.slice(5,-1) returns x[5],x[4],· · ·,x[0].

■ x.slice(3,3) returns x[3],x[6],x[9].

■ x.slice(8,-2) returns x[8],x[6],x[4],x[2],x[0].

■ x.slice(8,-2,3) returns x[8],x[6],x[4].

Tip 4.3 (Reversing argument arrays). The slice() method can be used to compute an array
with the elements of x in reverse order like this:

x.slice(x.size()-1,-1)

◭

50

Creating integer argument arrays. Integer argument arrays support standard initializer
lists, for example

IntArgs c({0,1,2,3});

creates an array with the four elements 0, 1, 2, and 3.

Integer argument arrays with simple sequences of integers can be generated using the
static method IntArgs::create(n,start,inc). The n parameter gives the length of the
generated array. The start parameter is the starting value, and inc determines the incre-
ment from one value to the next.

Here are a few examples:

■ IntArgs::create(5,0) creates an array with elements 0,1,2,3,4.

■ IntArgs::create(5,4,-1) creates 4,3,2,1,0.

■ IntArgs::create(3,2,0) creates 2,2,2.

■ IntArgs::create(6,2,2) creates 2,4,6,8,10,12.

Tip 4.4 (Dynamically constructing models). Sometimes the number of variables cannot be
determined easily, for example when it depends on data read from a file.

Suppose the following script with a variable array x:

DYNAMIC SCRIPT ≡
class Script : public Space {

IntVarArray x;

public:

Script(void) {

◮ READ DATA

· · ·
◮ INITIALIZE VARIABLE ARRAY

}

· · ·
}

It is easy to use a variable argument array _x for collecting variables as follows:

READ DATA ≡
IntVarArgs _x;

while (· · ·) {

· · ·
_x << IntVar(*this,· · ·);

}

and then initialize the variable array x using the argument array:

51

INITIALIZE VARIABLE ARRAY ≡
x = IntVarArray(*this,_x);

◭

In the following we do not distinguish between arrays and argument arrays unless oper-
ations require a certain type of array. In fact, all post functions for constraints and branchers
only accept variable argument arrays. A variable array is automatically casted to a variable
argument array if needed.

4.2.3 STL-style iterators

All arrays in Gecode (including variable arrays and argument arrays) also support STL-style
(Standard Template Library) iterators. For example, assume that a is an integer variable
argument array. Then

for (IntVarArgs::iterator i = a.begin(); i != a.end(); ++i) {

· · ·
}

creates an iterator i for the elements of a and iterates from the first to the last element in a.
More powerfully, iterators give you the ability to work with STL algorithms. Suppose that

f() is a function that takes an integer variable by reference such as in

void f(IntVar& x) { · · · }
and a is an integer variable argument array. Then

#include <algorithm>

std::for_each(a.begin(), a.end(), f);

applies the function f() to each integer variable in a.

4.3 Posting constraints

This section provides information about general principles for posting constraints over integer
and Boolean variables.

4.3.1 Post functions are clever

A constraint post function carefully analyzes its arguments. Based on this analysis, the con-
straint post function chooses the best possible propagator for the constraint.

For example, when posting a distinct constraint (see Section 4.4.7) for the variable
array x by

52

distinct(home, x);

where x has two elements, the much more efficient propagator for disequality x0 6= x1 is
created.

4.3.2 Everything is copied

When passing arguments to a post function, all data structures that are needed for creating
a propagator (or several propagators) implementing a constraint are copied. That is, none
of the data structures that are passed as arguments are needed after a constraint has been
posted.

4.3.3 Reified constraints

Many constraints also exist as reified variants: the validity of a constraint is reflected to a
Boolean control variable (reified constraints are also known as meta-constraints). In addition
to full reification also half reification [15] is supported for reified constraints. Whether a
reified version exists for a given constraint can be found in the reference documentation.
If a reified version does exist, the Boolean control variable (and possibly information about
the reification mode, to be discussed in Section 4.3.4) is passed as the last non-optional
argument.

For example, posting

rel(home, x, IRT_EQ, y, b);

for integer variables x and y and a Boolean control variable b creates a propagator for the
reified constraint b= 1⇔ x= y that propagates according to the following rules:

■ If b is assigned to 1, the constraint x= y is propagated.

■ If b is assigned to 0, the constraint x 6= y is propagated.

■ If the constraint x= y holds, then b= 1 is propagated.

■ If the constraint x 6= y holds, then b= 0 is propagated.

4.3.4 Half reification

Reification as discussed in the previous paragraph is also known as full reification as it
propagates a full equivalence between the constraint c and the constraint that a Boolean
control variable is equal to 1. Half reification propagates only one direction of the
equivalence [15]. Half reification can be used by passing an object of class Reify

that combines a Boolean control variable and a reification mode of type ReifyMode (see
Using integer variables and constraints).

For example, the half reified constraint b= 1⇒ x= y for integer variables x and y and a
Boolean control variable b can be posted by

53

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Reify.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelInt.html

Reify r(b, RM_IMP);

rel(home, x, IRT_EQ, y, r);

and is propagated as follows (RM_IMP suggests implication⇒):

■ If b is assigned to 1, the constraint x= y is propagated.

■ If the constraint x 6= y holds, then b= 0 is propagated.

Likewise, the half reified constraint b = 1 ⇐ x = y for integer variables x and y and a
Boolean control variable b can be posted by

Reify r(b, RM_PMI);

rel(home, x, IRT_EQ, y, r);

and is propagated as follows (RM_PMI suggests inverse implication⇐):

■ If b is assigned to 0, the constraint x 6= y is propagated.

■ If the constraint x= y holds, then b= 1 is propagated.

Full reification can be requested by the reification mode RM_EQV (for equivalence⇔) as
follows:

Reify r(b, RM_EQV);

rel(home, x, IRT_EQ, y, r);

As the constructor for Reify has RM_EQV as default value for its second argument, this can
be written shorter as:

Reify r(b);

rel(home, x, IRT_EQ, y, r);

or even shorter as:

rel(home, x, IRT_EQ, y, b);

For convenience, three functions eqv(), imp(), and pmi() exist that take a Boolean vari-
able and return a corresponding object of class Reify. For example, instead of writing:

Reify r(b, RM_IMP);

rel(home, x, IRT_EQ, y, r);

one can write more concisely:

rel(home, x, IRT_EQ, y, imp(b));

54

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Reify.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Reify.html

4.3.5 Selecting the propagation level

For many constraints, Gecode provides different propagators with different levels of propa-
gation. All constraint post functions take an optional argument of type IntPropLevel (see
Using integer variables and constraints) controlling which propagator is chosen for a partic-
ular constraint.

The different simple values for IntPropLevel have the following meaning:

■ IPL_VAL: perform value propagation. A typical example is naive distinct: wait until
a variable becomes assigned to a value n, then prune n from all other variables.

■ IPL_BND: perform bounds propagation or achieve bounds consistency. This cap-
tures both bounds consistency over the integers (for example, for distinct, see
Section 4.4.7) or bounds consistency over the real numbers (for example, for linear,
see Section 4.4.6). For more information on bounds consistency over integers or real
numbers, see [11].

Some propagators that are selected might not even achieve bounds consistency but
the idea is that the propagator performs propagation by reasoning on the bounds of
variable domains.

■ IPL_DOM: perform domain propagation or achieve domain consistency. Most propa-
gators selected by IPL_DOM achieve domain consistency but some just perform prop-
agation by taking entire variable domains for propagation into account (for example,
circuit, see Section 4.4.17).

■ IPL_DEF: choose default propagation level for this constraint.

Whether bounds or domain consistency is achieved and the default propagation level for
a constraint are mentioned in the reference documentation for each post function.

In addition to the basic propagation levels listed above, the following pre-defined values
exist:

■ IPL_BASIC: try to optimize for execution performance at the expense of performing
less propagation.

■ IPL_ADVANCED: try to optimize for more propagation at the expensive of being less
efficient.

The propagation levels can be specified as disjunctions, for example IPL_DEF|IPL_BASIC re-
quests basic default propagation which is equivalent to IPL_BASIC (the IPL_DEF can always
be omitted). Note that in particular the combination IPL_BASIC|IPL_ADVANCED is meaning-
ful requesting both basic and advanced propagation to be performed.

Some scheduling constraints, see Section 4.4.18, support basic and advanced propagation
levels.

55

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelInt.html

Tip 4.5 (Different propagation levels have different costs). Note that propagators of differ-
ent propagation level for the very same constraint can have vastly different cost. In general,
propagation for IPL_VAL will be cheapest, while propagation for IPL_DOM will be most ex-
pensive.

The reference documentation for a constraint lists whether a particular propagation level
might have prohibitive cost for a large number of variables or a large number of values in
the variables’ domains. For example, for the linear constraint with n variables and at most
d values for each variable, the complexity to perform bounds propagation (that is, IPL_BND)
is O(n) whereas the complexity for domain propagation (that is, IPL_DOM) is O(dn). ◭

4.3.6 Exceptions

Many post functions check their arguments for consistency before attempting to create a
propagator. For each post function, the reference documentation lists which exceptions might
be thrown.

4.3.7 Unsharing arguments

Some constraints can only deal with non-shared variable arrays: a variable is not allowed to
appear more than once in the array (more precisely: no unassigned variable implementation
appears more than once in the array). An attempt to post one of these constraints with shared
variable arrays will throw an exception of type Int::ArgumentSame.

To be able to post one of these constraints on shared variable arrays, Gecode provides a
function unshare (see Unsharing variables) that takes a variable argument array x as argu-
ment as in:

unshare(home, x);

It replaces each but the first occurrence of a variable y in x by a new variable z, and creates
a propagator y = z for each new variable z.

Note that unshare requires a variable argument array and not a variable array. If x is a
variable array, the following

IntVarArgs y(x);

creates a variable argument array y containing the same variables as x.

Tip 4.6 (Unsharing is expensive). It is important to keep in mind that unshare creates new
variables and propagators. This is also the reason why unsharing is not done implicitly by a
post function for a constraint that does not accept shared variable arrays.

56

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ArgumentSame.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntUnshare.html

Consider the following example using extensional constraints for a variable argument
array x possibly containing a variable more than once, where a and b are two different DFAs
(see Section 4.4.13 for extensional constraints). By

unshare(home, x);

extensional(home, x, a);

extensional(home, x, b);

multiple occurrences of the same variable in x are unshared once and the propagators for
extensional can work on the same non-shared array.

If unsharing were implicit, the following

extensional(home, x, a);

extensional(home, x, b);

would unshare x twice and create many more (useless) propagators and variables. Rather
than implicitly unsharing the same array over and over again (and hence creating variables
and propagators), unsharing is made explicit and should be done only once, if possible. ◭

4.4 Constraint overview

This section provides an overview of the constraints and their post functions available for
integer and Boolean variables.

4.4.1 Domain constraints

Domain constraints constrain integer variables and variable arrays to values from a given
domain. For example, by

dom(home, x, 2, 12);

the values of the variable x (or of all variables in a variable array x) are constrained to be
between 2 and 12. Domain constraints also take integers (assigning variables to the integer
value) and integer sets of type IntSet. For example,

IntArgs a({1,-3,5,-7})

IntSet d(a);

dom(home, x, d);

constrains the variable x (or, the variables in x) to take values from the set {−7,−3, 1, 5} (see
also GCCAT: domain, in, in_interval, in_intervals, in_set).

Note that there are no domain constraints for Boolean variables, please use relation con-
straints instead, see Section 4.4.4.

The domain of an integer or Boolean variable x can be constrained according to the do-
main of another variable d by

57

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntDomain.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntSet.html
http://www.emn.fr/z-info/sdemasse/gccat/Cdomain.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin_interval.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin_intervals.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin_set.html

IRT_EQ equality (=) IRT_NQ disequality (6=)
IRT_LE strictly less inequality (<) IRT_LQ less or equal inequality (≤)
IRT_GR strictly greater inequality (>) IRT_GQ greater or equal inequality (≥)

Figure 4.1: Integer relation types

dom(home, x, d);

Here, x and d can also be arrays of integer or Boolean variables. Note that this needs to
be used carefully, the domain to which the variable x is constrained depends on the domain
to which d is constrained. Only use this constraint post function if you are sure that all
propagation that could influence the domain of d has been performed!

Domain constraints for a single variable also support reification. For examples using do-
main constraints, see n-Knight’s tour (simple model) and Packing squares into a rectangle.

4.4.2 Membership constraints

Membership constraints constrain integer or Boolean variables to be included in an array of
integer or Boolean variables. That is, for an integer variable array x and an integer variable
y, the constraint

member(home, x, y);

forces that y is included in x:
y ∈ �x0, . . . ,x|x|−1

	

As mentioned, x and y can also be Boolean variables. Membership constraints also sup-
port reification.

4.4.3 Simple relation constraints over integer variables

Simple relation constraints over integer variables enforce relations between integer variables
and between integer variables and integer values. The relation depends on an integer relation
type IntRelType (see Simple relation constraints over integer variables). Figure 4.1 lists the
available integer relation types and their meaning.

Binary relation constraints. Assume that x and y are integer variables. Then

rel(home, x, IRT_LE, y);

constrains x to be strictly less than y. Similarly, by

rel(home, x, IRT_NQ, 4);

x is constrained to be different from 4. Both variants of rel also support reification (see also
GCCAT: eq, neq, lt, leq, gt, geq).

58

https://www.gecode.org/doc/6.2.0/reference/examples_2knights_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/perfect-square_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntMember.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntRelInt.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntRelInt.html
http://www.emn.fr/z-info/sdemasse/gccat/Ceq.html
http://www.emn.fr/z-info/sdemasse/gccat/Cneq.html
http://www.emn.fr/z-info/sdemasse/gccat/Clt.html
http://www.emn.fr/z-info/sdemasse/gccat/Cleq.html
http://www.emn.fr/z-info/sdemasse/gccat/Cgt.html
http://www.emn.fr/z-info/sdemasse/gccat/Cgeq.html

Constraints between variable arrays and a single variable. If x is an integer variable
array and y is an integer variable, then

rel(home, x, IRT_LQ, y);

constrains all variables in x to be less than or equal to y. Likewise,

rel(home, x, IRT_GR, 7);

constrains all variables in x to be larger than 7 (see also GCCAT: arith).

Constraints between array elements. If x is an integer variable array, then

rel(home, x, IRT_LQ);

constrains the variables in x to be sorted in increasing order as follows:

x0 ≤ x1 ≤ · · · ≤ x|x|−1

The integer relation type values for inequalities (that is, IRT_LE, IRT_GQ, and IRT_GR) are
analogous. For an example, see Chapter 13 and Finding optimal Golomb rulers.

By

rel(home, x, IRT_EQ);

all variables in the integer variable array x are constrained to be equal:

x0 = x1 = · · ·= x|x|−1

By

rel(home, x, IRT_NQ);

the variables in x are constrained to be not all equal:

¬ �x0 = x1 = · · ·= x|x|−1

�

For an example, see Schur’s lemma (see also GCCAT: all_equal, decreasing, increasing,
not_all_equal, strictly_decreasing, strictly_increasing).

Lexicographic constraints between variable arrays. If x and y are integer variable arrays
(where the sizes of x and y can be different),

rel(home, x, IRT_LE, y);

constrains x and y such that x is lexicographically strictly smaller than y (analogously for
the other inequality relations). For IRT_EQ and |x| = |y|, it is propagated that xi = yi for
0 ≤ i < |x|. For IRT_NQ and |x| = |y|, it is propagated that xi 6= yi for at least one i such that
0≤ i < |x|. If |x| 6= |y|, for IRT_EQ the space home is failed whereas for IRT_NQ the constraint
is ignored (see also GCCAT: lex_greater, lex_greatereq, lex_less, lex_lesseq).

See Balanced incomplete block design (BIBD) for an example (albeit over Boolean vari-
ables).

59

http://www.emn.fr/z-info/sdemasse/gccat/Carith.html
https://www.gecode.org/doc/6.2.0/reference/golomb-ruler_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/schurs-lemma_8cpp.html
http://www.emn.fr/z-info/sdemasse/gccat/Call_equal.html
http://www.emn.fr/z-info/sdemasse/gccat/Cdecreasing.html
http://www.emn.fr/z-info/sdemasse/gccat/Cincreasing.html
http://www.emn.fr/z-info/sdemasse/gccat/Cnot_all_equal.html
http://www.emn.fr/z-info/sdemasse/gccat/Cstrictly_decreasing.html
http://www.emn.fr/z-info/sdemasse/gccat/Cstrictly_increasing.html
http://www.emn.fr/z-info/sdemasse/gccat/Clex_greater.html
http://www.emn.fr/z-info/sdemasse/gccat/Clex_greatereq.html
http://www.emn.fr/z-info/sdemasse/gccat/Clex_less.html
http://www.emn.fr/z-info/sdemasse/gccat/Clex_lesseq.html
https://www.gecode.org/doc/6.2.0/reference/bibd_8cpp.html

BOT_AND conjunction (∧) BOT_OR disjunction (∨)
BOT_IMP implication (→) BOT_EQV equivalence (↔)
BOT_XOR exclusive or (=)

Figure 4.2: Boolean operation types

4.4.4 Simple relation constraints over Boolean variables

Simple relation constraints over Boolean variables include the same post functions as sim-
ple relation constraints over integer variables. In addition, simple relation constraints over
Boolean constraints provide support for the typical Boolean operations such as conjunction
and disjunction. Boolean operations are defined by values of the type BoolOpType (see
Simple relation constraints over integer variables). Figure 4.2 lists the available Boolean op-
eration types.

For example, for Boolean variables x, y, and z,

rel(home, x, BOT_AND, y, z);

posts the constraint x∧ y= z. Similarly,

rel(home, x, BOT_OR, y, 1);

posts that x∨ y must be true (see also GCCAT: and, equivalent, imply, or, xor).
Note that the integer value must be either zero or one, otherwise an exception of type

Int::NotZeroOne is thrown.
For an example, see Balanced incomplete block design (BIBD).

Tip 4.7 (Boolean negation). Boolean negation can be easily obtained by using IRT_NQ as
relation type. The constraint x= ¬y for Boolean variables x and y can be posted by

rel(home, x, IRT_NQ, y);

◭

Additional constraints are available for Boolean variable arrays. For a Boolean variable
array x and a Boolean variable y,

rel(home, BOT_OR, x, y)

posts the constraint
|x|−1∨

i=0

xi = y

Again, y can also be 0 or 1.
Note that Boolean implication is special in that it is not associative and Gecode follows

normal notational convention. Hence for a Boolean variable array x and a Boolean variable
y,

60

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntRelBool.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntRelInt.html
http://www.emn.fr/z-info/sdemasse/gccat/Cand.html
http://www.emn.fr/z-info/sdemasse/gccat/Cequivalent.html
http://www.emn.fr/z-info/sdemasse/gccat/Cimply.html
http://www.emn.fr/z-info/sdemasse/gccat/Cor.html
http://www.emn.fr/z-info/sdemasse/gccat/Cxor.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1NotZeroOne.html
https://www.gecode.org/doc/6.2.0/reference/bibd_8cpp.html

rel(home, BOT_IMP, x, y)

posts the constraint

x0→
�

x1→
�

. . .→ �x|x|−2→ x|x|−1

���

= y

Again, y can also be 0 or 1.

Clause constraint. In order to avoid many propagators for negation, the clause constraint
accepts both positive and negative Boolean variables. For Boolean variable arrays x and y

and a Boolean variable z (again, z can also be 0 or 1)

clause(home, BOT_AND, x, y, z);

posts the constraint
|x|−1∧

i=0

xi ∧
|y|−1∧

i=0

¬yi = z

(see also GCCAT: clause_and, clause_or, nand, nor).

Note that only BOT_AND and BOT_OR as Boolean operation types are supported, other
Boolean operations types throw an exception of type Int::IllegalOperation.

For an example, see CNF SAT solver.

If-then-else constraint. An if-then-else constraint can be posted by

ite(home, b, x, y, z);

where b is a Boolean variable and x, y, and z are integer or Boolean variables. In case b is
one, then x= z must hold, otherwise y= z must hold.

4.4.5 Arithmetic constraints

Arithmetic constraints exist only over integer variables. In addition to the constraints sum-
marized in Figure 4.3 (bnd abbreviates bounds consistency and dom abbreviates domain
consistency), the minimum and maximum constraints are also available for integer variable
arrays. That is, for an integer variable array x and an integer variable y

min(home, x, y);

constrains y to be the minimum of the variables in x (max is analogous) (see also GCCAT: min,
max).

Also constraints for the arguments of minimum and maximum are available. For an inte-
ger variable array x and an integer variable y

argmin(home, x, y);

61

http://www.emn.fr/z-info/sdemasse/gccat/Cclause_and.html
http://www.emn.fr/z-info/sdemasse/gccat/Cclause_or.html
http://www.emn.fr/z-info/sdemasse/gccat/Cnand.html
http://www.emn.fr/z-info/sdemasse/gccat/Cnor.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1IllegalOperation.html
https://www.gecode.org/doc/6.2.0/reference/sat_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntArith.html
http://www.emn.fr/z-info/sdemasse/gccat/Cmin.html
http://www.emn.fr/z-info/sdemasse/gccat/Cmax.html

post function constraint posted bnd dom GCCAT

min(home, x, y, z); min(x,y) = z ✓ ✓ minimum

max(home, x, y, z); max(x,y) = z ✓ ✓ maximum

abs(home, x, y); |x|= y ✓ ✓ abs_value

mult(home, x, y, z); x · y= z ✓ ✓

sqr(home, x, y); x2 = y ✓ ✓

sqrt(home, x, y); ⌊px⌋= y ✓ ✓

pow(home, x, n, y); xn = y ✓ ✓

nroot(home, x, n, y); ⌊ npx⌋= y ✓ ✓

div(home, x, y, z); x÷ y= z ✓

mod(home, x, y, z); x mod y= z ✓

divmod(home, x, y, d, m); x÷ y= d∧ x mod y= m ✓

Figure 4.3: Arithmetic constraints (x, y, z, d, and m are integer variables; n is an integer)

constrains y to be arg min(x), that is, the element in x at position y is equal to min(x) (see
also GCCAT: min_index). By default, argmin uses tie-breaking and constrains y to be the first
position of the minimum in x. By posting

argmin(home, x, y, false);

no tie-breaking is used. Of course, argmax is analogous. argmin and argmax without tie-
breaking are domain consistent (see also GCCAT: max_index).

4.4.6 Linear constraints

Linear constraints over integer variables and Linear constraints over Boolean variables pro-
vide essentially the same post functions for integer and Boolean constraints (to be discussed
below). The most general variant

linear(home, a, x, IRT_EQ, c);

posts the linear constraint
|x|−1∑

i=0

ai · xi = c

with integer coefficients a (of type IntArgs), integer variables x, and an integer constant
c. Note that a and x must have the same size. Of course, all other integer relation types
are supported, see Figure 4.1 for a table of integer relation types. Multiple occurrences of
the same variable in x are explicitly allowed and common terms a · y and b · y for the same
variable y are rewritten to (a+b)· y to increase propagation. For an example, see Section 2.1.

62

http://www.emn.fr/z-info/sdemasse/gccat/Cminimum.html
http://www.emn.fr/z-info/sdemasse/gccat/Cmaximum.html
http://www.emn.fr/z-info/sdemasse/gccat/Cabs_value.html
http://www.emn.fr/z-info/sdemasse/gccat/Cmin_index.html
http://www.emn.fr/z-info/sdemasse/gccat/Cmax_index.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntLI.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntLB.html

The array of coefficients can be omitted if all coefficients are one. That is,

linear(home, x, IRT_GR, c);

posts the linear constraint
|x|−1∑

i=0

xi > c

for a variable array x and an integer c.

Instead of an integer constant c as the right-hand side of the linear constraint, an integer
variable can be used as well. This is true for linear constraints over both integer and Boolean
variables: the right-hand side is always an integer value or an integer variable, even if the
left-hand side involves Boolean variables. For example, when assuming that x is an array of
Boolean variables,

linear(home, x, IRT_GQ, y);

imposes the constraint that there are at least y ones among the Boolean variables in x.

All variants of linear support reification and exist in variants that perform both bounds
propagation (the default) and domain propagation (see also GCCAT: scalar_product,
sum_ctr).

4.4.7 Distinct constraints

The distinct constraint (see Distinct constraints) enforces that integer variables take pair-
wise distinct values (also known as alldifferent constraint). Obviously, distinct does
not exist for Boolean variables.

Posting

distinct(home, x);

constrains all variables in x to be pairwise different.

Posting

distinct(home, c, x);

for an array of integer values c (of type IntArgs) and an array of integer variables x of same
size, constrains the variables in x such that

xi + ci 6= x j + c j for 0≤ i, j < |x| and i 6= j

Additionally, two variants of distinct are available where not all variables need to be
pairwise different. Posting

distinct(home, x, c);

63

http://www.emn.fr/z-info/sdemasse/gccat/Cscalar_product.html
http://www.emn.fr/z-info/sdemasse/gccat/Csum_ctr.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntDistinct.html

for an array of integer variables x and an integer value c constrains all variables in x to be
different or equal to c:

xi = c∨ x j = c∨ xi 6= x j for 0≤ i, j < |x| and i 6= j

For an array of Boolean variables b and an array of integer variables x of same size, posting

distinct(home, b, x);

constrains all variables in x to be different provided the respective Boolean variable is one:

bi = 0∨ b j = 0∨ xi 6= x j for 0≤ i, j < |x| and i 6= j

Gecode offers value (the default), bounds (based on [32]), and domain propaga-
tion (based on [46]) for distinct (see also GCCAT: alldifferent, alldifferent_cst,
alldifferent_except_0).

For examples, see in particular Chapter 13, n-Queens puzzle, and Crowded chessboard.

4.4.8 Counting constraints

Counting single values. Counting constraints count how often values are taken by an array
of integer variables. The simplest case is

count(home, x, y, IRT_EQ, z);

which constrains z to be equal (controlled by IRT_EQ, all integer relation types are supported,
see Figure 4.1) to the number of integer variables in x that are equal to y. Here y and z can
be integer variables as well as integer values (see also GCCAT: atleast, atmost, count,
exactly).

The count constraints also support counting how many integer variables are included in
an integer set. If y is an integer set, then

count(home, x, y, IRT_EQ, z);

constrains z to be equal to the number of integer variables in x that are included in y (see
also GCCAT: among, among_var, counts).

The following

count(home, x, c, IRT_EQ, z);

where x is an array of integer variables and c is an array of integers (of type IntArgs) with
same size and z is an integer variable or value, constrains z to how often xi = ci, that is

z= #{i ∈ {0, . . . , |x| − 1} | xi = ci}

Here, #s denotes the cardinality (number of elements) of a set s.

64

http://www.emn.fr/z-info/sdemasse/gccat/Calldifferent.html
http://www.emn.fr/z-info/sdemasse/gccat/Calldifferent_cst.html
http://www.emn.fr/z-info/sdemasse/gccat/Calldifferent_except_0.html
https://www.gecode.org/doc/6.2.0/reference/queens_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/crowded-chess_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntCount.html
http://www.emn.fr/z-info/sdemasse/gccat/Catleast.html
http://www.emn.fr/z-info/sdemasse/gccat/Catmost.html
http://www.emn.fr/z-info/sdemasse/gccat/Ccount.html
http://www.emn.fr/z-info/sdemasse/gccat/Cexactly.html
http://www.emn.fr/z-info/sdemasse/gccat/Camong.html
http://www.emn.fr/z-info/sdemasse/gccat/Camong_var.html
http://www.emn.fr/z-info/sdemasse/gccat/Ccounts.html

Counting multiple values. The count constraint also supports counting multiple values
(also known as gcc, or global cardinality constraint). Suppose that x and y (the counting

variables) are two integer variable arrays (not necessarily of the same size). Then

count(home, x, y);

posts the constraints that the number of variables in x that are equal to a value j is y j (for
0≤ j < |y|):

#{i ∈ {0, . . . , |x| − 1} | xi = j}= y j for 0≤ j < |y|
and that no other values are taken by x:

|x|−1⋃

i=0

{xi}= {0, . . . , |y| − 1}

Rather than using counting variables, one can also use an array of integer sets (IntSetArgs).
Then the number of values taken must be included in each individual set.

A more general variant also takes into account that the values under consideration are
non contiguous but are defined by an additional array of integer values. Suppose that x and
y (the counting variables) are two integer variable arrays (not necessarily of the same size)
and c is an array of integers with the same size as y.

Then,

count(home, x, y, c);

posts the constraints that the number of variables in x that are equal to the value c j is y j (for
0≤ j < |y|):

#{i ∈ {0, . . . , |x| − 1} | xi = c j}= y j for 0≤ j < |y|
and that no other values but those in c are taken by x:

|x|−1⋃

i=0

{xi}=
|c|−1⋃

i=0

{ci}

Again, y can also be an array of integer sets, where equality = is replaced by set inclusion ∈.
A slightly simpler variant replaces the cardinality variables by a single integer set. That

is, for an array of integer variables x, an integer set d, and an array of integer values c

count(home, x, d, c);

posts the constraints that the number of variables in x that are equal to the value c j is included
in d (for 0≤ j < |c|):

#{i ∈ {0, . . . , |x| − 1} | xi = c j} ∈ d for 0≤ j < |c|
and that no other values but those in c are taken by x:

|x|−1⋃

i=0

{xi}=
|c|−1⋃

i=0

{ci}

65

The last variant of count clarifies that count is a generalization of distinct (see
Section 4.4.7): distinct constrains a value to occur at most once, whereas count offers
more flexibility to constrain which values and how often these values can occur.

For example, if we know that the variables in the variable array x take values between 0

and n-1, then

count(home, x, IntSet(0,1), IntArgs::create(n,0,1));

is equivalent to

distinct(home, x);

Counting constraints only support integer variables, linear constraints can be used for
Boolean variables, see Section 4.4.6. For examples, see the case studies in Chapter 14 and
Chapter 16 or the examples Crowded chessboard and Magic sequence.

Note that Gecode implements the semantics of the original paper on the global cardinality
constraint by Régin [43], where no other values except those specified may occur. This differs
from the semantics in the Global Constraint Catalog [6], where values that are not mentioned
can occur arbitrarily often.

Gecode offers value (the default), bounds (based on [42]), and domain propagation
(based on [43]) for the global count constraint (see also GCCAT: global_cardinality).

4.4.9 Number of values constraints

Number of values constraints constrain how many values can be taken by an array of vari-
ables.

Assume that x is an array of integer variables and y is an integer variable. Then

nvalues(home, x, IRT_EQ, y);

constrains the number of distinct values in x to be equal to y, that is

#{x0, . . . ,x|x|−1}= y

Instead of IRT_EQ any other integer relation type can be used, see Figure 4.1 for an
overview. For example,

nvalues(home, x, IRT_LQ, y);

constrains the number of distinct values in x to be less than or equal to y. The array x can
also be an array of Boolean variables and y can be an integer value.

The constraint is implemented by the propagators introduced in [7] (see also GCCAT:
nvalue, nvalues). For an example using the nvalues constraint, see Dominating Queens.

66

https://www.gecode.org/doc/6.2.0/reference/crowded-chess_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/magic-sequence_8cpp.html
http://www.emn.fr/z-info/sdemasse/gccat/Cglobal_cardinality.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntNValues.html
http://www.emn.fr/z-info/sdemasse/gccat/Cnvalue.html
http://www.emn.fr/z-info/sdemasse/gccat/Cnvalues.html
https://www.gecode.org/doc/6.2.0/reference/dominating-queens_8cpp.html

4.4.10 Sequence constraints

Sequence constraints constrain how often values are taken by repeated subsequences of vari-
ables in an array of integer or Boolean variables. By

sequence(home, x, s, q, l, u);

where x is an array of integer or Boolean variables, s is an integer set, and q, l, and u are
integers, all subsequences of length q in the variable array x, that is, the sequences

〈x0, . . . ,xq+0−1〉
〈x1, . . . ,xq+1−1〉

· · ·
〈x|x|−q, . . . ,x|x|−1〉

are constrained such that at least l and at most u variables in each subsequence are assigned
to values from the integer set s.

In more mathematical notation, the constraint enforces

|x|−q∧

i=0

among(〈xi, . . . ,xi+q−1〉,s,l,u)

where the among constraint for the subsequence starting at position i is defined as

l ≤ #{ j ∈ {i, . . . , i + q− 1} | x j ∈ s} ≤ u

The constraint is implemented by the domain consistent propagator introduced in [67]
(see also GCCAT: among_seq). For an example, see Car sequencing.

4.4.11 Channel constraints

Channel constraints channel Boolean to integer variables and integer variables to integer
variables.

Channeling integer variables. For two integer variable arrays x and y of same size,

channel(home, x, y);

posts the constraint
xi = j ⇐⇒ y j = i for 0≤ i, j < |x|

(see also GCCAT: inverse). The channel constraint between two integer variable arrays also
supports integer offsets. For integers n and m,

channel(home, x, n, y, m);

posts the constraint

xi − n= j ⇐⇒ y j − m= i for 0≤ i, j < |x|
(see also GCCAT: inverse_offset). For examples, see n-Knight’s tour (simple model) and
Black hole patience.

67

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntSequence.html
http://www.emn.fr/z-info/sdemasse/gccat/Camong_seq.html
https://www.gecode.org/doc/6.2.0/reference/car-sequencing_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntChannel.html
http://www.emn.fr/z-info/sdemasse/gccat/Cinverse.html
http://www.emn.fr/z-info/sdemasse/gccat/Cinverse_offset.html
https://www.gecode.org/doc/6.2.0/reference/examples_2knights_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/black-hole_8cpp.html

Channeling between integer and Boolean variables. As integer and Boolean variables
are unrelated (see Section 4.1), the only way to express that a Boolean variable x is equal to
an integer variable y is by posting either

channel(home, x, y);

or

channel(home, y, x);

The channel constraint can also map an integer variable y to an array of Boolean variables
x. The constraint

xi = 1 ⇐⇒ y= i for 0≤ i < |x |
is posted by

channel(home, x, y);

(see also GCCAT: domain_constraint). Note that an optional offset argument is supported.
The constraint

xi = 1 ⇐⇒ y= i + n for 0≤ i < |x |
for an integer value n is posted by

channel(home, x, y, n);

For an example, see Pentominoes.

4.4.12 Element constraints

Element constraints generalize array access to integer variables. For example,

IntArgs c({1,4,9,16,25});

element(home, c, x, y);

constrains the integer variable y to be the element of the array c at index x (where the array
starts at index 0 as is common in C++).

The index variable x is always an integer variable, but the array c can also be an array
of integer variables, Boolean variables, or an array of integers between 0 and 1. The result
variable y must be a Boolean variable or an integer between 0 and 1 if the array is an array of
Boolean variables. It can be a Boolean variable if all integer values in the array are between
0 and 1.

Even if bounds propagation is requested for the element constraint, the propaga-
tors for element always perform domain reasoning on the index variable (see also GC-
CAT: elem, element). For examples, see the case study in Chapter 16 or the examples
Steel-mill slab design problem and Travelling salesman problem (TSP).

68

http://www.emn.fr/z-info/sdemasse/gccat/Cdomain_constraint.html
https://www.gecode.org/doc/6.2.0/reference/pentominoes_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntElement.html
http://www.emn.fr/z-info/sdemasse/gccat/Celem.html
http://www.emn.fr/z-info/sdemasse/gccat/Celement.html
https://www.gecode.org/doc/6.2.0/reference/steel-mill_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/tsp_8cpp.html

Tip 4.8 (Shared integer arrays). When checking the documentation for Element constraints
it might come at a surprise that element constraints do not take integer argument arrays of
type IntArgs but shared integer arrays of type IntSharedArray as argument. The reason is
that the very same shared integer array can be used for several element constraints.

Consider the following example

IntArgs c({1,4,9,16,25});

element(home, c, x, y);

element(home, c, a, b);

where x, y, a, and b are integer variables. Then, each time an element constraint is posted, a
new shared integer array is created implicitly (that is, in the example above, two arrays are
created). If the integer array is large or many element constraints are posted, it is beneficial
to explicitly create a shared integer array, such as in:

IntArgs c({1,4,9,16,25});

IntSharedArray cs(c);

element(home, cs, x, y);

element(home, cs, a, b);

Here only a single shared arrays is created and is used for both propagators created for posting
the element constraints.

What is also obvious from the first example is that integer argument arrays of type
IntArgs can automatically be coerced to integer shared arrays of type IntSharedArray.
Hence, if performance is not that important, you do not even need to know that shared
integer arrays exist.

For an example that uses shared integer arrays together with element constraints, see
Chapter 22 and Crossword puzzle. ◭

Tip 4.9 (Shared arrays also provide STL-style iterators). Shared arrays also support STL-
style (Standard Template Library) iterators, similar to other arrays provided by Gecode, see
Section 4.2.3. ◭

4.4.13 Extensional constraints

Extensional constraints (also known as user-defined or ad-hoc constraints) provide con-
straints that are specified in extension. The extension can be either defined by a DFA (deter-
ministic finite automaton) or a tuple set TupleSet. DFAs can also be specified conveniently
by regular expressions, see Section 7.4.

Deterministic finite automata. Suppose we want to plan the activities of an evening that
follows the Swedish drinking protocol: you may have as many drinks as you like, but now and
then you sing a song after which you have to have a drink. We want to constrain an array of
activities (Boolean or integer variables) such that the activities (drinking and singing) follow
the protocol.

69

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntElement.html
https://www.gecode.org/doc/6.2.0/reference/crossword_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntExt.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFA.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1TupleSet.html

0 0 1

1

0

0

Figure 4.4: A DFA for the Swedish drinking protocol

The DFA in Figure 4.4 specifies legal sequences of activities according to the Swedish
drinking protocol, where the state 0 is the start state and also the final state. The symbol 0
corresponds to drinking, whereas 1 corresponds to singing. That is, the sequence of activities
must be a string of 0s and 1s accepted by the DFA.

The DFA d is initialized by

DFA::Transition t[] = {{0, 0, 0}, {0, 1, 1},

{1, 0, 0}, {-1, 0, 0}};

int f[] = {0,-1};

DFA d(0, t, f);

The array of transitions t is initialized by triples of integers (of type DFA::Transition). A
triple {a, s, b} defines a transition from state a to state b with symbol s. States are denoted by
non-negative integers and symbols are integer values (as always, restricted to integer values
that can be taken on by an integer variable, see Section 4.1.2). A transition where a is −1
marks the last transition in a transition array. The array of final states f lists all final states of
the DFA, where the array is terminated by −1. The first argument of the constructor of the
DFA defines the start state.

Constraining an array of variables for four activities to the Swedish drinking protocol is
done by

BoolVarArray x(home, 4, 0, 1);

extensional(home, x, d);

Note that the same DFA would also work with an array of integer variables.
The propagator for the extensional constraint is domain consistent and is based on [41].
Examples that use regular expressions for defining DFAs can be found in Section 7.4.

Tuple sets (tables). Constraints can also be defined by a list of tuples, where each tuple
defines one solution of the extensional constraint. For example, the following defines the
Swedish drinking protocol for three activities by a list of tuples:

TupleSet t(3);

t.add(IntArgs({0,0,0}));

t.add(IntArgs({0,1,0}));

t.add(IntArgs({1,0,0}));

t.finalize();

70

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFA.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFA_1_1Transition.html

Constraining an array of variables for three activities to the Swedish drinking protocol is
done by

BoolVarArray x(home, 3, 0, 1);

extensional(home, x, t);

Note that before a tuple set can be used by a post function, it must be finalized as shown
above. If a not-yet finalized tuple set is used for posting a constraint, an exception of type
Int::NotYetFinalized is thrown.

The above example can be written more concisely as:

TupleSet t(3);

t.add({0,0,0}).add({0,1,0}).add({1,0,0})

.finalize();

A tuple set can also be used as a negative tuple set, expressing that the tuples in the table
are not allowed. For example, the following expresses that three activities do not follow the
Swedish drinking protocol:

BoolVarArray x(home, 3, 0, 1);

extensional(home, x, false, t);

Note that extensional(home, x, t) abbreviates extensional(home, x, true, t).
Extensional constraints using tuple sets also support reification. For example,

BoolVarArray x(home, 3, 0, 1);

BoolVar b(home, 0, 1)

extensional(home, x, t, b);

constrains b to one, if and only if the drinking activities comply with the Swedish drinking
protocol.

Tuple sets can also be initialized by specifying their arity and a DFA. Hence, if d refers to
the DFA for the Swedish drinking protocol, the above example can also be written as:

TupleSet t(3,d);

Tip 4.10 (When to use tuple sets rather than DFAs). If a DFA is small and the arity is small,
then it is typically more efficient to create a tuple set from the DFA and use it instead with
an extensional constraint. However, if the arity is large or the DFA encodes many different
tuples, it is typically more efficient to use the DFA directly. ◭

The propagators for the extensional constraint are domain consistent and are based
on [13, 68, 24]. (see also GCCAT: in_relation).

For several examples of extensional constraints using tuple sets, see Chapter 21,
Black hole patience, and Kakuro.

71

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1NotYetFinalized.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin_relation.html
https://www.gecode.org/doc/6.2.0/reference/black-hole_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/kakuro_8cpp.html

4.4.14 Sorted constraints

Sorted constraints relate an integer variable array to an array obtained by sorting the array.
For example,

sorted(home, x, y);

constrains y to be x (of same size) sorted in increasing order. The more general variant
features an additional integer variable array (again, of same size) z as in

sorted(home, x, y, z);

where z defines the sorting permutation, that is

xi = yzi
for 0≤ i < |x|

The propagator for sorted is bounds consistent and is based on [36] (see also GCCAT:
sort, sort_permutation).

4.4.15 Bin-packing constraints

Bin packing constraints constrain how items can be packed into bins.

Single-dimensional bin-packing constraints. The bin-packing constraint is posted as

binpacking(home, l, b, s);

where l is an array of integer variables (the load variables), b is an array of integer variables
(the bin variables), and s is an array of non-negative integers (the item sizes).

The load variables l determine the load l j of each bin j (0 ≤ j < |l|) and the bin vari-
ables b determine for each item i (0 ≤ i < |b|) into which bin bi it is packed. The size of an
item i (0 ≤ i < |b|) is defined by its item size si. Naturally, the number of bin variables and
item sizes must coincide (|b|= |s|).

The bin-packing constraint enforces that all items are packed into bins

bi ∈ {0, . . . , |l| − 1} for 0≤ i < |b|

and that the load of each bin corresponds to the items packed into it

l j =
∑

{i∈{0,...,|b|−1} | b j=i}
si for 0≤ j < |l|

The constraint is implemented by the propagator introduced in [58] (see also GCCAT:
bin_packing, bin_packing_capa). For an example using the bin-packing constraint and
CDBF (complete decreasing best fit) [18] as a specialized branching for bin-packing, see
Chapter 20 and Bin packing.

72

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntSorted.html
http://www.emn.fr/z-info/sdemasse/gccat/Csort.html
http://www.emn.fr/z-info/sdemasse/gccat/Csort_permutation.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBinPacking.html
http://www.emn.fr/z-info/sdemasse/gccat/Cbin_packing.html
http://www.emn.fr/z-info/sdemasse/gccat/Cbin_packing_capa.html
https://www.gecode.org/doc/6.2.0/reference/examples_2bin-packing_8cpp.html

Multi-dimensional bin-packing constraints. The multi-dimensional bin-packing con-
straint is posted as

binpacking(home, d, l, b, s, c);

where d is a positive integer (the dimension), l is an array of integer variables (the load

variables), b is an array of integer variables (the bin variables), s is an array of non-negative
integers (the item sizes), and c is an array of non-negative integers (the bin capacities).

In the following n refers to the number of items and m refers to the number of bins. The
bin variables b determine for each item i (0≤ i < n) into which bin bi it is packed. The load
variables l determine the load l j·d+k for each bin j (0≤ j < m) and dimension k (0≤ k < d).
The size of an item i (0 ≤ i < n) in dimension k (0 ≤ k < d) is defined by the item size
si·d+k. The capacity of all bins j (0 ≤ j < m) in dimension k (0 ≤ k < d) is defined by ck.
Naturally, the number of bin variables, load variables, item sizes, and capacities must satisfy
that |b|= n, |l|= m · d, |s|= n · d, and |c|= d.

The multi-dimensional bin-packing constraint enforces that all items are packed into bins

bi ∈ {0, . . . , m− 1} for 0≤ i < n

and that the load of each bin corresponds to the items packed into it for each dimension

l j·d+k =
∑

{i∈{0,...,n−1} | b j·d+k=i}
si·d+k for 0≤ j < m, 0≤ k < d

Furthermore, the load variables must satisfy the capacity constraints

l j·d+k ≤ ck for 0≤ j < m, 0≤ k < d

In addition to posting propagators, the post function

IntSet m = binpacking(home, d, l, b, s, c);

returns an integer set m of type IntSet. The set m contains a maximal number of conflicting
items that must be packed into pairwise distinct bins where the items are chosen to maximize
the conflict with other items. This information can be used for symmetry breaking.

Important. Posting the constraint (not propagating it) has exponential complexity in the
number of items. This is due to the use of the Bron-Kerbosch algorithm [9, 10] for finding
all sets of conflicting items.

The constraint is implemented by the decomposition introduced in [22] using a single-
dimensional bin-packing constraint for each dimension together with derived constraints cap-
turing capacity conflicts. For an example using the multi-dimensional bin-packing constraint
see Multi-dimensional bin packing.

73

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntSet.html
https://www.gecode.org/doc/6.2.0/reference/multi-bin-packing_8cpp.html

4.4.16 Geometrical packing constraints

Geometrical packing constraints constrain how rectangles can be packed such that no two
rectangles from a collection of rectangles overlap.

If x and y are integer variable arrays and w and h are integer arrays (where all arrays must
be of the same size), then

nooverlap(home, x, w, y, h);

propagates that the rectangles defined by coordinates 〈xi,yi〉, widths wi, and heights hi for
0≤ i < |x| do not overlap. That is, the following constraint is enforced (see also Section 7.1.2
for a picture):

�

xi + wi ≤ x j

�∨ �x j + w j ≤ xi

�∨ �yi + hi ≤ y j

�∨ �y j + h j ≤ yi

�

Note that the width or the height of a rectangle can be zero. In this case, the rectangle
does not occupy any space. However no other rectangle is allowed to be placed where the
zero-sized rectangle is placed.

Rectangles can also be modeled as optional through a Boolean variable mi for each rectan-
gle i. If the Boolean variable mi is 1 the rectangle is mandatory and considered by the packing
constraint, if it is 0, the rectangle is ignored.

With an array of Boolean variables m the constraint taking optional rectangles into account
is posted by

nooverlap(home, x, w, y, h, m);

The arrays defining the dimensions (that is, w and h for rectangles) can also be arrays
of integer variables, where its values are constrained to be non-negative. In this case, the
constraint post functions expects both a start and end coordinate. That is, by posting

nooverlap(home, x0, w, x1, y0, h, y1);

it is enforced that the rectangles defined by the start coordinate 〈x0i,y0i〉, the dimension
〈wi,hi〉, and the end coordinate 〈x1i,y1i〉 do not overlap. The end coordinates are not con-
strained to be the sum of the start coordinates and dimensions. That is, one has to explicitly
post the linear constraints such that

(x0i + wi = x1i)∧ (y0i + hi = y1i)

The constraints are implemented by a naive propagator (considering pairwise no-
overlap between rectangles including constructive disjunction, see also GCCAT: diffn),
this will change in the future. For an example using the no-overlap constraint, see
Packing squares into a rectangle.

4.4.17 Circuit and Hamiltonian path constraints

The circuit and path constraints (see Graph constraints) use values of variables in an inte-
ger variable array x as edges: if j ∈ xi, the corresponding graph contains the edge i → j for
0≤ i, j < |x|. Obviously, the graph has the nodes 0 to |x| − 1.

74

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntGeoPacking.html
http://www.emn.fr/z-info/sdemasse/gccat/Cdiffn.html
https://www.gecode.org/doc/6.2.0/reference/perfect-square_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntGraph.html

0 1

3 2

x0 ∈ {1, 2, 3},x1 ∈ {0, 2},x2 ∈ {2, 3},x3 ∈ {0, 2}

(a) Before propagation

0 1

3 2

x0 ∈ {1},x1 ∈ {2},x2 ∈ {3},x3 ∈ {0}

(b) After propagation

Figure 4.5: Representing edges and propagating circuit

Circuit constraints. Assume that x is an integer variable array (circuit does not support
Boolean variables). Then,

circuit(home, x);

constrains the values of x such that their corresponding edges form a Hamiltonian circuit
(see also GCCAT: circuit). For an example before and after propagation of circuit see
Figure 4.5. For an example, see Chapter 19 and n-Knights tour (model using circuit).

Common applications of circuit also require costs for the edges in the graph. Assume
that the cost for an edge i→ j from node i to node j is defined by the following matrix:

i→ j · → 0 · → 1 · → 2 · → 3

0→ · 0 3 5 7
1→ · 4 0 9 6
2→ · 2 1 0 5
3→ · −7 8 −2 0

Then, by

IntArgs c({ 0, 3, 5, 7,

4, 0, 9, 6,

2, 1, 0, 5,

-7, 8,-2, 0});

circuit(home, c, x, y, z);

the integer variables x are constrained to the values forming the circuit as above, while the
integer variables y define the cost of the edge for each node (these variables can be omitted),
and the integer variable z defines the total cost of the edges in the circuit. Note that the matrix
interface as described in Section 7.2 might come in handy for setting up the cost matrix.

Figure 4.6 shows a simple example for propagation circuit with cost where the cost
matrix from above is used. For an example, see Travelling salesman problem (TSP).

75

http://www.emn.fr/z-info/sdemasse/gccat/Ccircuit.html
https://www.gecode.org/doc/6.2.0/reference/examples_2knights_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/tsp_8cpp.html

0 1

3 2

x0 ∈ {1, 2, 3},x1 ∈ {0, 2},x2 ∈ {2, 3},x3 ∈ {0, 1, 2}
yi ∈ {−100, . . . , 100} (0≤ i < 4)

z ∈ {−100, . . . , 100},

(a) Before propagation

0 1

3 2

x0 ∈ {1, 2},x1 ∈ {0, 2},x2 ∈ {3},x3 ∈ {0, 1}
y0 ∈ {3, 5},y1 ∈ {4, 9},y2 ∈ {5},y3 ∈ {−7, 8}

z ∈ {5, . . . , 27},
(b) After propagation

Figure 4.6: Representing edges and propagating circuit with cost

76

Hamiltonian path constraints. The path constraint (see Graph constraints) is similar to
the circuit constraint and enforces that nodes in a graph from a Hamiltonian path. Assume
that x is an integer variable array (path does not support Boolean variables) and s (for start)
and e (for end) are integer variables. Then,

path(home, x, s, e);

constrains the values of x, s, and e such that their corresponding edges form a Hamiltonian
path that starts at node xs and ends at node xe (the value of the variable xe is always |x|).

As an example, assume that the integer variable array x has three elements (that is, |x|=
3) with values between 0 and 3. Then all solutions to

path(home, x, s, e);

are as follows:

x s e

〈1,2,3〉 0 2

〈1,3,0〉 2 1

〈2,0,3〉 1 2

〈2,3,1〉 0 1

〈3,0,1〉 2 0

〈3,2,0〉 1 0

The path constraint provides, similar to circuit, variants for costs for edges in a Hamil-
tonian path, see Graph constraints.

4.4.18 Scheduling constraints

This section provides an overview of scheduling constraints.

Unary resource constraints

A unary resource constraint models that a number of tasks to be executed on a single resource
do not overlap, where each task is defined by its start time (an integer variable), its duration
(an integer or integer variable), and possibly its end time (if the duration is a variable). Unary
resource constraints are also known as disjunctive scheduling constraints.

For example, assume that four tasks with durations 2, 7, 4, and 11 are to be executed
on the same resource where the start times are specified by an array of integer variables (of
course, with four variables). Then, posting

IntArgs d({2,7,4,11});

unary(home, s, d);

constrains the start times in s such that the execution of none of the tasks overlaps in time
(see Scheduling constraints) (see also GCCAT: disjunctive).

77

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntGraph.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntGraph.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntScheduling.html
http://www.emn.fr/z-info/sdemasse/gccat/Cdisjunctive.html

Tip 4.11 (Tasks with duration zero). Tasks with duration zero are still useful for modeling:
even though the do not take any time to be executed on the resource, they prevent that any
other task can run at the same time. ◭

Selecting the propagation level. All propagators implementing unary perform overload-
checking. The propagators can be posted offering basic or advanced propagation, where
basic propagation only is the default. Basic propagation is selected if the constraint is posted
with an additional integer propagation level argument (see Section 4.3.5) as

unary(home, s, d, IPL_BASIC);

Basic propagation performs time-tabling, see for example [2], in addition to overload check-
ing.

Advanced propagation is selected by

unary(home, s, d, IPL_ADVANCED);

and performs overload-checking, detectable precedences, not-first-not-last, and edge-finding,
following [71].

Basic and advanced propagation can be combined by

unary(home, s, d, IPL_BASIC_ADVANCED);

which is more convenient than the equivalent

unary(home, s, d,

static_cast<IntPropLevel>(IPL_BASIC | IPL_ADVANCED));

It performs time-tabling in addition to the advanced algorithms.

All algorithms require O(n log n) runtime for n tasks, however basic propagation is more
efficient than advanced propagation.

Optional tasks. A common variant for unary resource constraints is where tasks can be
optional: each task t has a Boolean variable b attached to it. If b = 1 then the task is
mandatory and is scheduled on the resource. If b = 0 then the task is excluded and is not
scheduled. Otherwise, the task is said to be optional. Assume that b refers to an array of
Boolean variables also of size 4, then

IntArgs d({2,7,4,11});

unary(home, s, d, b);

posts a propagator that constrains the start times s (of course, only if a task is mandatory) as
well the Boolean variables in b (if a task becomes excluded as otherwise no feasible schedule
would exist).

78

Tasks with flexible duration. The duration of a task can also be given as an integer variable
instead of a constant integer. In this case, we say that the tasks are flexible. In addition to the
flexible duration, the unary constraint also requires variables for the end time of each task.

Given variable arrays s, d, and e for the start times, durations, and end times, a unary
resource constraint is posted as

unary(home, s, d, e);

However, the additional constraint for each task i that s[i] + d[i] = e[i] is not enforced
automatically. Therefore, a model typically must contain additional constraints like

for (int i=0; i<s.size(); i++)

post(home, s[i]+d[i]==e[i]);

The unary post function also exists in a variant with flexible, optional tasks.

Cumulative scheduling constraints

Gecode provides two generalizations of the unary resource scheduling constraint. The first
one, called cumulative, models a resource where tasks can overlap. The resource has a
limited capacity, and each task requires a certain resource usage. At each point in time, the
sum of the resource usages of all tasks running at that point must not exceed the capacity.
The second generalization, called cumulatives, deals with several cumulative resources at
once.

Cumulative single-resource constraint. The single-resource constraint cumulative has
nearly the same interface as unary. The only difference is a parameter c specifying the
resource capacity, and an additional integer array u for the resource usage of each task.
Assuming that s and d give the start times and durations as before, the following models
a resource where two tasks can overlap, and the first three tasks require one unit of the
resource, while the last task requires two:

IntArgs u({1,1,1,2});

cumulative(home, 2, s, d, u);

The capacity can be an integer variable or a nonnegative integer. The resource usage must
be strictly positive. As for unary, there exist versions with optional, flexible, and flexible and
optional tasks.

The propagators implementing the cumulative constraint always perform overload
checking [70]. Basic propagation performs time-tabling, see for example [2], and can be se-
lected by giving IPL_BASIC as additional integer propagation level argument. The cost of ba-
sic propagation is O(n log n) for n tasks. Advanced propagation (selected by IPL_ADVANCED)
performs edge-finding [69] (see also GCCAT: cumulative). The cost of advanced propaga-
tion is O(kn log n) for n tasks where k is the number of different resource usage values. Basic
and advanced propagation can be combined as described in Section 4.4.18.

79

http://www.emn.fr/z-info/sdemasse/gccat/Ccumulative.html

Cumulative multi-resource constraint. Given a set of resources that have some specified
usage limit and a set of tasks that must be placed on these resources according to start-
times, durations, resource usage, and resource compatibility, the cumulatives constraint
(see Scheduling constraints) can be used for the placement of these tasks. The limit for the
resources can be either a maximum or a minimum, and the resource usage of a task can be
positive, negative, or zero. The limit is only valid over the intervals where there is at least
one task assigned on that particular resource.

Consider the following code.

cumulatives(home, resource, start, duration, end, height,

limit, atmost);

This code posts a constraint over a set of tasks T , where each task Ti is defined by
〈resourcei,starti,durationi,endi,heighti〉. The resource component indicates the po-
tential resources that the task can use; start, duration, and end indicate when the task can
occur; and finally the height component indicates the amount of resource the task uses (or
“provides” in the case of a negative value). The resource Ri is defined by the limit limiti

and the parameter atmost. The latter is common for all resources, and indicates whether the
limits are maximum limits (atmost is true) or minimum limits (atmost is false).

As for flexible tasks in Section 4.4.18, the cumulatives constraint does not enforce that
starti + durationi = endi. This additional constraint must be posted manually.

The parameters start and end are always integer variable arrays; resource, duration,
and height can be either integer variable arrays or integer arrays; and limit is always an
array of integers.

For an example using cumulatives see Packing squares into a rectangle, where the
cumulatives constraints is used to model packing a set of squares. For an insightful dis-
cussion of how to use cumulatives for modeling, see [5] (the propagator for cumulative is
implemented following this paper, see also GCCAT: cumulatives).

4.4.19 Value precedence constraints

Value precedence constraints over integer variables enforce that a value precedes another
value in an array of integer variables. By

precede(home, x, s, t);

where x is an array of integer variables and both s and t are integers, the following is en-
forced: if there exists j (0≤ j < |x|) such that x j = t, then there must exist i with i < j such
that xi = s. This is equivalent to:

1. x0 6= t, and

2. if x j = t then
∨ j−1

i=0
xi = s for 1≤ j < |x|.

A generalization is available for precedences between several integer values. By

80

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntScheduling.html
https://www.gecode.org/doc/6.2.0/reference/perfect-square_8cpp.html
http://www.emn.fr/z-info/sdemasse/gccat/Ccumulatives.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntPrecede.html

precede(home, x, c);

where x is an array of integer variables and c is an array of integers, it is enforced that ci

precedes ci+1 in x for 0≤ i < |c| − 1. That is

1. x0 6= ck+1 for 0≤ k < |c| − 1, and

2. if x j = ck+1 then
∨ j−1

i=0
xi = ck for 1≤ j < |x| and 0≤ k < |c| − 1.

The constraint is implemented by the domain consistent propagator introduced in [28]
(see also GCCAT: int_value_precede, int_value_precede_chain), the paper also explains
how to use the precede constraint for breaking value symmetries. For an example, see
Schur’s lemma.

4.5 Synchronized execution

Gecode offers support in Synchronized execution for executing a function (any function that
is compatible with the type std::function) when integer or Boolean variables become as-
signed.

The following code

wait(home, x, [] (Space& home) { · · ·; });

posts a propagator that waits until the integer or Boolean variable x (or, if x is an array
of variables: all variables in x) is assigned. If x becomes assigned, the function passed as
argument is executed with the current home space passed as argument. The type of the
function must be

std::function<void(Space& home)>

Tip 4.12 (Failing a space). If you want to fail a space home (for example when executing a
continuation function as discussed above), you can do that by

home.fail();

◭

The following code

when(home, x,

[] (Space& home) { · · ·; },

[] (Space& home) { · · ·; });

creates a propagator that will be run exactly once when the Boolean variable x becomes
assigned. If x becomes assigned to 1, the first function is executed. If x becomes assigned
to 0, the second function is executed. Both functions get the current home space of the
propagator passed as argument and must be of type

std::function<void(Space& home)>

The else-function is optional and can be omitted.

81

http://www.emn.fr/z-info/sdemasse/gccat/Cint_value_precede.html
http://www.emn.fr/z-info/sdemasse/gccat/Cint_value_precede_chain.html
https://www.gecode.org/doc/6.2.0/reference/schurs-lemma_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntExec.html

82

5 Set variables and
constraints

This chapter gives an overview over set variables and set constraints in Gecode and
serves as a starting point for using set variables. For the reference documentation, see
Using integer set variables and constraints.

Overview. Section 5.1 details how set variables can be used for modeling. The sections
Section 5.2 and Section 5.3 provide an overview of the constraints that are available for set
variables in Gecode.

Important. Do not forget to add

#include <gecode/set.hh>

to your program when you want to use set variables. Note that the same conventions hold
as in Chapter 4.

5.1 Set variables

Set variables in Gecode model sets of integers and are instances of the class SetVar.

Tip 5.1 (Still do not use views for modeling). Just as for integer variables, you should not
feel tempted to use views of set variables (such as SetView) for modeling. Views can only be
used for implementing propagators and branchers, see Part P and Part B. ◭

Representing set domains as intervals. The domain of a set variable is a set of sets of
integers (in contrast to a simple set of integers for an integer variable). For example, assume
that the domain of the set variable x is the set of subsets of {1, 2, 3}:

� {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} 	

Set variable domains can become very large – the set of subsets of {1, . . . , n} has 2n ele-
ments. Gecode (like most constraint solvers) therefore approximates set variable domains by
a set interval [l .. u] of a lower bound l and an upper bound u. The interval [l .. u] denotes
the set of sets {s | l ⊆ s ⊆ u}. The lower bound l (commonly referred to as greatest lower
bound or glb) contains all elements that are known to be included in the set, whereas the

83

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSet.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVar.html

upper bound u (commonly referred to as least upper bound or lub) contains the elements
that may be included in the set. As only the two interval bounds are stored, this represen-
tation is space-efficient. The domain of x from the above example can be represented as
[{} .. {1, 2, 3}].

Set intervals can only approximate set variable domains. For example, the domain
� {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} 	

cannot be captured exactly by an interval. The closest interval would be [{} .. {1, 2, 3}].
In order to get a closer approximation of set variable domains, Gecode additionally stores
cardinality bounds. We write # [i .. j] to express that the cardinality is at least i and at most
j. The set interval bounds [{} .. {1, 2, 3}] together with cardinality bounds # [1 .. 2] represent
the above example domain exactly.

Creating a set variable. New set variables are created using a constructor. A new set
variable x is created by

SetVar x(home, IntSet::empty, IntSet(1, 3), 1, 2);

This declares a variable x of type SetVar in the space home, creates a new set variable imple-
mentation with domain [{} .. {1, 2, 3}] , # [1 .. 2], and makes x refer to the newly created set
variable implementation.

There are several overloaded versions of the constructor, you can for example omit the
cardinality bounds if you do not want to restrict the cardinality. You find the full interface in
the reference documentation of the class SetVar. An attempt to create a set variable with an
empty domain throws an exception of type Set::VariableEmptyDomain.

As for integer and Boolean variables, the default and copy constructors do not create new
variable implementations. Instead, the variable does not refer to any variable implementa-
tion (default constructor) or to the same variable implementation (copy constructor). For
example in

SetVar x(home, IntSet::empty, IntSet(1, 3), 1, 2);

SetVar y(x);

SetVar z;

z=y;

the variables x, y, and z all refer to the same set variable implementation.

Limits for set elements. All set variable bounds are subsets of the universe, defined as

[Set :: Limits :: min .. Set :: Limits :: max]

The universe is symmetric: −Set::Limits::min = Set::Limits::max. Furthermore, the
cardinality of a set is limited to the unsigned integer interval

[0 .. Set :: Limits :: card]

84

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1VariableEmptyDomain.html

The limits have been chosen such that an integer variable can hold the cardinality. This
means that the maximal element of a set variable is Int :: Limits :: max/2−1. The limits are
defined in the namespace Set::Limits.

Any attempt to create a set variable with values outside the defined limits throws an
exception of type Set::OutOfLimits.

Tip 5.2 (Small variable domains are still beautiful). Just like integer variables (see Tip 4.2),
set variables do not have a constructor that creates a variable with the largest possible do-
main. And again, one has to worry and the omission is deliberate to make you worry. So
think about the initial domains carefully when modeling. ◭

Variable access functions. You can access the current domain of a set variable x using
member functions such as x.cardMax(), returning the upper bound of the cardinality, or
x.glbMin(), returning the smallest element of the lower bound. Furthermore, you can print
a set variable’s domain using the standard output operator <<.

Iterating variable domain interval bounds. For access to the interval bounds of a set vari-
able, Gecode provides three value iterators and corresponding range iterators. For example,
the following loop

for (SetVarGlbValues i(x); i(); ++i)

std::cout << i.val() << ’ ’;

uses the value iterator i to print all values of the greatest lower bound of the domain of x in
increasing order. If x is assigned, this of course corresponds to the value of x. Similarly, the
following loop

for (SetVarLubRanges i(x); i(); ++i)

std::cout << i.min() << ".." << i.max() << ’ ’;

uses the range iterator i to print all ranges of the least upper bound of the domain of x. The
third kind of iterator, SetVarUnknownValues or SetVarUnknownRanges, iterate the values
resp. ranges that are still unknown to be part or not part of the set, that is u\ l for the domain
[l .. u].

When to inspect a variable. The same restrictions hold as for integer variables (see
Section 4.1.7). The important restriction is that one must not change the domain of a vari-
able (for example, by posting a constraint on that variable) while an iterator for that variable
is being used.

Updating variables. Set variables behave exactly like integer variables during cloning of a
space. A set variable is updated by

x.update(home, y);

where y is the variable from which x is to be updated. While home is the space x belongs to,
y belongs to the space which is being cloned.

85

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Set_1_1Limits.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1OutOfLimits.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVarUnknownValues.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVarUnknownRanges.html

Variable and argument arrays. Set variable arrays can be allocated using the class
SetVarArray. The constructors of this class take the same arguments as the set variable
constructors, preceded by the size of the array. For example,

SetVarArray x(home, 4, IntSet::empty, IntSet(1, 3));

creates an array of four set variables, each with domain [{} .. {1, 2, 3}].
To pass temporary data structures as arguments, you can use the SetVarArgs class (see

Argument arrays). Some set constraints are defined in terms of arrays of sets of integers.
These can be passed using IntSetArgs (see Argument arrays). Set variable argument arrays
support the same operations introduced in Section 4.2.2.

5.2 Constraint overview

This section introduces the different groups of constraints over set variables available in
Gecode. The section serves only as an overview. For the details and the full list of avail-
able post functions, the section refers to the relevant reference documentation.

Reified constraints. Several set constraints also exist as a reified variant. Whether a reified
version exists for a given constraint can be found in the reference documentation. If a reified
version does exist, the reification information combining the Boolean control variable and an
optional reification mode is passed as the last non-optional argument, see Section 4.3.4.

Tip 5.3 (Reification by decomposition). If your model requires reification of a constraint
for which no reified version exists in the library, you can often decompose the reification.
For example, to reify the constraint x ∪ y = z to a control variable b, you can introduce an
auxiliary variable z0 and post the two constraints

rel(home, x, SOT_UNION, y, SRT_EQ, z0);

rel(home, z0, SRT_EQ, z, b);

◭

5.2.1 Domain constraints

Domain constraints restrict the domain of a set variable using a set constant (given as a single
integer, an interval of two integers or an IntSet), depending on set relation types of type
SetRelType (see Using integer set variables and constraints). Figure 5.1 lists the available
set relation types and their meaning. The relations SRT_LQ, SRT_LE, SRT_GQ, and SRT_GR

establish a total order based on the lexicographic order of the characteristic functions of the
two sets.

86

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVarArray.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetArgs.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetArgs.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetDom.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSet.html

SRT_EQ equality (=) SRT_NQ disequality (6=)
SRT_LQ lex. less than or equal SRT_LE lex. less than
SRT_GQ lex. greater than or equal SRT_GR lex. greater than
SRT_SUB subset (⊆) SRT_SUP superset (⊇)
SRT_DISJ disjointness (‖) SRT_CMPL complement (·)

Figure 5.1: Set relation types

For example, the constraints

dom(home, x, SRT_SUB, 1, 10);

dom(home, x, SRT_SUP, 1, 3);

dom(home, y, SRT_DISJ, IntSet(4, 6));

result in the set variable x being a subset of {1, . . . , 10} and a superset of {1, 2, 3}, while
4, 5, and 6 are not elements of the set y. The domain constraints for set variables support
reification. Both x and y can also be arrays of set variables where each array element is
constrained accordingly (but no reification is supported).

In addition to the above constraints,

cardinality(home, x, 3, 5);

restricts the cardinality of the set variable x to be between 3 and 5. x can also be an array of
set variables.

The domain of a set variable x can be constrained according to the domain of another
variable set d by

dom(home, x, d);

Here, x and d can also be arrays of set variables.

For examples using domain constraints, see Airline crew allocation, as well as the redun-
dant constraints in Golf tournament.

5.2.2 Relation constraints

Relation constraints enforce relations between set variables and between set and integer vari-
ables, depending on the set relation types introduced above.

For set variables x and y, the following constrains x to be a subset of y:

rel(home, x, SRT_SUB, y);

If x is a set variable and y is an integer variable, then

rel(home, x, SRT_SUP, y);

87

https://www.gecode.org/doc/6.2.0/reference/crew_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/golf_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetRel.html

SOT_UNION union (∪) SOT_INTER intersection (∩)
SOT_DUNION disjoint union (⊎) SOT_MINUS set minus (\)

Figure 5.2: Set operation types

constrains x to be a superset of the singleton set {y}, which means that y must be an element
of x.

The last form of set relation constraint uses an integer relation type (see Figure 4.1)
instead of a set relation type. This constraint restricts all elements of a set variable to be
in the given relation to the value of an integer variable. For example,

rel(home, x, IRT_GR, y);

constrains all elements of the set variable x to be strictly greater than the value of the integer
variable y (see also GCCAT: eq_set, in, in_set, not_in).

Gecode provides reified versions of all set relation constraints. For an example, see
Golf tournament and Chapter 18.

If-then-else constraint. An if-then-else constraint can be posted by

ite(home, b, x, y, z);

where b is a Boolean variable and x, y, and z are set variables. In case b is one, then x = z

must hold, otherwise y= z must hold.

5.2.3 Set operations

Set operation/relation constraints perform set operations according to the type shown in
Figure 5.2 and relate the result to a set variable. For example,

rel(home, x, SOT_UNION, y, SRT_EQ, z);

enforces the relation x∪ y= z for set variables x, y, and z. For an array of set variables x,

rel(home, SOT_UNION, x, y);

enforces the relation
|x|−1⋃

i=0

xi = y

Instead of set variables, the relation constraints also accept IntSet arguments as set con-
stants. There are no reified versions of the set operation constraints (you can decompose
using reified relation constraints on the result, see Tip 5.3).

Set operation constraints are used in most examples that contain set variables, such as
Airline crew allocation or Generating Hamming codes.

88

http://www.emn.fr/z-info/sdemasse/gccat/Ceq_set.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin.html
http://www.emn.fr/z-info/sdemasse/gccat/Cin_set.html
http://www.emn.fr/z-info/sdemasse/gccat/Cnot_in.html
https://www.gecode.org/doc/6.2.0/reference/golf_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetRelOp.html
https://www.gecode.org/doc/6.2.0/reference/crew_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/hamming_8cpp.html

5.2.4 Element constraints

Element constraints generalize array access to set variables. The simplest version of element
for set variables is stated as

element(home, x, y, z);

for an array of set variables or constants x, an integer variable y, and a set variable z. It
constrains z to be the element of array x at index y (where the index starts at 0).

A further generalization uses a set variable as the index, thus selecting several sets at
once. The result variable is constrained to be the union, disjoint union, or intersection of the
selected set variables, depending on the set operation type argument. For example,

element(home, SOT_UNION, x, y, z);

for set variables y and z and an array of set variables x enforces the following relation:

z=
⋃

i∈y
xi

Note that generalized element constraints follow the usual semantics of set operations
if the index variable is the empty set: an empty union is the empty set, whereas an empty
intersection is the full universe. Because of this semantics, the element constraint has an
optional set constant argument so that you can specify the universe (i.e., usually the full set
of elements your problem deals with) explicitly. For an example of a set element constraint,
see Golf tournament and Chapter 18.

5.2.5 Constraints connecting set and integer variables

Most models that involve set variables also involve integer variables. In addition to the
set relation constraints that accept integer variables (interpreting them as singleton sets),
Connection constraints to integer variables provide the necessary interface for models that
use both set variables and integer or Boolean variables.

The most obvious constraint connecting integer and set variables is the cardinality con-
straint:

cardinality(home, x, y);

It states that the integer variable y is equal to the cardinality of the set variable x.
Gecode provides constraints for the minimal and maximal elements of a set. The following

code

min(home, x, y);

constrains the integer variable y to be the minimum of the set x.
For an example of constraints connecting integer and set variables, see Steiner triples.

89

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetElement.html
https://www.gecode.org/doc/6.2.0/reference/golf_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetConnect.html
https://www.gecode.org/doc/6.2.0/reference/steiner_8cpp.html

Weighted sets. The weights constraint assigns a weight to each possible element of a set
variable x, and then constrains an integer variable y to be the sum of the weights of the
elements of x. The mapping is given using two integer arrays, e and w. For example,

IntArgs e({ 1, 3, 4, 5, 7, 9});

IntArgs w({-1, 4, 1, 1, 3, 3});

weights(home, e, w, x, y);

enforces that x is a subset of {1, 3, 4, 5, 7, 9} (the set of elements), and that y is the sum of
the weights of the elements in x, where the weight of the element 1 would be -1, the weight
of 3 would be 4 and so on. Assigning x to the set {3, 7, 9} would therefore result in y being
assigned to 4+ 3+ 3= 10 (see also GCCAT: sum_set).

5.2.6 Set channeling constraints

Channel constraints link arrays of set variables, as well as set variables with integer and
Boolean variables.

For an two arrays of set variables x and y,

channel(home, x, y);

posts the constraint

j ∈ xi⇔ i ∈ y j for 0≤ i < |x| and 0≤ j < |y|
For an array of integer variables x and an array of set variables y,

channel(home, x, y);

posts the constraint
xi = j⇔ i ∈ y j for 0≤ i, j < |x|

The channel between a set variable y and an array of Boolean variables x,

channel(home, x, y);

enforces the constraint
xi = 1⇔ i ∈ y for 0≤ i < |x|

An array of integer variables x can be channeled to a set variable y using

rel(home, SOT_UNION, x, y);

which constrains y to be the set {x0, . . . ,x|x|−1}. An alias for this constraint is defined in the
modeling convenience library, see Section 7.5 and Section 7.7.

A specialized version of the previous constraint is

channelSorted(home, x, y);

which constrains y to be the set {x0, . . . ,x|x|−1}, and the integer variables in x are sorted in
increasing order (xi < xi+1 for 0≤ i < |x|) (see also GCCAT: link_set_to_booleans).

90

http://www.emn.fr/z-info/sdemasse/gccat/Csum_set.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetChannel.html
http://www.emn.fr/z-info/sdemasse/gccat/Clink_set_to_booleans.html

5.2.7 Convexity constraints

Convexity constraints enforce that set variables are convex, which means that the elements
form an integer interval. For example, the set {1, 2, 3, 4, 5} is convex, while {1, 3, 4, 5} is
not, as it contains a hole. The convex hull of a set s is the smallest convex set containing s

({1, 2, 3, 4, 5} is the convex hull of {1, 3, 4, 5}).
The constraint

convex(home, x);

states that the set variable x must be convex, and

convex(home, x, y);

enforces that the set variable y is the convex hull of the set variable x.

5.2.8 Sequence constraints

Sequence constraints enforce an order among an array of set variables x. Posting the con-
straint

sequence(home, x);

results in the sets x being pairwise disjoint, and furthermore max(xi) < min(xi+1) for all
0≤ i < |x| − 1. Posting

sequence(home, x, y);

additionally constrains the set variable y to be the union of the x.
For an example of sequence constraints, see Steiner triples.

5.2.9 Value precedence constraints

Value precedence constraints over set variables enforce that a value precedes another value
in an array of set variables. By

precede(home, x, s, t);

where x is an array of set variables and both s and t are integers, the following is enforced:
if there exists j (0 ≤ j < |x|) such that s /∈ x j and t ∈ x j, then there must exist i with i < j

such that s ∈ xi and t /∈ xi.
A generalization is available for precedences between several integer values. By

precede(home, x, c);

where x is an array of set variables and c is an array of integers, it is enforced that ck precedes
ck+1 in x for 0≤ k < |c| − 1.

The constraint is implemented by the propagator introduced in [28] (see also GCCAT:
set_value_precede), the paper also explains how to use the precede constraint for breaking
value symmetries. For an example, see Golf tournament and Chapter 18.

91

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetConvex.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetSequence.html
https://www.gecode.org/doc/6.2.0/reference/steiner_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetPrecede.html
http://www.emn.fr/z-info/sdemasse/gccat/Cset_value_precede.html
https://www.gecode.org/doc/6.2.0/reference/golf_8cpp.html

5.3 Synchronized execution

Gecode offers support in Synchronized execution for executing a function when set variables
become assigned.

The code

wait(home, x, [] (Space &home) { · · ·; });

posts a propagator that waits until the set variable x (or, if x is an array of set variables:
all variables in x) is assigned. If x becomes assigned, the function passed as argument is
executed with the current home space passed as argument. The type of the function must be

std::function<void(Space& home)>

92

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetExec.html

6 Float variables and
constraints

This chapter gives an overview over float variables and float constraints in Gecode. Just
like Chapter 4 does for integer and Boolean variables, this chapter serves as a start-
ing point for using float variables. For the reference documentation, please consult
Using float variables and constraints.

Overview. Section 6.1 explains float values whereas Section 6.2 explains float variables.
The sections Section 6.3 and Section 6.4 provide an overview of the constraints that are
available for float variables in Gecode.

Important. Do not forget to add

#include <gecode/float.hh>

to your program when you want to use float variables. Note that the same conventions hold
as in Chapter 4.

Tip 6.1 (Transcendental and trigonometric functions and constraints). When compiling
Gecode, by default transcendental and trigonometric functions and constraints are disabled.
In order to enable them, you have to install additional third-party libraries and provide ad-
ditional options to the configuration of Gecode, see Section 2.6.2.

To find out whether the functions and constraints are enabled, consult Tip 3.3. ◭

6.1 Float values and numbers

A floating point value (short, float value, see FloatVal) is represented as a closed interval of
two floating point numbers (short, float number, see Float variables). That is, a float value is
a closed interval [a .. b] which includes all real numbers n ∈ R such that a ≤ n and n ≤ b.
The float number type FloatNum is defined as double.

The reason why a float value is not represented by a single floating point number is that
real numbers cannot be represented exactly and that operations on floating point numbers
perform rounding. All operations (see below) on float values try to be as accurate as possible
(so the interval [a .. b] for a float value is as small as possible) while being correct (no possible
real number is ever excluded due to rounding). The classical reference on interval arithmetic
is [39], for more information see also the Wikipedia article on interval arithmetic.

93

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloat.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVal.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatVars.html
http://en.wikipedia.org/wiki/Interval_arithmetic

A float value x represented by the interval [a .. b] provides many member functions such
as min() (returning a) and max() (returning b), see FloatVal. The float value x is called
tight if a equals b or if b is the smallest representable float number larger than a. If x is tight,
x.tight() returns true.

A float value can be initialized from a single float number such as in

FloatVal x(1.0);

or from two float numbers such as in

FloatVal x(0.9999,1.0001);

Float numbers (and other numbers) are automatically cast to float values if needed, for
example in

FloatVal x=1.0;

or

FloatVal x=1;

Predefined float values. The static member functions pi_half(), pi(), and pi_twice()

of FloatVal return float values for π2 , π, and 2π respectively.

Arithmetic operators. For float values, the standard arithmetic operators +, -, *, and / and
their assignment variants +=, -=, *=, and /= are defined with the obvious meaning.

Comparison operators. The usual float value comparisons ==, !=, <=, <, >, and >= are
provided with entailment semantics (or subsumption semantics).

For example, the comparison

x < y

returns true if and only if x.max()<y.min() returns true. That means, x<y returns false
if either x is larger or equal than y or it cannot yet be decided: both x and y still represent
values which are both smaller and greater or equal.

Functions on float values. Figure 6.1 lists the available functions on float values. The
functions marked as default are always supported, the others only if Gecode has been built
accordingly, see Tip 6.1.

6.2 Float variables

Float variables in Gecode model sets of real numbers and are instances of the class FloatVar.

Tip 6.2 (Still do not use views for modeling). Just as for integer variables, you should not
feel tempted to use views of float variables (such as FloatView) for modeling. Views can
only be used for implementing propagators and branchers, see Part P and Part B. ◭

94

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVal.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVal.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVar.html

function meaning default

max(x,y) maximum max(x,y) ✓

min(x,y) minimum max(x,y) ✓

abs(x) absolute value |x| ✓

sqrt(x) square root
p

x ✓

sqr(x) square x2
✓

pow(x,n) n-th power xn ✓

nroot(x,n) n-th root n
p

x ✓

fmod(x,y) remainder of x/y

exp(x) exponential exp(x)
log(x) natural logarithm log(x)

sin(x) sine sin(x)
cos(x) cosine cos(x)
tan(x) tangent tan(x)

asin(x) arcsine arcsin(x)
acos(x) arccosine arccos(x)
atan(x) arctangent arctan(x)

sinh(x) hyperbolic sine sinh(x)
cosh(x) hyperbolic cosine cosh(x)
tanh(x) hyperbolic tangent tanh(x)

asinh(x) hyperbolic arcsine arcsinh(x)
acosh(x) hyperbolic arccosine arccosh(x)
atanh(x) hyperbolic arctangent arctanh(x)

Figure 6.1: Functions on float values (x and y are float values; n is a non-negative integer)

95

Representing float domains as intervals. The domain of a float variable is represented
exactly as a float value: a closed interval [a .. b] which represents all real numbers n ∈ R
such that a ≤ n and n ≤ b. A float variable is assigned if the interval [a .. b] is tight (see
Section 6.1).1

Creating a float variable. New float variables are created using a constructor. A new float
variable x is created by

FloatVar x(home, -1.0, 1.0);

This declares a variable x of type FloatVar in the space home, creates a new float variable im-
plementation with domain [−1.0 .. 1.0], and makes x refer to the newly created float variable
implementation.

You find the full interface in the reference documentation of the class FloatVar. An
attempt to create a float variable with an empty domain throws an exception of type
Float::VariableEmptyDomain.

As for integer variables, the default and copy constructors do not create new variable
implementations. Instead, the variable does not refer to any variable implementation (default
constructor) or to the same variable implementation (copy constructor). For example in

FloatVar x(home, -1.0, 1.0);

FloatVar y(x);

FloatVar z;

z=y;

the variables x, y, and z all refer to the same float variable implementation.

Limits. Float numbers range from Float :: Limits :: min to Float :: Limits :: max which
also define the numbers that can represent float values and float variables. The limits are
defined in the namespace Float::Limits.

Tip 6.3 (Small variable domains are still beautiful). Just like integer variables (see Tip 4.2),
float variables do not have a constructor that creates a variable with the largest possible
domain. And again, one has to worry and the omission is deliberate to make you worry. So
think about the initial domains carefully when modeling. ◭

Variable access functions. You can access the current domain of a float variable x using
member functions such as x.min() and x.max(). Furthermore, you can print a float vari-
able’s domain using the standard output operator <<.

1Note that this means that a float variable is assigned even though its domain might still denote a set with
more than one element. But this cannot be avoided as real numbers cannot be represented exactly.

96

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1VariableEmptyDomain.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Float_1_1Limits.html

Updating variables. Float variables behave exactly like integer variables during cloning of
a space. A float variable is updated by

x.update(home, y);

where y is the variable from which x is to be updated. While home is the space x belongs to,
y belongs to the space which is being cloned.

Variable and argument arrays. Float variable arrays can be allocated using the class
FloatVarArray. The constructors of this class take the same arguments as the float vari-
able constructors, preceded by the size of the array. For example,

FloatVarArray x(home, 4, -1.0, 1.2);

creates an array of four float variables, each with domain [−1.0 .. 1.2].
To pass temporary data structures as arguments, you can use the FloatVarArgs class.

Some float constraints are defined in terms of arrays of float values. These can be passed
using the FloatValArgs class. Float variable and value argument arrays support the same
operations introduced in Section 4.2.2 but FloatValArgs do not support the initialization
with a variable number of float values.

6.3 Constraint overview

This section introduces the different groups of constraints over float variables available in
Gecode. The section serves only as an overview. For the details and the full list of available
post functions, the section refers to the relevant reference documentation.

Reified constraints. Some float constraints (relation constraints, see Section 6.3.2, and
linear constraints, see Section 6.3.4) also exist as a reified variant. If a reified version does
exist, the reification information combining the Boolean control variable and an optional
reification mode is passed as the last non-optional argument, see Section 4.3.4.

6.3.1 Domain constraints

Domain constraints constrain float variables and variable arrays to values from a given do-
main. For example, by

dom(home, x, -2.0, 12.0);

the values of the variable x (or of all variables in a variable array x) are constrained to
be between the float numbers −2.0 and 12.0. Domain constraints also take float values as
argument.

The domain of a float variable x can be constrained according to the domain of another
float variable d by

97

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVarArray.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVarArgs.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatValArgs.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatValArgs.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatDomain.html

FRT_EQ equality (=) FRT_NQ disequality (6=)
FRT_LE strictly less inequality (<) FRT_LQ less or equal inequality (≤)
FRT_GR strictly greater inequality (>) FRT_GQ greater or equal inequality (≥)

Figure 6.2: Float relation types

dom(home, x, d);

Here, x and d can also be arrays of float variables.
Domain constraints for a single variable also support reification.

6.3.2 Simple relation constraints

Simple relation constraints over float variables enforce relations between float variables and
between float variables and float values. The relation depends on a float relation type
FloatRelType (see Simple relation constraints over float variables). Figure 6.2 lists the
available float relation types and their meaning.

Binary relation constraints. Assume that x and y are float variables. Then

rel(home, x, FRT_LE, y);

constrains x to be strictly less than y. Similarly, by

rel(home, x, FRT_LQ, 4.0);

x is constrained to be less than 4.0. Both variants of rel also support reification.

Tip 6.4 (Weak propagation for strict inequalities (<, >) and disequality (6=)). Unfortunately,
the propagation for strict inequality (<, >) and disequality (6=) relations is rather weak.

Consider the constraint x<y for float variables x and y with domains [a .. b] and [c .. d]

respectively, where b > d and c < a. Then one would like to propagate that x must be less
than d and y must be larger than a. However, this would require that the domains of x and
y after propagation are the open intervals [a .. d) and (a .. d]. But only closed intervals can
be represented by float variables!

Hence, the best propagation one could get is that the new domains are represented by the
closed intervals [a .. d] and [a .. d] (the same propagation one would get for the constraint
x≤ y in this case). ◭

Constraints between variable arrays and a single variable. If x is a float variable array
and y is an float variable, then

rel(home, x, FRT_LQ, y);

constrains all variables in x to be less than or equal to y. Likewise,

rel(home, x, FRT_GR, 7.0);

constrains all variables in x to be larger than 7.0.

98

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatRelFloat.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatRelFloat.html

post function constraint posted default

min(home, x, y, z); min(x,y) = z ✓

max(home, x, y, z); max(x,y) = z ✓

abs(home, x, y); |x|= y ✓

mult(home, x, y, z); x · y= z ✓

div(home, x, y, z); x/y= z ✓

sqr(home, x, y); x2 = y ✓

sqrt(home, x, y);
p
x= y ✓

pow(home, x, n, y); xn = y ✓

nroot(home, x, n, y); n
p
x= y ✓

exp(home, x, y) exp(x) = y

pow(home, b, x, y) bx = y

log(home, x, y) log(x) = y

log(home, b, x, y) logb(x) = y

sin(home, x, y) sin(x) = y

cos(home, x, y) cos(x) = y

tan(home, x, y) tan(x) = y

asin(home, x, y) arcsin(x) = y

acos(home, x, y) arccos(x) = y

atan(home, x, y) arctan(x) = y

Figure 6.3: Arithmetic constraints (x, y, and z are float variables; n is a non-negative integer;
b is a float number)

If-then-else constraint. An if-then-else constraint can be posted by

ite(home, b, x, y, z);

where b is a Boolean variable and x, y, and z are float variables. In case b is one, then x= z

must hold, otherwise y= z must hold.

6.3.3 Arithmetic constraints

In addition to the constraints summarized in Figure 6.3 (see also Arithmetic constraints), the
minimum and maximum constraints are also available for float variable arrays. That is, for
a float variable array x and a float variable y

min(home, x, y);

constrains y to be the minimum of the variables in x (max is analogous).

The constraints marked as default in Figure 6.3 are always supported, the others only if
Gecode has been built accordingly, see Tip 6.1.

99

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatArith.html

6.3.4 Linear constraints

Linear constraints over float variables provide constraint post functions for linear constraints
over float variables. The most general variant

linear(home, a, x, FRT_EQ, c);

posts the linear constraint
|x|−1∑

i=0

ai · xi = c

with float value coefficients a (of type FloatValArgs), float variables x, and a float value
c. Note that a and x must have the same size. Of course, all other float relation types
are supported, see Figure 6.2 for a table of float relation types (note that, linear constraints
also show poor propagation for strict inequalities and disequality as discussed in Tip 6.4).
Multiple occurrences of the same variable in x are explicitly allowed and common terms a · y
and b · y for the same variable y are rewritten to (a+ b) · y to increase propagation.

The array of coefficients can be omitted if all coefficients are one. That is,

linear(home, x, FRT_GR, c);

posts the linear constraint
|x|−1∑

i=0

xi > c

for a variable array x and a float value c.
Instead of a float value c as the right-hand side of the linear constraint, a float variable

can be used as well. All variants of linear support reification.

6.3.5 Channel constraints

Channel constraints channel float variables to integer variables. To express that a float vari-
able x is equal to an integer variable y is by posting either

channel(home, x, y);

or

channel(home, y, x);

6.4 Synchronized execution

Gecode offers support in Synchronized execution for executing a function when float vari-
ables become assigned.

The following code

100

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatLI.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatValArgs.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatChannel.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatExec.html

wait(home, x, [] (Space & home) { · · ·; });

posts a propagator that waits until the float variable x (or, if x is an array of float variables:
all variables in x) is assigned. If x becomes assigned, the function passed as argument is
executed with the current home space passed as argument. The type of the function must be

std::function<void(Space& home)>

101

102

7 Modeling convenience:
MiniModel

This chapter provides an overview of modeling convenience implemented by MiniModel.
MiniModel (see Direct modeling support) provides some little helpers to the constraint mod-
eler. However, it does not offer any new constraints or branchers.

Overview. Section 7.1 surveys how constraints represented by integer, Boolean, set, and
float expressions and relations can be posted. How matrix interfaces for arrays can be de-
fined and used is discussed in Section 7.2. Support for defining cost functions for cost-based
optimization is presented in Section 7.3. Regular expressions for expressing extensional
constraints are discussed in Section 7.4. Section 7.5 surveys channeling functions, whereas
Section 7.6 and Section 7.7 discuss aliases for some commonly used constraints.

Important. Do not forget to add

#include <gecode/minimodel.hh>

to your program when you want to use MiniModel. Note that the same conventions hold as
in Chapter 4.

7.1 Expressions and relations

The main part of MiniModel consists of overloaded operators and functions that provide a
more natural syntax for posting constraints. These operators can be used in two slightly
different ways. You can post a relation, or create a new variable from an expression.

For example, the following code creates a fresh integer variable z that is constrained to
be equal to the given expression 3*x-4*y+2, where both x and y are integer variables:

IntVar z=expr(home, 3*x-4*y+2);

An important aspect of posting an expression is that the returned variable is initialized with
a reasonably small variable domain, see Tip 4.2.

A relation can be posted using the rel function, which posts the corresponding constraints
and consequently returns void. Assume that z is an integer variable, then

rel(home, z == 3*x-4*y+2);

103

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModel.html

posts the same constraint as in the previous example.

MiniModel provides syntax for expressions and relations over integer, Boolean, set, and
float variables, which can be freely mixed. For example, the following code snippet returns
a Boolean variable that is true if and only if {x} ⊆ s and |s| = y, where x and y are integer
variables, and s is a set variable:

BoolVar b = expr(home, (singleton(x) <= s) && (cardinality(s) == y));

The rest of this section presents the different ways to construct expressions and relations,
grouped by the type of the expressions.

7.1.1 Integer expressions and relations

Integer expressions (that is, expressions that evaluate to an integer) are constructed ac-
cording to the structure sketched in Figure 7.1, whereas integer relations are constructed
according to the structure sketched in Figure 7.2. We use the standard C++ operators
(for an example, see Section 3.1), as well as several functions with intuitive names
such as min or max. Integer expressions and relations can be constructed over inte-
ger, Boolean, and set variables. In Gecode, integer expressions are of type LinIntExpr,
which are constructed using Linear expressions and relations, Arithmetic functions, and
some Set expressions and relations.

Even arrays of variables (possibly with integer argument arrays as coefficients) can be
used for posting some expressions and relations. For example, if x and y are integer variables
and z is an array of integer variables, then

rel(home, x+2*sum(z) < 4*y);

posts a single linear constraint that involves all variables from the array z.

As long as an expression is linear (i.e., it can be represented as
∑

ai · x i where the ai

are integers and x i are integer or Boolean variables), the constraint posted for the expression
will be as few linear constraints as possible (see Section 4.4.6) to ensure maximal constraint
propagation.1

Non-linear expressions, such as a multiplication of two variables, are handled by Mini-
Model using decomposition. For example, posting the constraint

rel(home, a+b*(c+d) == 0);

for integer variables a, b, c, and d is equivalent to the decomposition

IntVar tmp0 = expr(home, c+d);

IntVar tmp1 = expr(home, b*tmp0);

rel(home, a+tmp1 == 0);

1In case a linear expression has only integer variables or only Boolean variables, a single linear constraint
is posted. If the expression contains both integer and Boolean variables, two linear constraints are posted.

104

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1LinIntExpr.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelLin.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelArith.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelSet.html

〈IntExpr〉 ::= 〈n〉 integer value
| 〈x〉 integer or Boolean variable
| -〈IntExpr〉 unary minus
| 〈IntExpr〉 + 〈IntExpr〉 addition
| 〈IntExpr〉 - 〈IntExpr〉 subtraction
| 〈IntExpr〉 * 〈IntExpr〉 multiplication
| 〈IntExpr〉 / 〈IntExpr〉 integer division
| 〈IntExpr〉 % 〈IntExpr〉 modulo
| sum(〈x〉) sum of integer or Boolean variables
| sum(〈n〉,〈x〉) sum of integer or Boolean variables

with integer coefficients
| min(〈IntExpr〉, 〈IntExpr〉) minimum
| min(〈x〉) minimum of integer variables
| max(〈IntExpr〉, 〈IntExpr〉) maximum
| max(〈x〉) maximum of integer variables
| abs(〈IntExpr〉) absolute value
| sqr(〈IntExpr〉) square
| sqrt(〈IntExpr〉) square root
| pow(〈IntExpr〉, 〈n〉) power
| nroot(〈IntExpr〉, 〈n〉) n-th root
| element(〈x〉, 〈IntExpr〉) array element of integer variables
| element(〈n〉, 〈IntExpr〉) array element of integers
| ite(〈BoolExpr〉, 〈IntExpr〉, 〈IntExpr〉) if-then-else
| min(〈SetExpr〉) minimum of a set expression
| max(〈SetExpr〉) maximum of a set expression
| cardinality(〈SetExpr〉) cardinality of a set expression

〈x〉 ::= array of integer or Boolean variables
〈n〉 ::= array of integers

Figure 7.1: Integer expressions

105

〈IntRel〉 ::= 〈IntExpr〉 〈r〉 〈IntExpr〉 integer relation
| dom(〈x〉, 〈n〉) domain relation
| dom(〈x〉, 〈n〉, 〈n〉) domain relation
| dom(〈x〉, 〈s〉) domain relation

〈n〉 ::= integer value
〈s〉 ::= set constant (IntSet)
〈x〉 ::= integer or Boolean variable
〈r〉 ::= == | != | < | <= | > | >= integer relation symbol

Figure 7.2: Integer relations

Like the post functions for integer and Boolean constraints presented in Section 4.4, post-
ing integer expressions and relations supports an optional argument of type IntPropLevel to
select the propagation level. For more information, see Posting of expressions and relations
and Section 4.3.

Using the expr() function, you can enforce a particular decomposition, and you can
specify the propagation level for each subexpression. For example,

rel(home, x+expr(home,y*z,IPL_DOM) == 0);

will perform domain propagation for the multiplication, but bounds propagation (the default)
for the sum.

An element expression such as element(x,e), where x is an array of integers or integer
variables, and e is an integer expression, corresponds to an array access x[e], implemented
using an element constraint (see Section 4.4.12).

MiniModel provides three integer expressions whose arguments are set expressions: the
minimum of a set, the maximum of a set, and a set’s cardinality. We will see later how set
expressions are constructed.

For examples of integer expressions, see Alpha puzzle, SEND+MORE=MONEY puzzle,
Grocery puzzle, Chapter 13, Chapter 16, and Section 3.1.

Integer propagation levels. When posting integer expressions and relations it can be con-
trolled which integer propagation level is used for each constraint. The integer propagation
levels for all relevant constraints are specified by an object of class IntPropLevels. The
expr() and rel() functions for posting expressions take an object of this class as last argu-
ment.

Declaring an object of class IntPropLevels by default initializes all propagation levels to
the default integer propagation level IPL_DEF. All integer propagation levels can be initialized
to, for example, IPL_DOM by

IntPropLevels ipls(IPL_DOM);

106

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelPost.html
https://www.gecode.org/doc/6.2.0/reference/examples_2alpha_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/money_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/grocery_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntPropLevels.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntPropLevels.html

〈BoolExpr〉 ::= 〈x〉 Boolean variable
| !〈BoolExpr〉 negation
| 〈BoolExpr〉 && 〈BoolExpr〉 conjunction
| 〈BoolExpr〉 || 〈BoolExpr〉 disjunction
| 〈BoolExpr〉 == 〈BoolExpr〉 equivalence
| 〈BoolExpr〉 != 〈BoolExpr〉 non-equivalence
| 〈BoolExpr〉 >> 〈BoolExpr〉 implication
| 〈BoolExpr〉 << 〈BoolExpr〉 reverse implication
| 〈BoolExpr〉 ˆ 〈BoolExpr〉 exclusive or
| element(〈x〉, 〈IntExpr〉) array element of Boolean variables
| 〈IntRel〉 reified integer relation
| 〈SetRel〉 reified set relation
| 〈FloatRel〉 reified float relation

Figure 7.3: Boolean expressions

and then used as last argument of rel() and expr() for posting relations and expressions.
However, this also uses domain propagation for linear constraints as well as minimum

and maximum with an arbitrary number of variables where domain propagation can be very
slow. To use default propagation for these constraints, ipls can be modified by

ipls.linear(IPL_DEF).min(IPL_DEF).max(IPL_DEF);

The list of constraints for which the propagation level can be specified can be seen from
the class definition IntPropLevels.

7.1.2 Boolean expressions and relations

Boolean expressions are constructed using standard C++ operators according to the structure
sketched in Figure 7.3.

Again, the purpose of a Boolean expression or relation is to post a corresponding con-
straint for it (see Posting of expressions and relations). Posting a Boolean expression returns
a new Boolean variable that is constrained to the value of the expression. Several constraints
might be posted for a single expression, however as few constraints as possible are posted.
For example, all negation constraints are eliminated by rewriting the Boolean expression
into NNF (negation normal form) and conjunction and disjunction constraints are combined
whenever possible.

For example, the Boolean expression x && (y >> z) (to be read as x ∧ (y → z)) for
Boolean variables x, y, and z is posted by

BoolVar b=expr(home, x && (y >> z));

Tip 7.1 (Boolean precedences). Note that the precedences of the Boolean connectives are dif-
ferent from the usual mathematical notation. In C++, operator precedence cannot be changed,

107

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntPropLevels.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelBool.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelPost.html

so the precedences are as follows (high to low): !, <<, >>, ==, !=, ˆ, &&, ||. For instance,
this means that the expression b0 == b1 >> b2 will be interpreted as (b0↔ b1)→ b2 instead
of the more canonical b0↔ (b1→ b2). If in doubt, use parentheses! ◭

Any Boolean expression e corresponds to the Boolean relation stating that e is true. Post-
ing a Boolean relation posts the corresponding Boolean constraint. Using the Boolean ex-
pression from above,

rel(home, x && (y >> z));

posts that x∧ (y→ z) must be true, whereas

rel(home, !(x && (y >> z)));

posts that x∧ (y→ z) must be false.

A Boolean element expression such as element(x,e), where x is an array of Boolean
variables, and e is an integer expression, corresponds to an array access x[e], implemented
using an element constraint (see Section 4.4.12).

Boolean expressions include reified integer relations. As an example consider the place-
ment of two squares s1 and s2 such that the squares do not overlap. A well known model for
this constraint is

x1 + d1 ≤ x2 ∨ x2 + d2 ≤ x1 ∨
y1 + d1 ≤ y2 ∨ y2 + d2 ≤ y1

The meaning of the integer variables xi and yi, and the in-
teger values di is sketched to the right. The squares do not
overlap, if the relative position of s1 with respect to s2 is either
left, right, above, or below. As soon as one of the relationships
is established, the squares do not overlap. Please also consult
Section 4.4.16 for geometrical packing constraints.

With Boolean relations using reified integer relations, the con-
straint that the squares s1 and s2 do not overlap can be posted as
follows:

s1

s2

x1

x2

y1

y2

d1

d2

rel(home, (x1+d1 <= x2) || (x2+d2 <= x1) ||

(y1+d1 <= y2) || (y2+d2 <= y1));

Like the post functions for integer and Boolean variables presented above, posting
Boolean expressions and relations supports an optional argument of type IntPropLevel to
select the propagation level. For more information, see Section 4.3.

Boolean expressions also include reified set relations, which will be covered below.

Tip 7.2 (Reification of non-functional constraints). Reification of integer or set relations is
mostly implemented through decomposition. For example, given integer variables x, y, and
z, the reified division constraint

108

rel(home, (x / y == z) == b);

is actually equivalent to

IntVar tmp = expr(home, x / y);

rel(home, (tmp == z) == b);

Some constraints, such as division above, are not simple functions but impose side con-
straints. In the case of the division above, the side constraint is that y is not zero. It is
important to understand the subtle semantics of decomposed reification here: If y happens
to be zero, we get failure instead of b being constrained to false!

There are several expressions that have non-functional semantics: division, modulo, ele-
ment, and disjoint set union (introduced below). ◭

For more examples using Boolean expressions and Boolean relations including reification,
see Chapter 15.

7.1.3 Set expressions and relations

Set expressions and relations are constructed using the standard C++ operators and the func-
tions listed in Figure 7.4. Just like for integer and Boolean expressions, posting of a set
expression returns a new set variable that is constrained to the value of the expression.

For example, the set expression x & (y | z) (to be read as x∩ (y∪ z)) for set variables
x, y, and z is posted by

SetVar s = expr(home, x & (y | z));

Posting a set relation posts the corresponding constraint. Given an existing set variable
s, the previous code fragment could therefore be written as

rel(home, s == (x & (y | z)));

As noted above, set relations can be reified, turning them into Boolean expressions. The
following code posts the constraint that b is true if and only if x is the complement of y:

BoolVar b = expr(home, (x == -y));

Instead of a set variable, you can always use a constant IntSet, for example for reifying
the fact that x is empty:

BoolVar b = expr(home, (x == IntSet::empty));

The subset relations can also be posted two-sided, such as

rel(home, IntSet(0,10) <= x <= IntSet(0,20));

109

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelSet.html

〈SetExpr〉 ::= 〈y〉 set variable
| 〈s〉 set constant (IntSet)
| -〈SetExpr〉 complement
| 〈SetExpr〉 & 〈SetExpr〉 intersection
| 〈SetExpr〉 | 〈SetExpr〉 union
| 〈SetExpr〉 + 〈SetExpr〉 disjoint union
| 〈SetExpr〉 - 〈SetExpr〉 set difference
| inter(〈y〉) intersection of variables
| setunion(〈y〉) union of variables
| setdunion(〈y〉) disjoint union of variables
| singleton(〈IntExpr〉) singleton given by integer expression

〈SetRel〉 ::= 〈SetExpr〉 == 〈SetExpr〉 expressions are equal
| 〈SetExpr〉 != 〈SetExpr〉 expressions are not equal
| 〈SetExpr〉 <= 〈SetExpr〉 first is subset of second expression
| 〈SetExpr〉 >= 〈SetExpr〉 first is superset of second expression
| 〈SetExpr〉 || 〈SetExpr〉 expressions are disjoint
| 〈SetExpr〉 〈r〉 〈IntExpr〉 set-integer relation
| 〈IntExpr〉 〈r〉 〈SetExpr〉 integer-set relation
| dom(〈y〉, 〈rs〉, 〈n〉) domain relation
| dom(〈y〉, 〈rs〉, 〈n〉, 〈n〉) domain relation
| dom(〈y〉, 〈rs〉, 〈s〉) domain relation

〈n〉 ::= integer value
〈y〉 ::= array of set variables
〈r〉 ::= == | != | < | <= | > | >= integer relation symbol
〈rs〉 ::= == | != | <= | >= | || set relation symbol

Figure 7.4: Set expressions and relations

110

〈FloatExpr〉 ::= 〈z〉 float variable
| 〈 f 〉 float value
| -〈FloatExpr〉 unary minus
| 〈FloatExpr〉 + 〈FloatExpr〉 addition
| 〈FloatExpr〉 - 〈FloatExpr〉 subtraction
| 〈FloatExpr〉 * 〈FloatExpr〉 multiplication
| 〈FloatExpr〉 / 〈FloatExpr〉 division
| sum(〈z〉) sum of float variables

| sum(〈 f 〉,〈z〉) sum of float with coefficients
| min(〈FloatExpr〉, 〈FloatExpr〉) minimum
| min(〈z〉) minimum of float variables
| max(〈FloatExpr〉, 〈FloatExpr〉) maximum
| max(〈z〉) maximum of float variables
| abs(〈FloatExpr〉) absolute value
| sqr(〈FloatExpr〉) square
| sqrt(〈FloatExpr〉) square root
| pow(〈FloatExpr〉, 〈n〉) power
| nroot(〈FloatExpr〉, 〈n〉) n-th root
| exp(〈FloatExpr〉) exponential2

| log(〈FloatExpr〉) logarithm2

| sin(〈FloatExpr〉) sine2

| cos(〈FloatExpr〉) cosine2

| tan(〈FloatExpr〉) tangent2

| asin(〈FloatExpr〉) arcsine2

| acos(〈FloatExpr〉) arccosine2

| atan(〈FloatExpr〉) arctangent2

〈z〉 ::= array of float variables

〈 f 〉 ::= array of float values

Figure 7.5: Float expressions

111

〈FloatRel〉 ::= 〈FloatExpr〉 〈r〉 〈FloatExpr〉 float relation
| dom(〈z〉, 〈 f 〉) domain relation
| dom(〈z〉, 〈m〉, 〈m〉) domain relation

〈r〉 ::= == | != | < | <= | > | >= float relation symbol
〈 f 〉 ::= float value
〈m〉 ::= float number
〈z〉 ::= float variable

Figure 7.6: Float relations

7.1.4 Float expressions and relations

Linear float expressions and relations are constructed using the standard C++ operators
and the functions listed in Figure 7.5 and Figure 7.6 (see also Arithmetic functions,
Transcendental functions, and Trigonometric functions). Posting a float expression returns a
new float variable that is constrained to the value of the expression.

Instead of a float variable, you can always use a constant of type FloatVal.

7.1.5 Extending Boolean expressions and relations

Boolean expressions and relations can easily be extended. A typical case for extension is when
a new variable type is added (see also Part V) and that there are also reified constraints using
the new variable type that should be included in Boolean expressions and relations.

As an example, we assume that we would like to extend Boolean expressions and relations
by a domain expression dom() (as a more convenient form of domain constraints as described
in Section 4.4.1), so for example

IntVar x(home,-10,10);

rel(home, dom(x,1,5));

constrains the domain of x to {1, 2, 3, 4, 5} whereas

IntVar x(home,-10,10);

rel(home, !dom(x,1,5));

constrains the domain of x to {−10,−9, . . . , 0, 6, 7, . . . , 10}. The domain expression can be
used together with other Boolean expressions. For example, if both x and y are integer
variables, then the following is possible:

rel(home, dom(x,3,4) && !(y > 4));

In order to extend Boolean expressions one must implement the following:

2These functions are only available if Gecode has been compiled with support for MPFR, see Tip 6.1.

112

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelFloat.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelArith.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelTrans.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelTrigo.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVal.html

BOOLEAN DOMAIN EXPRESSION ≡ [DOWNLOAD]

class BoolDomExpr : public BoolExpr::Misc {

protected:

IntVar x; int l, u;

public:

BoolDomExpr(IntVar x0, int l0, int u0)

: x(x0), l(l0), u(u0) {}

◮ POST MEMBER FUNCTION

virtual ~ReDomExpr(void) {}

};

◮ CREATE BOOLEAN DOMAIN EXPRESSION

Figure 7.7: The class BoolDomExpr and the dom() function

■ A function dom(IntVar x, int l, int u) that creates a Boolean expression where x

is the variable and l and u are the lower and upper bound for the domain.

■ A class BoolDomExpr that inherits from the class BoolExpr::Misc. An object of the
class is created by our dom() function and the modeling layer uses a virtual member
function post() to post a constraint when the rel() or expr() functions require this.

The dom() function. The definition of the dom() function is straightforward and as follows:

CREATE BOOLEAN DOMAIN EXPRESSION ≡
BoolExpr dom(IntVar x, int l, int u) {

return BoolExpr(new BoolDomExpr(x,l,u));

}

It returns a new Boolean expression that contains an object of class BoolDomExpr that can
be used by the rel() and expr() functions.

The Boolean domain expression class. The class is shown in Figure 7.7. An object of class
BoolDomExpr stores the information needed for the actual post function: the variable x and
lower and upper bounds l and u. Note that our class does not need a destructor, it is only
shown as a reminder for classes that actually need a destructor!

The post() member function is defined as follows:

113

https://www.gecode.org/doc/6.2.0/MPG/Boolean-domain-expression.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolExpr_1_1Misc.html

POST MEMBER FUNCTION ≡
virtual void post(Home home, BoolVar b, bool neg,

IntPropLevel ipl) {

if (neg) {

const int nlu[2][2] = { { Int::Limits::min, l-1 },

{ u+1, Int::Limits::max } };

dom(home, x, IntSet(nlu,2), b);

} else {

dom(home, x, l, u, b);

}

}

where the posted expression must constrain the Boolean variable b with integer propagation
level ipl. If neg is true, a negated constraint must be posted.

7.2 Matrix interface for arrays

MiniModel provides a Matrix support class for accessing an array as a two dimensional ma-
trix. The following

IntVarArgs x(n*m);

· · ·
Matrix<IntVarArgs> mat(x, n, m);

declares an array of integer variables x and superimposes a matrix interface to x called mat

with width n and height m. Note that the first argument specifies the number of columns, and
the second argument specifies the number of rows.

The elements of the array can now be accessed at positions 〈i, j〉 in the matrix mat (that
is, the element in column i and row j) using

IntVar mij = mat(i,j);

Furthermore, the rows and columns of the matrix can be accessed using mat.row(i) and
mat.col(j). If a rectangular slice is required, the slice() member function can be used.

A matrix interface can be declared for any standard array or argument array used in
Gecode, such as IntVarArray or IntSetArgs.

As an example of how the Matrix class can be used, consider the Sudoku prob-
lem (see Solving Sudoku puzzles using integer constraints). Given that there is a member
IntVarArray x that contains 9 · 9 integer variables with domain {1, . . . , 9}, the following
code posts constraints that implement the basic rules for a Sudoku.

114

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Matrix.html
https://www.gecode.org/doc/6.2.0/reference/examples_2sudoku_8cpp.html

Matrix<IntVarArray> m(x, 9, 9);

for (int i=0; i<9; i++)

distinct(home, m.row(i));

for (int i=0; i<9; i++)

distinct(home, m.col(i));

for (int i=0; i<9; i+=3)

for (int j=0; j<9; j+=3)

distinct(home, m.slice(i, i+3, j, j+3));

For more examples that use the Matrix class, see Chapter 22, Chapter 18, Chapter 21,
Chapter 17, Magic squares, and Nonogram.

Element constraints. A matrix can also be used with an element constraint that propagates
information about the row and column of matrix entries.

For example, the following code assumes that x is an integer array of type IntArgs with
12 elements.

Matrix<IntArgs> m(x, 3, 4);

IntVar r(home,0,2), c(home,0,3), v(home,0,1024);

element(home, m, r, c, v);

constrains the variable v to the value at position 〈r,c〉 of the matrix m (see also GCCAT:
element_matrix).

Tip 7.3 (Element for matrix can compromise propagation). Whenever it is possible one
should use an array rather than a matrix for posting element constraints, as an element

constraint for a matrix will provide rather weak propagation for the row and column vari-
ables.

Consider the following array of integers x together with its matrix interface m

IntArgs x({0,2,2,1});

Matrix<IntArgs> m(x,2,2);

That is, m represents the matrix
�

0 2
2 1

�

Consider the following example using an element constraint on an integer array:

IntVar i(home,0,3), v(home,0,1);

element(home, x, i, v);

After performing propagation, i will be constrained to the set {0, 3} (as 2 is not included in
the values of v).

Compare this to propagating an element constraint over the corresponding matrix as
follows:

115

https://www.gecode.org/doc/6.2.0/reference/magic-square_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/nonogram_8cpp.html
http://www.emn.fr/z-info/sdemasse/gccat/Celement_matrix.html

IntVar r(home,0,1), c(home,0,1), v(home,0,1);

element(home, m, r, c, v);

Propagation of element will determine that only the fields 〈0, 0〉 and 〈1, 1〉 are still possible.
But propagating this information to the row and column variables, yields the values {0, 1}
for both r and c: each value for the coordinates is still possible even though some of their
combinations are not. ◭

7.3 Support for cost-based optimization

Support for cost-based optimization provides several subclasses of Space for cost-based
optimization. IntMinimizeSpace and IntMaximizeSpace support search for a solu-
tion of minimal and maximal, respectively, integer cost. FloatMinimizeSpace and
FloatMaximizeSpace support search for a solution of minimal and maximal, respectively,
float cost, possibly with an improvement step (see below). IntLexMinimizeSpace and
IntLexMaximizeSpace support search for the lexicographically smallest and largest solution
where the cost is defined as an array of integer variables.

Optimizing integer cost. The classes IntMinimizeSpace and IntMaximizeSpace support
searching a solution of minimal and maximal, respectively, integer cost.

In order to use these abstract classes, a class inheriting from IntMinimizeSpace and
IntMaximizeSpace must implement a virtual cost function of type

virtual IntVar cost(void) const { · · · }
The function must return an integer variable for the cost. For an example, see Section 3.2.

Tip 7.4 (Cost must be assigned for solutions). In case the cost() function is called on a
solution, the variable returned by cost() must be assigned. If the variable is unassigned for
a solution, an exception of type Int::ValOfUnassignedVar is thrown. ◭

Optimizing float cost with improvement step. The classes FloatMinimizeSpace and
FloatMaximizeSpace support searching a solution of minimal and maximal, respectively,
float cost.

Note that the constructor of these classes take an optional argument of type FloatNum

that defines the improvement step: a better solution is found only if it is better than the
previous solution and the improvement step. For example, suppose

class WithStep : public FloatMinimizeSpace {

public:

WithStep(void) : FloatMinimizeSpace(0.25), · · · {
· · ·

}

};

116

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelOptimize.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntLexMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntLexMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ValOfUnassignedVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatMaximizeSpace.html

operation meaning

REG r initialize r as ε (empty)
REG r(4) initialize r as single integer (symbol) 4
REG r(IntArgs({0,2,4})) initialize r as alternative of integers 0|2|4
r + s r followed by s

r | s r or s

r += s efficient shortcut for r = r + s

r |= s efficient shortcut for r = r | s

*r repeat r arbitrarily often (Kleene star)
+r repeat r at least once
r(n) repeat r at least n times
r(n,m) repeat r at least n times, at most m times

Figure 7.8: Constructing regular expressions (r and s are regular expressions, n and m are
unsigned integers)

that searching for a best solution of WithStep finds a solution s with cost value
c=s.cost().val(). Then, the next solution must have a cost that is strictly smaller than
c−s. For FloatMaximizeSpace, the next solution must have a cost that is strictly larger than
c+ s.

Lexicographically optimizing for integer costs. The classes IntLexMinimizeSpace and
IntLexMaximizeSpace support searching for a solution with lexicographically smallest and
largest cost. The cost is defined by an array of integer variables.

In order to use these abstract classes, a class inheriting from IntLexMinimizeSpace and
IntLexMaximizeSpace must implement a virtual cost function of type

virtual IntVarArgs cost(void) const { · · · }

The function must return an array of integer variable as cost. For an example, see
Locating warehouses.

7.4 Regular expressions for extensional constraints

Regular expressions are implemented as instances of the class REG and provide an alternative,
typically more convenient, interface for the specification of extensional constraints than DFAs
do. The construction of regular expressions is summarized in Figure 7.8.

117

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntLexMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntLexMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntLexMinimizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntLexMaximizeSpace.html
https://www.gecode.org/doc/6.2.0/reference/examples_2warehouses_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1REG.html

Let us reconsider the Swedish drinking protocol from Section 4.4.13. The protocol can
be described by a regular expression r constructed by

REG r = *REG(0) + *(REG(1) + +REG(0));

A sequence of activities x (an integer or Boolean variable array) can be constrained by

DFA d(r);

extensional(home, x, d);

after a DFA for the regular expression has been computed.

Tip 7.5 (Creating a DFA only once). Please make it a habit to create a DFA explicitly from a
regular expression r rather than implicitly by

extensional(home, x, r);

Both variants work, however the implicit variant disguises the fact that each time the
code fragment is executed, a new DFA for the regular expression r is computed (think about
the code fragment being executed inside a loop and your C++ compiler being not too smart
about it)!3

◭

For examples on using regular expressions for extensional constraints, see the nonogram
case study in Chapter 17 or the examples Solitaire domino, Nonogram, and Pentominoes.
The models are based on ideas described in [26], where regular expressions for extensional
constraints nicely demonstrate their usefulness.

7.5 Channeling functions

Channel functions are functions to channel a Boolean variable to an integer variable and
vice versa, to channel a float variable to an integer variable, and to channel between integer
variables and a set variable.

For an integer variable x,

channel(home, x);

returns a new Boolean variable that is equal to x. Likewise, for a Boolean variable x an equal
integer variable is returned.

For a float variable x, channel(home, x) returns an integer variable equal to x.

For an array of integer variables x, channel(home, x) returns a set variable equal to all
the integers in x.

118

https://www.gecode.org/doc/6.2.0/reference/domino_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/nonogram_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/pentominoes_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelChannel.html

alias constraint posted GCCAT

atmost(home, x, u, v); count(home, x, u, IRT_LQ, v); atmost

atleast(home, x, u, v); count(home, x, u, IRT_GQ, v); atleast

exactly(home, x, u, v); count(home, x, u, IRT_EQ, v); exactly

lex(home, x, r, y); rel(home, x, r, y); lex

values(home, x, s); dom(home, x, s);

nvalues(home, x, IRT_EQ, s.size());

Figure 7.9: Aliases for integer constraints (x and y are integer variable arrays, u and v are
integers or integer variables, r is an integer relation type, s is an integer set)

7.6 Aliases for integer constraints

Aliases for integer constraints provide some popular aliases. Figure 7.9 lists the aliases and
their corresponding definitions.

7.7 Aliases for set constraints

Aliases for set constraints provide aliases and convenience post functions for useful set con-
straints.

channel(home, x, y) is an alias for rel(home, SOT_UNION, x, y), posting the con-
straint that y is exactly the set of integers {x0, . . . ,x|x|−1}. In addition to the union constraint,
it posts an nvalues constraint for stronger propagation (see Section 4.4.9).

range(home, x, y, z), where x is an array of integer variables and y and z are set
variables, is an alias for element(home, SOT_UNION, x, y, z). This constraints treats x as
defining a function, and constrains z to be the range of the function restricted to y:

z =
⋃

i∈y

{x i}

Conversely, roots(home, x, y, z) constrains y to be the roots of the elements in z, i.e.,
those indices mapping to elements in z:

y =
⋃

i∈z

{ j | x j = i}

(see also GCCAT: roots).

3The integer module cannot know anything about regular expressions. Hence, it is impossible in C++ to avoid
the implicit conversion. This is due to the fact that the conversion is controlled by a type operator (that must
reside in the MiniModel module) and not by a constructor that could be made explicit.

119

http://www.emn.fr/z-info/sdemasse/gccat/Catmost.html
http://www.emn.fr/z-info/sdemasse/gccat/Catleast.html
http://www.emn.fr/z-info/sdemasse/gccat/Cexactly.html
http://www.emn.fr/z-info/sdemasse/gccat/Clex.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelIntAlias.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelMiniModelSetAlias.html
http://www.emn.fr/z-info/sdemasse/gccat/Croots.html

120

8 Branching

This chapter discusses how branching is used for solving Gecode models. Branching defines
the shape of the search tree. Exploration defines a strategy how to explore parts of the search
tree and is discussed in Chapter 9.

Overview. Section 8.1 explains the basics of Gecode’s predefined branchings. An overview
of available branchings for integer and Boolean variables is provided in Section 8.2, for set
variables in Section 8.3, and for float variables in Section 8.4. These sections belong to the
basic reading material of Part M.

Advanced topics for branchings are discussed in the remaining sections: local versus
shared variable selection (Section 8.5), random selection (Section 8.6), user-defined variable
(Section 8.7) and value (Section 8.8) selection, tie-breaking (Section 8.9), dynamic symme-
try breaking (Section 8.10), branch filter functions (Section 8.11), variable-value print func-
tions (Section 8.12), assigning variables (Section 8.13), and executing code between branch-
ers (Section 8.14).

Convention. Note that the same conventions hold as in Chapter 4.

8.1 Branching basics

Gecode offers predefined variable-value branching: when calling branch() to post a branch-
ing, the third argument defines which variable is selected for branching, whereas the fourth
argument defines which values are selected for branching.

For example, for an array of integer or Boolean variables x the following call to branch

branch(home, x, INT_VAR_MIN_MIN(), INT_VAL_SPLIT_MIN());

selects a variable y with the smallest minimum value (in case of ties, the first such variable
in x is selected) and creates a choice with two alternatives y ≤ n and y > n where

n=

�
min(y) +max(y)

2

�

The posted brancher assigns all variables and then ceases to exist. If more branchers exist,
search continues with the next brancher. Search commits a brancher to alternatives during
search.

121

The branch() function also accepts a branch filter function and a variable-value print
function as optional arguments, see Section 8.11 and Section 8.12 for details.

Several branchers. A space in Gecode can have several branchers posted on behalf of a
branching that are executed in order of creation. Assume that in

branch(home, x, INT_VAR_SIZE_MIN(), INT_VAL_MIN());

· · ·
branch(home, y, INT_VAR_SIZE_MIN(), INT_VAL_MIN());

both calls to branch() create a brancher. Search branches first on the variables x and then
on the variables y. Here, it does not matter whether propagators are created in between the
creation of branchers.

Branching on single variables. In addition to branching on an array of variables, Gecode
also supports branching on a single variable.

For example, if x is an integer variable of type IntVar, then

branch(home, x, INT_VAL_MIN());

branches on the single variable x by first trying the smallest value of x.

Assume that x is an array of integer variables. Then the following code

for (int i=0; i<x.size(); i++)

branch(home, x[i], INT_VAL_MIN());

is equivalent, albeit considerably less efficient, to

branch(home, x, INT_VAR_NONE(), INT_VAL_MIN());

Brancher groups. Branchers can be controlled by brancher groups, they are discussed in
detail in Section 12.2.

8.2 Branching on integer and Boolean variables

Important. Do not forget to add

#include <gecode/int.hh>

to your program when you want to branch on integer and Boolean variables.

122

INT_VAR_NONE() first unassigned
INT_VAR_RND(r) randomly
INT_VAR_MERIT_MIN(m,t∗) smallest value of merit function m

INT_VAR_MERIT_MAX(m,t∗) largest value of merit function m

INT_VAR_DEGREE_MIN(t∗) smallest degree
INT_VAR_DEGREE_MAX(t∗) largest degree
INT_VAR_AFC_MIN(afc+,t∗) smallest accumulated failure count (AFC)
INT_VAR_AFC_MAX(afc+,t∗) largest accumulated failure count (AFC)
INT_VAR_ACTION_MIN(act+,t∗) lowest action
INT_VAR_ACTION_MAX(act+,t∗) highest action
INT_VAR_CHB_MIN(chb+,t∗) lowest chb Q-score
INT_VAR_CHB_MAX(chb+,t∗) highest chb Q-score
INT_VAR_MIN_MIN(t∗) smallest minimum value
INT_VAR_MIN_MAX(t∗) largest minimum value
INT_VAR_MAX_MIN(t∗) smallest maximum value
INT_VAR_MAX_MAX(t∗) largest maximum value
INT_VAR_SIZE_MIN(t∗) smallest domain size
INT_VAR_SIZE_MAX(t∗) largest domain size
INT_VAR_DEGREE_SIZE_MIN(t∗) smallest degree divided by domain size
INT_VAR_DEGREE_SIZE_MAX(t∗) largest degree by domain size
INT_VAR_AFC_SIZE_MIN(afc+,t∗) smallest AFC by domain size
INT_VAR_AFC_SIZE_MAX(afc+,t∗) largest AFC by domain size
INT_VAR_ACTION_SIZE_MIN(act+,t∗) smallest action by domain size
INT_VAR_ACTION_SIZE_MAX(act+,t∗) largest action by domain size
INT_VAR_CHB_SIZE_MIN(chb+,t∗) smallest chb by domain size
INT_VAR_CHB_SIZE_MAX(chb+,t∗) largest chb by domain size
INT_VAR_REGRET_MIN_MIN(t∗) smallest minimum-regret
INT_VAR_REGRET_MIN_MAX(t∗) largest minimum-regret
INT_VAR_REGRET_MAX_MIN(t∗) smallest maximum-regret
INT_VAR_REGRET_MAX_MAX(t∗) largest maximum-regret

Figure 8.1: Integer variable selection

123

INT_VAL_RND(r) random value
INT_VAL(v,c∗) defined by value function v and commit function c

INT_VAL_MIN() smallest value
INT_VAL_MED() greatest value not greater than the median
INT_VAL_MAX() largest value
INT_VAL_SPLIT_MIN() values not greater than mean of smallest and largest value
INT_VAL_SPLIT_MAX() values greater than mean of smallest and largest value
INT_VAL_RANGE_MIN() values from smallest range, if domain has several ranges;

otherwise, values not greater than mean
INT_VAL_RANGE_MAX() values from largest range, if domain has several ranges;

otherwise, values greater than mean
INT_VALUES_MIN() all values starting from smallest
INT_VALUES_MAX() all values starting from largest

Figure 8.2: Integer value selection

Branching on integer variables. For integer variables, variable selection is defined by a
value of class IntVarBranch and value selection is defined by a value of type IntValBranch.
Values of these types are obtained by calling functions (possibly taking arguments) that cor-
respond to variable and value selection strategies. For example, a call INT_VAR_SIZE_MIN()
returns an object of class IntVarBranch.

For an overview of the available variable selection strategies, see Figure 8.1 (see also
Variable selection for integer and Boolean variables) where ·∗ denotes an optional argument
and ·+ is a special argument to be explained below. Here, an argument r refers to a random
number generator of type Rnd. Using random number generators for branching is discussed
in Section 8.6. An argument m refers to a user-defined merit function of type IntBranchMerit
for integer variables and BoolBranchMerit for Boolean variables. User-defined merit func-
tions are discussed in Section 8.7. An argument afc refers to accumulated failure count
(AFC) information for integer variables (of class IntAFC). An argument act refers to action
information for integer variables (of class IntAction). An argument chb refers to CHB in-
formation for integer variables (of class IntCHB). For a discussion of AFC, action, and CHB,
see Section 8.5. Both afc+ and act+ can also be optional arguments of type double defining
a decay-factor, whereas the argument chb+ can be omitted. The optional argument t refers
to a tie-breaking limit function of type BranchTbl and is discussed in Section 8.9.

Omitting the variable selection strategy is equivalent to using INT_VAR_NONE().

An overview of the available value selection strategies for integer variables can be found
in Figure 8.2 (see also Value selection for integer and Boolean variables) where ·∗ denotes
an optional argument. Here, an argument r refers to a random number generator of type
Rnd which is discussed in Section 8.6. An argument v refers to a value selection func-
tion of type IntBranchVal. An optional argument c refers to a commit function of type
IntBranchCommit. Value and commit functions are discussed in Section 8.8.

Note that variable-value branchers are just common cases for branching based on the

124

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVarBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntValBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVarBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntCHB.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchVal.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html

idea of selecting variables and values. In Gecode also arbitrary other branchers can be pro-
grammed, see Part B.

Tip 8.1 (Variables are re-selected during branching). A variable-value branching selects a
variable for each choice it creates. Consider as an example a script using an integer variable
array x with three variables and domains [1 .. 4] created by

IntVarArray x(home, 3, 1, 4);

Let us assume that no constraints are posted on the variables in x and that a branching is
posted by

branch(home, x, INT_VAR_SIZE_MAX(), INT_VAL_SPLIT_MIN());

The branching starts by selecting x[0] as the first variable with the largest domain in the
array x and creates the choice

(x[0]≤ 2)∨ (x[0]> 2)

Now assume that search explores the first alternative which results in the domain {1, 2}
for x[0]. When search continues, the branching again selects the first variable with a largest
domain: hence x[1] is selected and not x[0].

In other words, a variable-value branching does not stick to a selected variable until the
variable becomes assigned. Instead, a variable-value branching re-selects a variable for each
choice it creates. ◭

Tip 8.2 (Do not try all values). Note that for INT_VALUES_MIN() and INT_VALUES_MAX(), a
variable-value branching creates a choice for each selected variable with one alternative per
value of the variable.

This is typically a poor choice, as none of the alternatives can benefit from propagation
that arises when other values of the same variable are tried. These branchings exist for
instructional purposes (well, they do create beautiful trees in Gist). ◭

Branching on Boolean variables. Similar to integer variables, variable selection for
Boolean variables is defined by a value of class BoolVarBranch and value selection is defined
by a value of type BoolValBranch. Values of these types are obtained by calling functions
(possibly taking arguments) that correspond to variable and value selection strategies.

For an overview of the available variable selection strategies, see Figure 8.3 (see also
Variable selection for integer and Boolean variables) where ·∗ denotes an optional argument
and ·+ is a special argument to be explained below. Here, an argument r refers to a random
number generator of type Rnd. An argument m refers to a user-defined merit function of type
BoolBranchMerit. An argument afc refers to accumulated failure count (AFC) information
for Boolean variables (of class BoolAFC). An argument act refers to action information for
Boolean variables (of class BoolAction). An argument chb refers to CHB information for

125

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolVarBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolValBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolAction.html

BOOL_VAR_NONE() first unassigned
BOOL_VAR_RND(r) randomly
BOOL_VAR_MERIT_MIN(m,t∗) smallest value of merit function m

BOOL_VAR_MERIT_MAX(m,t∗) largest value of merit function m

BOOL_VAR_DEGREE_MIN(t∗) smallest degree
BOOL_VAR_DEGREE_MAX(t∗) largest degree
BOOL_VAR_AFC_MIN(afc+,t∗) smallest accumulated failure count (AFC)
BOOL_VAR_AFC_MAX(afc+,t∗) largest accumulated failure count (AFC)
BOOL_VAR_ACTION_MIN(act+,t∗) lowest action
BOOL_VAR_ACTION_MAX(act+,t∗) highest action
BOOL_VAR_CHB_MIN(chb+,t∗) lowest CHB Q-score
BOOL_VAR_CHB_MAX(chb+,t∗) highest CHB Q-score

Figure 8.3: Boolean variable selection

BOOL_VAL_RND(r) random value
BOOL_VAL(v,c∗) defined by value function v and commit function c

BOOL_VAL_MIN() smallest value
BOOL_VAL_MAX() largest value

Figure 8.4: Boolean value selection

126

Boolean variables (of class BoolCHB). The optional argument t refers to a tie-breaking limit
function of type BranchTbl.

Omitting the variable selection strategy is equivalent to using BOOL_VAR_NONE().
An overview of the available value selection strategies for Boolean variables can be found

in Figure 8.4 (see also Value selection for integer and Boolean variables) where ·∗ denotes
an optional argument. Here, an argument r refers to a random number generator of type
Rnd. An argument v refers to a value selection function of type BoolBranchVal. An optional
argument c refers to a commit function of type BoolBranchCommit.

8.3 Branching on set variables

Important. Do not forget to add

#include <gecode/set.hh>

to your program when you want to branch on set variables.
For set variables, variable selection is defined by a value of class SetVarBranch (see also

Selecting set variables) and value selection is defined by a value of type SetValBranch (see
also Value selection for set variables).

For an overview of the available variable selection strategies, see Figure 8.5 (see also
Selecting set variables) where ·∗ denotes an optional argument and ·+ is a special argument
to be explained below. Here, an argument r refers to a random number generator of type Rnd.
Using random number generators for branching is discussed in Section 8.6. An argument m
refers to a user-defined merit function of type SetBranchMerit. User-defined merit functions
are discussed in Section 8.7. An argument afc refers to accumulated failure count (AFC)
information for set variables (of class SetAFC). An argument act refers to action information
for set variables (of class SetAction). An argument chb refers to CHB information for set
variables (of class SetCHB). For a discussion of AFC, action, and CHB, see Section 8.5. Both
afc+ and act+ can also be optional arguments of type double defining a decay-factor. The
argument ?chb?+ can be omitted. The optional argument t refers to a tie-breaking limit
function of type BranchTbl and is discussed in Section 8.9.

Omitting the variable selection strategy is equivalent to using SET_VAR_NONE().
An overview of the available value selection strategies for set variables can be found in

Figure 8.6 where ·∗ denotes an optional argument. Here, an argument r refers to a random
number generator of type Rnd which is discussed in Section 8.6. An argument v refers to a
value selection function of type SetBranchVal. An optional argument c refers to a commit
function of type SetBranchCommit. Value and commit function are discussed in Section 8.8.

8.4 Branching on float variables

Important. Do not forget to add

#include <gecode/float.hh>

127

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolCHB.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchVal.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVarBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranchVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetValBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranchVal.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranchVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetCHB.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html

SET_VAR_NONE() first unassigned
SET_VAR_RND(r) randomly
SET_VAR_MERIT_MIN(m,t∗) smallest value of merit function m

SET_VAR_MERIT_MAX(m,t∗) largest value of merit function m

SET_VAR_DEGREE_MIN(t∗) smallest degree
SET_VAR_DEGREE_MAX(t∗) largest degree
SET_VAR_AFC_MIN(afc+,t∗) smallest accumulated failure count (AFC)
SET_VAR_AFC_MAX(afc+,t∗) largest accumulated failure count (AFC)
SET_VAR_ACTION_MIN(act+,t∗) lowest action
SET_VAR_ACTION_MAX(act+,t∗) highest action
SET_VAR_CHB_MIN(chb+,t∗) lowest CHB Q-score
SET_VAR_CHB_MAX(chb+,t∗) highest CHB Q-score
SET_VAR_MIN_MIN(t∗) smallest minimum unknown element
SET_VAR_MIN_MAX(t∗) largest minimum unknown element
SET_VAR_MAX_MIN(t∗) smallest maximum unknown element
SET_VAR_MAX_MAX(t∗) largest maximum unknown element
SET_VAR_SIZE_MIN(t∗) smallest unknown set
SET_VAR_SIZE_MAX(t∗) largest unknown set
SET_VAR_DEGREE_SIZE_MIN(t∗) smallest degree divided by domain size
SET_VAR_DEGREE_SIZE_MAX(t∗) largest degree divided by domain size
SET_VAR_AFC_SIZE_MIN(afc+,t∗) smallest AFC divided by domain size
SET_VAR_AFC_SIZE_MAX(afc+,t∗) largest AFC divided by domain size
SET_VAR_ACTION_SIZE_MIN(act+,t∗) smallest action divided by domain size
SET_VAR_ACTION_SIZE_MAX(act+,t∗) largest action divided by domain size
SET_VAR_CHB_SIZE_MIN(chb+,t∗) smallest CHB divided by domain size
SET_VAR_CHB_SIZE_MAX(chb+,t∗) largest CHB divided by domain size

Figure 8.5: Set variable selection

SET_VAL_RND_INC(r) include random element
SET_VAL_RND_EXC(r) exclude random element
SET_VAL(v,c∗) defined by value function v and commit function c

SET_VAL_MIN_INC() include smallest element
SET_VAL_MIN_EXC() exclude smallest element
SET_VAL_MED_INC() include median element (rounding downwards)
SET_VAL_MED_EXC() exclude median element (rounding downwards)
SET_VAL_MAX_INC() include largest element
SET_VAL_MAX_EXC() exclude largest element

Figure 8.6: Set value selection

128

FLOAT_VAR_NONE() first unassigned
FLOAT_VAR_RND(r) randomly
FLOAT_VAR_MERIT_MIN(m,t∗) smallest value of merit function m

FLOAT_VAR_MERIT_MAX(m,t∗) largest value of merit function m

FLOAT_VAR_DEGREE_MIN(t∗) smallest degree
FLOAT_VAR_DEGREE_MAX(t∗) largest degree
FLOAT_VAR_AFC_MIN(afc+,t∗) smallest accumulated failure count (AFC)
FLOAT_VAR_AFC_MAX(afc+,t∗) largest accumulated failure count (AFC)
FLOAT_VAR_ACTION_MIN(act+,t∗) lowest action
FLOAT_VAR_ACTION_MAX(act+,t∗) highest action
FLOAT_VAR_CHB_MIN(chb+,t∗) lowest CHB Q-score
FLOAT_VAR_CHB_MAX(chb+,t∗) highest CHB Q-score
FLOAT_VAR_MIN_MIN(t∗) smallest minimum value
FLOAT_VAR_MIN_MAX(t∗) largest minimum value
FLOAT_VAR_MAX_MIN(t∗) smallest maximum value
FLOAT_VAR_MAX_MAX(t∗) largest maximum value
FLOAT_VAR_SIZE_MIN(t∗) smallest domain size
FLOAT_VAR_SIZE_MAX(t∗) largest domain size
FLOAT_VAR_DEGREE_SIZE_MIN(t∗) smallest degree divided by domain size
FLOAT_VAR_DEGREE_SIZE_MAX(t∗) largest degree divided by domain size
FLOAT_VAR_AFC_SIZE_MIN(afc+,t∗) smallest AFC divided by domain size
FLOAT_VAR_AFC_SIZE_MAX(afc+,t∗) largest AFC divided by domain size
FLOAT_VAR_ACTION_SIZE_MIN(act+,t∗) smallest action divided by domain size
FLOAT_VAR_ACTION_SIZE_MAX(act+,t∗) largest action divided by domain size
FLOAT_VAR_CHB_SIZE_MIN(chb+,t∗) smallest chb divided by domain size
FLOAT_VAR_CHB_SIZE_MAX(chb+,t∗) largest chb divided by domain size

Figure 8.7: Float variable selection

to your program when you want to branch on float variables.

For float variables, variable selection is defined by a value of class FloatVarBranch (see
also Variable selection for float variables) and value selection is defined by a value of type
FloatValBranch (see also Value selection for float variables).

For an overview of the available variable selection strategies, see Figure 8.7 (see also
Variable selection for float variables) where ·∗ denotes an optional argument and ·+ is a spe-
cial argument to be explained below. Here, an argument r refers to a random number gener-
ator of type Rnd. Using random number generators for branching is discussed in Section 8.6.
An argument m refers to a user-defined merit function of type FloatBranchMerit. User-
defined merit functions are discussed in Section 8.7. An argument afc refers to accumulated
failure count (AFC) information for float variables (of class FloatAFC). An argument act
refers to action information for float variables (of class FloatAction). An argument chb
refers to CHB information for float variables (of class FloatCHB). For a discussion of AFC, ac-

129

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVarBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranchVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatValBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranchVal.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranchVar.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatCHB.html

FLOAT_VAL(v,c∗) defined by value function v and commit function c

FLOAT_VAL_SPLIT_RND(r) values not smaller or larger than mean
(smaller or larger is randomly selected)

FLOAT_VAL_SPLIT_MIN() values not greater than mean
FLOAT_VAL_SPLIT_MAX() values not smaller than mean

Figure 8.8: Float value selection

tion, and CHB, see Section 8.5. Both afc+ and act+ can also be optional arguments of type
double defining a decay-factor. The argument chb+ can be ommitted. The optional argument
t refers to a tie-breaking limit function of type BranchTbl and is discussed in Section 8.9.

Omitting the variable selection strategy is equivalent to using FLOAT_VAR_NONE().

An overview of the available value selection strategies for float variables can be found
in Figure 8.8 where ·∗ denotes an optional argument. Here, an argument r refers to a ran-
dom number generator of type Rnd which is discussed in Section 8.6. An argument v refers
to a value selection function of type FloatBranchVal. An optional argument c refers to a
commit function of type FloatBranchCommit. Value and commit function are discussed in
Section 8.8.

8.5 Local versus shared variable selection criteria

The criteria used for selecting variables are either local or shared. A local variable selection
criterion depends only on a brancher’s home space. A shared variable selection criterion
depends not only on the brancher’s home space but also on all spaces that have been created
during search sharing the same root space where the brancher had originally been posted.
That entails that a shared criterion can use information that is collected during search. In
terms of Section 9.1, a shared variable selection criterion depends on all equivalent spaces
created by cloning.

8.5.1 Local variable selection criteria

All selection criteria but those based on AFC, action, and CHB are local: they either se-
lect variables without using any information on a variable (INT_VAR_NONE()), select vari-
ables randomly (INT_VAR_RND(r), see also Section 8.6), or use the degree or domain of
a variable for selection. The user-defined selection criteria INT_VAR_MERIT_MIN() and
INT_VAR_MERIT_MAX() in addition have access to the home space and the selected variable’s
position, see Section 8.7 for details.

The degree of a variable is the number of propagators depending on the variable (useful
as an approximate measure of how constrained a variables is).

The minimum-regret for integer and Boolean variables is the difference between the small-
est and second smallest value in the domain of a variable (maximum-regret is analogous).

130

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html

8.5.2 Selection using accumulated failure count

The accumulated failure count (AFC) of a variable is a shared selection criterion. It is defined
as the sum of the AFCs of all propagators depending on the variable plus its degree (to give
a good initial value if the AFCs of all propagators are still zero). The AFC of a propagator
counts how often the propagator has failed during search. The AFC of a variable is also
known as the weighted degree of a variable [8].

AFC in Gecode supports decay as follows. Each time a propagator fails during constraint
propagation (by executing the status() function of a space, see also Tip 2.2), the AFC of all
propagators is updated:

■ If the propagator p failed, the AFC afc(p) of p is incremented by 1:

afc(p) = afc(p) + 1

For all other propagators q, the AFC afc(q) of q is updated by a decay-factor d (0 <
d≤ 1):

afc(q) = d · afc(q)
■ The AFC afc(x) of a variable x is then defined as:

afc(x) = afc(p1) + · · ·+ afc(pn)

where the propagators pi depend on x.

■ The AFC afc(p) of a propagator p is initialized to 1. That entails that the AFC of a
variable x is initialized to its degree.

In order to use AFC for branching, one must create an object of class IntAFC for integer
variables, an object of class BoolAFC for Boolean variables, an object of class SetAFC for set
variables, or an object of class FloatAFC for float variables. The object is responsible for
recording AFC information1.

If x is an integer variable array, then

IntAFC afc(home,x,0.99);

initializes the AFC information afc for the variables in x with decay-factor d = 0.99. The
decay-factor is optional and defaults to no decay (d = 1).

The decay-factor can be changed later, say to d= 0.95, by

afc.decay(0.95);

and afc.decay() returns the current decay-factor of afc.
A branching for integer variables using AFC information must be given an object of type

IntAFC as argument:

1Gecode cheats a little bit with the implementation of AFC: while it is possible (but not common) to have
more than a single AFC object, all will use the same decay-factor d. The decay-factor used is the one defined
by the AFC object created last. But as using several AFC objects with different decay-factors is not really that
useful, Gecode takes a shortcut here.

131

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetAFC.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatAFC.html

branch(home, x, INT_VAR_AFC_MAX(afc), INT_VAL_MIN());

Here the integer variable array x must be exactly the same that has been used for creating
the integer AFC object afc.

The AFC object can be omitted if one does not want to change the decay-factor later,
hence it is sufficient to pass the decay-factor as argument. For example:

branch(home, x, INT_VAR_AFC_MAX(0.99), INT_VAL_MIN());

uses AFC information with a decay-factor of 0.99. Even the decay-factor can be omitted and
defaults to 1 (that is, no decay).

AFC for other variable types is analogous.
For an example using a decay-factor with AFC, see Section 22.4.

8.5.3 Selection using action

The action of a variable is a shared criterion and captures how often the domain of a variable
has been reduced during constraint propagation.

The action of a variable is maintained by constraint propagation as follows. Each time
constraint propagation finishes (even if it finishes with failure) during search (by executing
the status() function of a space, see also Tip 2.2), the action of a variable x is updated [38]:

■ If the variable x has not been pruned (that is, no values have been removed from the
domain of x through propagation), the action action(x) of x is updated by a decay-
factor d (0< d≤ 1):

action(x) = d · action(x)
■ If the variable x has been pruned, the action action(x) of x is incremented by 1:

action(x) = action(x) + 1

■ The action of a variable x is initialized to be one.

Note that in [38] action is called activity. However, as the activity of a variable during search
in SAT is a well-established and different concept (see for example [14]), Gecode uses the
term action instead.

In order to use action for branching, one must create an object of class IntAction for
integer variables, an object of class BoolAction for Boolean variables, an object of class
SetAction for set variables, or an object of class FloatAction for float variables. The object
is responsible for recording action information.

If x is an integer variable array, then

IntAction act(home,x,0.99);

initializes the action information act for the variables in x with decay-factor d = 0.99. The
decay-factor is optional and defaults to no decay (d = 1).

132

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatAction.html

Note that it can be specified whether the action counter is incremented when a variable is
pruned (propagation) or when a variable domain has been wiped out (failure). For example,
the following creates action information that onky considers propagation:

IntAction act(home,x,0.99,true,false);

whereas the following only considers failure:

IntAction act(home,x,0.99,false,true);

By default, both are considered which corresponds to:

IntAction act(home,x,0.99,true,true);

The action of each variable in an array x can be initialized by a merit function, see
Section 8.7. Here

IntAction act(home,x,0.99,true,true

[](const Space& home, IntVar x, int i) {

return 1.0;

});

initializes the action of x[i] to 1.0.

The decay-factor can be changed later, say to d= 0.95, by

act.decay(0.95);

and act.decay() returns the current decay-factor of act.

A branching for integer variables using action information must be given an object of type
IntAction as argument:

branch(home, x, INT_VAR_ACTION_MAX(act), INT_VAL_MIN());

Here the integer variable array x must be exactly the same that has been used for creating
the integer action object act.

The action object can be omitted if one does not want to change the decay-factor later,
hence it is sufficient to pass the decay-factor as argument. For example:

branch(home, x, INT_VAR_ACTION_MAX(0.99), INT_VAL_MIN());

uses action information with a decay-factor of 0.99. Even the decay-factor can be omitted
and defaults to 1 (that is, no decay).

Action for other variable types is analogous.

133

8.5.4 Selection using CHB

The CHB (for conflict-history based branching) Q-score of a variable is a shared criterion and
combines how often the domain of a variable has been reduced during constraint propagation
with how recently the variable has been reduced during failure. CHB in Gecode is based
on [30] which presents the heuristic for a SAT solver. Here, we use the term failure instead
of conflict as originally in [30].

The Q-score qs(x) of a variable x is maintained by constraint propagation as follows. For
the computation of the Q-score, the following two variables are used:

■ The failure counter #f counts how often failure has been encountered. That is, each
time a space is failed, #f is incremented by one and it is initialized to zero.

■ The step size α is also updated when a failure occurs, it is updated by

α= α− 10−6

provided α > 0.06. If α≤ 0.06, its value does not change. α is initialized to 0.4.

In addition to the Q-score for a variable, CHB also maintains the last failure lf(x) of a vari-
able x. Each time constraint propagation finishes during search (by executing the status()

function of a space, see also Tip 2.2), the Q-score qs(x) and the last failure lf(x) of a variable
x are updated as follows:

■ If the variable x has not been pruned (that is, no values have been removed from the
domain of x through propagation), the Q-score qs(x) and the last failure lf(x) do not
change.

■ If the variable x has been pruned and propagation has failed, the last failure lf(x) is
updated to

lf(x) = #f

and the Q-score is updated to

qs(x) = (1−α)qs(x) +αr

where the reward r is defined as

r =
1

#f− lf(x) + 1

■ If the variable x has been pruned and propagation has not failed, the last failure lf(x)

remains unchanged and the Q-score is updated to

qs(x) = (1−α)qs(x) +αr

where the reward r is defined as

r =
0.9

#f− lf(x) + 1

134

■ The Q-score qs(x) of a variable x is by default initialized to be 0.05.

In order to use CHB Q-scores for branching, one must create an object of class IntCHB for
integer variables, an object of class BoolCHB for Boolean variables, an object of class SetCHB
for set variables, or an object of class FloatCHB for float variables. The object is responsible
for recording CHB Q-score information.

If x is an integer variable array, then

IntCHB chb(home,x);

initializes the CHB information chb for the variables in x.

The Q-score of each variable in an array x can be initialized by a merit function, see
Section 8.7. Here

IntCHB chb(home,x,

[](const Space& home, IntVar x, int i) {

return 0.0;

});

initializes the Q-score of x[i] to 1.0.

A branching for integer variables using CHB information must be given an object of type
IntCHB as argument. For example, the following brancher will select variables with largest
Q-score as defined by chb first:

branch(home, x, INT_VAR_CHB_MAX(chb), INT_VAL_MIN());

Here the integer variable array x must be exactly the same that has been used for creating
the integer CHB object chb.

The CHB object can be omitted if one does not want to initialize the Q-score explicitly as
described above.

CHB for other variable types is analogous.

8.6 Random variable and value selection

One particular strategy for variable and value selection is by random. For integer vari-
ables, INT_VAR_RND(r) selects a random variable and INT_VAL_RND(r) selects a ran-
dom value where r is a random number generator of class Rnd. For Boolean variables,
BOOL_VAR_RND(r) selects a random variable and BOOL_VAL_RND(r) selects a random value.
For set variables, SET_VAR_RND(r) selects a random variable and SET_VAL_RND_INC(r) and
SET_VAL_RND_EXC(r) include and exclude a random value from a set variable. For float
variables, FLOAT_VAR_RND(r) selects a random variable and FLOAT_VAL_SPLIT_RND(r) ran-
domly selects the lower or upper half of the domain of a float variable.

135

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntCHB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolCHB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetCHB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatCHB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html

The random number generators used for random variable and value selection follow a
uniform distribution and must be initialized by a seed value. For example, a random number
generator r is created and initialized with a seed value of 1 (the seed value must be an
unsigned int) by

Rnd r(1U);

The seed value can be changed with the seed() function (if needed, the seed() function
initializes the random number generator). For example, by

r.seed(2U);

the seed value is set to 2 (the seed() function also expects an argument of type
unsigned int).

A random number generator is passed by reference to the brancher. In the terms of
Section 4.2, a random number generator is a proper data structure. When a random number
generator is stored as a member of a space it must be updated by using the update() function
of the random number generator.

It is possible to use the same random number generator for both variable and value se-
lection. For example, by

Rnd r(1U);

branch(home, x, INT_VAR_RND(r), INT_VAL_RND(r));

both the variable in x as well as its value are randomly selected using the numbers generated
by r. It is of course also possible to use two separate random number generators as in:

Rnd r1(1U), r2(1U);

branch(home, x, INT_VAR_RND(r1), INT_VAL_RND(r2));

8.7 User-defined variable selection

Variables can be selected according to user-defined criteria implemented as a merit func-

tion. For integer variables, the type of the merit function is IntBranchMerit, for Boolean
variables BoolBranchMerit, for set variables SetBranchMerit, and for float variables
FloatBranchMerit. For integer variables, the type IntBranchMerit is defined as

std::function<double(const Space& home, IntVar x, int i)>

where home refers to the home space, x is the integer variable for which a merit value should
be computed and i refers to the position of x in the integer variable array passed as argument
to the branch() function. The merit function types for Boolean, set, and float variables are
analogous.

For example, the following merit function

136

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html

Variable type Value function type Value type

IntVar IntBranchVal int

BoolVar BoolBranchVal int

SetVar SetBranchVal int

FloatVar FloatBranchVal FloatNumBranch

Figure 8.9: Branch value functions

auto m = [](const Space& home, IntVar x, int i) {

return x.size();

}

simply returns the domain size of the integer variable x as the merit value. The merit function
can be used to select a variable with either smallest or largest merit value. By

branch(home, INT_VAR_MERIT_MIN(m), INT_VAL_MIN());

a variable with least merit value according to the merit function m() is selected (that is, the
first variable in the array with smallest size). A variable with maximal merit value is selected
by:

branch(home, INT_VAR_MERIT_MAX(m), INT_VAL_MIN());

8.8 User-defined value selection

The value selected for branching and how the selected value is used for branching can be
defined by branch value functions and branch commit functions.

A branch value function takes a constant reference to a space, a variable, and the variable’s
position and returns a value, where the type of the value depends on the variable type.
Figure 8.9 lists the branch value function types and the value types for the different variable
types. For example, the type IntBranchVal for value functions for integer variables is defined
as:

std::function<int(const Space& home, IntVar x, int i)>

A branch commit function takes a reference to a space, the number of the alternative a (0
for the first alternative and 1 for the second alternative), a variable, the variable’s position,
and a value selected by a branch value function. For example, the type IntBranchCommit

for branch commit functions for integer variables is defined as:

std::function<void(Space& home, unsigned int a,

IntVar x, int i, int n)>

Let us consider INT_VAL_MIN() as an example, but re-implemented by value and commit
functions. The value function can be defined as:

137

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatNumBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html

Variable type Commit function type Default behavior

IntVar IntBranchCommit (x= n)∨ (x 6= n)

BoolVar BoolBranchCommit (x= n)∨ (x 6= n)

SetVar SetBranchCommit (n ∈ x)∨ (n 6∈ x)
FloatVar FloatBranchCommit (x≤ n)∨ (x≥ n)

Figure 8.10: Branch commit functions

auto v = [](const Space& home, IntVar x, int i) {

return x.min();

}

and the commit function as:

auto c = [](Space& home, unsigned int a,

IntVar x, int i, int n) {

if (a == 0U) {

rel(home, x, IRT_EQ, n);

} else {

rel(home, x, IRT_NQ, n);

}

}

A branching using the value and commit function then can be posted by:

branch(home, x, INT_VAR_NONE(), INT_VAL(v,c));

The commit function is optional. If the commit function is omitted, a default commit
function depending on the variable type is used. For integer variables, for example, the
commit function corresponds to the commit function from the previous example. Hence, it
is sufficient to post the brancher as:

branch(home, x, INT_VAR_NONE(), INT_VAL(v));

Figure 8.10 lists the commit function types and the behavior of the default commit func-
tion for the different variable types. The variable x refers to the variable selected by the
brancher and n to the value selected by the branch value function.

For examples which use value functions to implement problem-specific branching, see
Black hole patience and The balanced academic curriculum problem.

8.9 Tie-breaking

The default behavior for tie-breaking during variable selection is that the first variable (that
is the variable with the lowest index in the array) satisfying the selection criteria is selected.
For many applications that is not sufficient.

138

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatVar.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html
https://www.gecode.org/doc/6.2.0/reference/black-hole_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/bacp_8cpp.html

A typical example for integer variables is to select a most constrained variable first (the
variable most propagators depend on, that is, with largest degree). Then, among the most
constrained variables select the variable with the smallest domain. This can be achieved by
using the tiebreak() function:

branch(home, x, tiebreak(INT_VAR_DEGREE_MAX(),

INT_VAR_SIZE_MIN()),

INT_VAL_MIN());

The overloaded function tiebreak() (see Tie-breaking for variable selection) takes up to
four variable selection values.

Random selection is particularly interesting for tie-breaking. For example, breaking ties
by first selecting a variable with smallest domain and then selecting a random variable among
those with smallest domain is obtained by:

branch(home, x, tiebreak(INT_VAR_SIZE_MIN(),

INT_VAR_RND(r)),

INT_VAL_MIN());

Here, r must be a random number generator as discussed in Section 8.6.

Using tie-breaking limit functions. In the discussion so far only exact ties have been con-
sidered. Often it is necessary to consider several variables as ties even though some of them
are not among the best variables. Which variables are considered as ties can be controlled
by tie-breaking limit functions.

A tie-breaking limit function has the type BranchTbl which is defined as:

std::function<double(const Space& home, double w, double b)>

The function takes a constant reference to a space home, the worst merit value w, and the best
merit value b as arguments. The value returned by the function determines which variables
are considered as ties.

Let us consider an example where we branch over four integer variables from the integer
variable array x where the domains of the variables are as follows:

x[0] ∈ {1, 2, 3, 4} x[1] ∈ {2, 3, 4} x[2] ∈ {1, 2, 4} x[3] ∈ {1, 2, 3, 4, 5, 6, 7}

Without a tie-breaking limit function as in (here, r is a random number generator):

branch(home, x, tiebreak(INT_VAR_SIZE_MIN(),

INT_VAR_RND(r)),

INT_VAL_MIN());

the variables x[1] and x[2] (both with size as the merit value 3.0) are considered as ties
and random variable selection will choose one of them.

139

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranchTieBreak.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranch.html

Likewise, when branching with

branch(home, x, tiebreak(INT_VAR_SIZE_MAX(),

INT_VAR_RND(r)),

INT_VAL_MIN());

only variable x[3] will be considered as the single variable with the best merit value 7.0.

The following tie-breaking limit function

auto tbl = [](const Space& home, double w, double b) {

return (w + b) / 2.0;

}

returns the average of the worst merit value w and the best merit value b. Using the function
tbl() for tie-breaking is done by passing it as additional argument.

For example, when using tbl() with

branch(home, x, tiebreak(INT_VAR_SIZE_MIN(tbl),

INT_VAR_RND(r)),

INT_VAL_MIN());

the function tbl() is called with w = 7.0 and b = 3.0 and returns (7.0 + 3.0)/2.0 = 5.0.
Hence, the three variables x[0], x[1], and x[2] are considered for tie-breaking and random
selection will make a choice among these three variables.

For example, when using tbl() with

branch(home, x, tiebreak(INT_VAR_SIZE_MAX(tbl),

INT_VAR_RND(r)),

INT_VAL_MIN());

the function tbl() is called with w = 3.0 and b = 7.0 and returns (3.0 + 7.0)/2.0 = 5.0.
Hence, only variable x[3] is considered for tie-breaking.

Note that worse and best depends on whether the variable selection tries to minimize
or maximize the merit value. If a tie-breaking limit function returns a value that is worse
than the worst merit value, all variables are considered for tie-breaking. If a function returns
a value that is better than the best value, the returned value is ignored and the best value
is considered as limit (in which case, tie-breaking works exactly the same as if not using a
tie-breaking limit function at all).

8.10 Lightweight Dynamic Symmetry Breaking

Gecode supports automatic symmetry breaking with Lightweight Dynamic Symmetry Breaking

(LDSB [35]). To use LDSB, you specify your problem’s symmetries as part of the branch()

function.

140

LATIN SQUARE LDSB ≡ [DOWNLOAD]

class LatinSquare : public Script {

· · ·
LatinSquare(const SizeOptions& opt)

: Script(opt), n(opt.size()), x(*this,n*n,0,n-1) {

Matrix<IntVarArgs> m(x, n, n);

for (int i=0; i<n; i++)

distinct(*this, m.row(i));

for (int i=0; i<n; i++)

distinct(*this, m.col(i));

◮ SYMMETRY BREAKING

}

· · ·
};

Figure 8.11: A Gecode model for Latin Squares with LDSB

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

1 0 3 2

0 1 2 3

2 3 0 1

3 2 1 0

0 2 1 3

1 3 0 2

2 0 3 1

3 1 2 0

0 3 2 1

3 0 1 2

2 1 0 3

1 2 3 0

Figure 8.12: Symmetric solutions of the Latin Square problem

Consider the model for the Latin Square problem in Figure 8.11. A Latin Square is an
n× n matrix (see Section 7.2) where each cell takes a value between 0 and n−1 and no two
values in a row or a column are the same. This is easily implemented using integer variables
and distinct constraints.

The model has many solutions that are essentially the same due to symmetry. For exam-
ple, the four solutions in Figure 8.12 are symmetric: from the top-left solution, we can get
the top-right one by exchanging the first two rows, the bottom-left one by exchanging the
second and third column, and the bottom-right one by swapping the values 1 and 3.

Gecode supports dynamic symmetry breaking, i.e., given a specification of the symmetries,
it can avoid visiting symmetric states during the search, which can result in dramatically
smaller search trees and greatly improved runtime for some problems.

Symmetries are specified by passing an object of type Symmetries to the branch() func-

141

https://www.gecode.org/doc/6.2.0/MPG/latin-square-ldsb.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Symmetries.html

tion. In the case of Latin Squares, we can easily break the value symmetry (that is, values
that are interchangeable) as follows:

SYMMETRY BREAKING ≡
Symmetries syms;

syms << ValueSymmetry(IntArgs::create(n,0));

◮ ROW/COLUMN SYMMETRY

branch(*this, x, INT_VAR_NONE(), INT_VAL_MIN(), syms);

Here, IntArgs::create(n,0) creates an array of integers with values 0,1, . . . ,n− 1 which
specifies that all these values are symmetric, that is, interchangeable.

For the row and column symmetries, we need to declare a VariableSequenceSymmetry

(see Symmetry declarations), which states that certain sequences of variables (in this case the
rows and columns) are interchangeable:

ROW/COLUMN SYMMETRY ≡
IntVarArgs rows;

for (int r = 0; r < m.height(); r++)

rows << m.row(r);

syms << VariableSequenceSymmetry(rows, m.width());

IntVarArgs cols;

for (int c = 0; c < m.width(); c++)

cols << m.col(c);

syms << VariableSequenceSymmetry(cols, m.height());

Now the number of Latin squares found and the search effort required are greatly reduced.
The code for the example in Figure 8.11 has command line options for toggling between no
symmetry breaking and LDSB.

For examples, consider Clique-based graph coloring and Steel-mill slab design problem.

8.10.1 Specifying Symmetry

LDSB supports four basic types of symmetry (see Symmetry declarations). Collections of
symmetries are stored in a Symmetries object, which is passed to the branch() function.
Any combination of symmetries is allowed.

■ A VariableSymmetry represents a set of variables that are interchangeable.

■ A ValueSymmetry represents a set of values that are interchangeable.

■ A VariableSequenceSymmetry represents a set of sequences of variables that are inter-
changeable.

■ A ValueSequenceSymmetry represents a set of sequences of values that are interchange-
able.

142

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchSymm.html
https://www.gecode.org/doc/6.2.0/reference/graph-color_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/steel-mill_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchSymm.html

In addition to constructing these symmetries directly, there are also some convenient
functions for creating common kinds of symmetry:

■ values_reflect(), to map L to U , L + 1 to U − 1 and so on, where L and U are the
bounds of a variable

■ rows_interchange(), to specify that the rows of a matrix are interchangeable (see
Gecode::Matrix)

■ columns_interchange(), to specify that the columns of a matrix are interchangeable
(see Gecode::Matrix)

■ rows_reflect(), to specify that a matrix’s rows can be reflected (first row to last row,
second row to second-last row and so on, see Gecode::Matrix)

■ columns_reflect(), to specify that a matrix’s columns can be reflected (see
Gecode::Matrix)

■ diagonal_reflect(), to specify that a matrix can be reflected around its main diago-
nal (the matrix must be square, see Gecode::Matrix)

8.10.2 Notes

Symmetry breaking by LDSB is not guaranteed to be complete. That is, a search may still
return two distinct solutions that are symmetric.

Combining LDSB with other forms of symmetry breaking — such as static ordering con-
straints — is not safe in general, and can cause the search to miss some solutions.

LDSB works with integer, Boolean, and set variables, and with any variable selection
strategy. For integer variables, only value selection strategies that result in the variable being
assigned on the left branch (such as INT_VAL_MIN(), INT_VAL_MED(), INT_VAL_MAX() or
INT_VAL_RND()) are supported, other parameters throw an exception.

8.11 Using branch filter functions

By default, a variable-value branching continues to branch until all variables passed to the
branching are assigned. This behavior can be changed by using a branch filter function.

A branch filter function is called during branching for each variable to be branched on.
If the filter function returns true, the variable is considered for branching. Otherwise, the
variable is simply ignored.

A branch filter function can be passed as the second to last (optional) argument when
calling the branch() function.

143

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Matrix.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Matrix.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Matrix.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Matrix.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Matrix.html

BRANCH FILTER FUNCTION SKETCH ≡
class Model : public Space {

protected:

IntVarArray x;

public:

Model(void) : · · · {
· · ·
◮ POST BRANCHING

}

· · ·
◮ DEFINE FILTER FUNCTION

};

Figure 8.13: Model sketch for branch filter function

The type of a branch filter function depends on the variable type. For integer variables,
the type IntBranchFilter is defined as

typedef std::function<bool(const Space& home, IntVar x, int i)>

IntBranchFilter;

That is, a branch filter function takes the home space and the position i of the variable x as
argument. The position i refers to the position of the variable x in the array of variables
used for posting the branching. For Boolean variables, the type is BoolBranchFilter, for set
variables SetBranchFilter, and for float variables FloatBranchFilter.

Assume, for example, that we want to branch only on variables from a variable array x

for branching with a domain size of at least 4. Consider the sketch of a model shown in
Figure 8.13.

The branch filter function can be defined as a static member function of the class Model
as follows:

DEFINE FILTER FUNCTION ≡
static bool filter(const Space& home, IntVar y, int i) {

return y.size() >= 4;

}

Specifying that the branching should use the filter function is done as follows:

POST BRANCHING ≡
branch(home, x, · · ·, · · ·, &filter);

8.12 Using variable-value print functions

Search engines such as Gist (see Section 10.3.4) or others (see Tip 41.1) use print() func-
tions provided by branchers to display information about the alternatives that are explored

144

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html

during search. The information displayed for variable-value branchers can be programmed
by using a variable-value print function.

A variable-value print function can be passed as the last (optional) argument when calling
the branch() function.

The type of a variable-value print function depends on the variable type. For integer
variables, the type IntVarValPrint is defined as

std::function<void(const Space &home,

const Brancher& b, unsigned int a,

IntVar x, int i, const int& n,

std::ostream& o)>

That is, a variable-value print function takes the home space, a brancher b, the number of the
alternative a, the position i of the variable x, and the integer value n as argument. The infor-
mation will be printed on the standard output stream o. The position i refers to the position
of the variable x in the array of variables used for posting the branching. For Boolean vari-
ables, the type is BoolVarValPrint, for set variables SetVarValPrint, and for float variables
FloatVarValPrint.

For an example of how to use variable-value print functions, see Chapter 22.

8.13 Assigning integer, Boolean, set, and float variables

A special variant of branching is assigning variables: for a not yet assigned variable the
branching creates a single alternative which assigns the variable a value. The effect of assign-
ing is that assignment is interleaved with constraint propagation. That is, after an assignment
has been done, the next assignment will be done only after the effect of the previous assign-
ment has been propagated.

For example, the next code fragment assigns all integer variables in x to their smallest
possible value:

assign(home, x, INT_ASSIGN_MIN());

with the default variable selection strategy to select the next unassigned variable. All other
variable selection criteria can also be used, the following is equivalent to the previous exam-
ple:

assign(home, x, INT_VAR_NONE(), INT_ASSIGN_MIN());

The strategy to select the value for assignment is defined by a value of class IntAssign
(see also Value selection for assigning integer variables) for integer variables, by a value of
class BoolAssign (see also Value selection for assigning integer variables) for Boolean vari-
ables, by a value of class SetAssign (see also Assigning set variables) for set variables, and
by a value of class FloatAssign (see also Value selection for assigning float variables) for
float variables.

145

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntAssign.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchAssign.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolAssign.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranchAssign.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetAssign.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranchAssign.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatAssign.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranchAssign.html

INT_ASSIGN_MIN() smallest value
INT_ASSIGN_MED() median value (rounding downwards)
INT_ASSIGN_MAX() maximum value
INT_ASSIGN_RND(r) random value
INT_ASSIGN(v,c∗) defined by value function v and commit function c

BOOL_ASSIGN_MIN() smallest value
BOOL_ASSIGN_MAX() maximum value
BOOL_ASSIGN_RND(r) random value
BOOL_ASSIGN(v,c∗) defined by value function v and commit function c

SET_ASSIGN_MIN_INC() include smallest element
SET_ASSIGN_MIN_EXC() exclude smallest element
SET_ASSIGN_MED_INC() include median element (rounding downwards)
SET_ASSIGN_MED_EXC() exclude median element (rounding downwards)
SET_ASSIGN_MAX_INC() include largest element
SET_ASSIGN_MAX_EXC() exclude largest element
SET_ASSIGN_RND_INC(r) include random element
SET_ASSIGN_RND_EXC(r) exclude random element
SET_ASSIGN(v,c∗) defined by value function v and commit function c

FLOAT_ASSIGN_MIN() median value of lower part
FLOAT_ASSIGN_MAX() median value of upper part
FLOAT_ASSIGN_RND(r) median value of randomly chosen part
FLOAT_ASSIGN(v,c∗) defined by value function v and commit function c

Figure 8.14: Value selection for assigning variables

146

Figure 8.14 summarizes the value selection strategies for assigning integer, Boolean, set,
and float variables. Here, an argument r refers to a random number generator of type
Rnd which is discussed in Section 8.6. An argument v refers to a value selection func-
tion of type IntBranchVal for integer variables, BoolBranchVal for Boolean variables,
SetBranchVal for set variables, and FloatBranchVal for float variables. An optional ar-
gument c refers to a commit function of type IntBranchCommit for integer variables, of type
BoolBranchCommit for Boolean variables, of type SetBranchCommit for set variables, and of
type FloatBranchCommit for float variables. Value and commit function can be used in the
same way for assigning than for branching as described in Section 8.8. The only difference
is that the number of the alternative passed to the commit function is always zero (as there
is only a single alternative).

The assign() function also accepts a branch filter function as described in Section 8.11
as well as a variable-value print function as optional argument, see Section 8.12 for details,
and can assign a single variable.

8.14 Executing code between branchers

A common scenario is to post some constraints only after part of the branching has been exe-
cuted. This is supported in Gecode by a brancher (see Branch with a function) that executes
a function (any function that is compatible with the type std::function).

Suppose the following code fragment defining a model Model:

class Model : public Space {

public:

Model(void) : · · · {
· · ·
◮ POST BRANCHINGS

}

· · ·
◮ DEFINE FUNCTIONS

};

where the constructor posts two branchers

POST BRANCHINGS ≡
branch(home, x, INT_VAR_NONE(), INT_VAL_MIN());

branch(home, &Model::post);

147

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSetBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatBranch.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelBranchExec.html

The second branching takes a function pointer to the static member function Model::post

which is defined as

DEFINE FUNCTIONS ≡
void more(void) {

· · ·
}

static void post(Space& home) {

static_cast<Model&>(home).more();

}

As soon as the first branching is finished, the second branching is executed. This branch-
ing provides just a single alternative that calls the function Model::post with the current
space as its argument. Then, the function casts the home to Model& and calls more on home.
While one could post the additional constraints and/or branchings in Model::post directly,
the member function Model::more is more convenient to use.

Tip 8.3 (Propagation is still explicit). It is tempting to believe that the variables in x in the
above example are all assigned when more() is executed. This is not necessarily true.

It will be true for the first time more() is executed. But more() will be executed possibly
quite often during recomputation (see the following Chapter). And then, the only guaran-
tee one can rely on is that the brancher has created enough alternatives to guarantee that
the variables in x are assigned but only after constraint propagation has been performed (see
Tip 2.2). ◭

148

9 Search

This chapter discusses how exploration for search is used for solving Gecode models. Explo-
ration defines a strategy how to explore parts of the search tree and how to possibly modify
the tree’s shape during exploration (for example, during branch-and-bound best solution
search by adding new constraints). This chapter restricts itself to simple search engines to
find solutions, Gist as an interactive and graphical search engine is discussed in Chapter 10.

Overview. Section 9.1 explains how search in Gecode makes use of hybrid recomputation
and why it is efficient. Even though this section does not belong to the basic reading material,
you are highly encouraged to read it.

Section 9.2 explains how parallel search can be used in Gecode and what can be expected
of parallel search in principle. How search engines can be used is explained in Section 9.3.
Restart-based search is discussed in Section 9.4 and portfolio-based search is discussed in
Section 9.5. This is followed by a discussion in Section 9.6 how no-goods from restarts
can be used. Section 9.7 describes how the execution of search engines can be traced and
Section 9.8 how the CPProfiler can be used for tracing during search.

Convention. Note that the same conventions hold as in Chapter 4.

9.1 Hybrid recomputation

A central requirement for search is that it can return to previous states: as spaces constitute
nodes of the search tree, a previous state is nothing but a space. Returning to a previous
space might be necessary because an alternative suggested by a branching did not lead to
a solution, or even if a solution has been found more solutions might be requested. As
propagation and branching change spaces, provisions must be taken that search can actually
return to a previous space, or an equivalent version of that space.

Two space are equivalent if propagation and branching and hence search behave exactly
the same on both spaces. Equivalent spaces can be different, for example, they contain
different yet equivalent propagators, or are allocated at a different memory area.

Gecode employs a hybrid of two techniques for restoring spaces: recomputation and
cloning.

If you want to know how search engines can be programmed in Gecode, please consult
Part S.

149

x[0] 6= 3x[0] = 3

x[0] 6= 2x[0] = 2

x[0] 6= 1x[0] = 1

1

3

5

76

4

2
node x[0] x[1] x[2]

1 {1, . . . ,5} {1, . . . ,5} {2, . . . ,6}
3 {2, . . . ,5} {1, . . . ,3} {3, . . . ,6}
4 2 2 4

5 {3, . . . ,5} {1, . . . ,2} {4, . . . ,6}

Figure 9.1: Example search tree

9.1.1 Cloning

Cloning creates a clone of a space (this is supported by the virtual copy member function as
discussed in Chapter 2). A clone and the original space are of course equivalent. Restoration
with cloning is straightforward: before following a particular alternative during search, a
clone of the space is made and used later if necessary.

9.1.2 Recomputation

Recomputation remembers what has happened during branching: rather than storing an
entire clone of a space just enough information to redo the effect of a brancher is stored.
The information stored is called a choice in Gecode. Redoing the effect is called to commit a
space: given a space and a choice committing re-executes the brancher as described by the
choice and the alternative to be explored (for example, left or right).

Consider the following part of a model, which constrains both the sum and the product
of x[0] and x[1] to be equal to x[2]:

IntVarArray x(home, 3, 1, 6);

rel(home, x[0] + x[1] == x[2]);

mult(home, x[0], x[1], x[2]);

branch(home, x, INT_VAR_NONE(), INT_VAL_MIN());

The corresponding search tree is shown in Figure 9.1. A red box corresponds to a failed
node, a green diamond to a solution, and a blue circle to a choice node (a node that has
a not-yet finished brancher left). An example choice for node 3 is (x[0] = 2) ∨ (x[0] 6= 2)

where the left alternative (or the 0-th alternative) is x[0] = 2 and the right alternative (1-
st alternative) is x[0] 6= 2. Committing a space for node 3 to the 1-st alternative posts the
constraint x[0] 6= 2.

150

1

2

3

4 ?

space c and choice ch1

choice ch2

choice ch3

Figure 9.2: Hybrid recomputation

More precisely, a choice does not store the actual variables but the position among the
variables of the brancher (storing 0 rather than x[0]). By that, a choice can be used with an
equivalent yet different space. This is essential as the space used during recomputation will
be different from the space for which the choice has been created.

Tip 9.1 (Search is indeterministic). Gecode has been carefully designed to support non-
monotonic propagators: they are essential for example for randomized or approximation
propagation algorithms. A propagator in Gecode must be weakly monotonic: essentially, a
propagator must be correct but it does not need to always prune exactly the same way. A
consequence of this is that search is indeterministic: it might be that two different searches
find solutions in a different order (possibly returning a different first solution) or that the
number of explored nodes is different. However, search is always sound and complete: it
never misses any solution, it does not duplicate solutions, nor does it report non-solutions as
solutions.

If you want to know more about weakly monotonic propagators and their interaction with
search, we recommend to consult [55]. ◭

9.1.3 Hybrid recomputation

The hybrid of recomputation and cloning works as follows. For each new choice node, a
choice is stored. Then, every now and then search also stores a clone of a space (say, every
eight steps). Now, restoring a space at a certain position in the search tree traverses the path
in the tree upwards until a clone c is found on the path. Then recomputation creates a clone
c′ of c (in certain cases, recomputation might use c directly as an optimization). Then all
choices on the path are committed on c′ yielding an equivalent space.

151

To recompute the node ? for the example shown in Figure 9.2, the following operations
are executed:

Space* s = c->clone();

s->commit(ch1, 0);

s->commit(ch2, 0);

s->commit(ch3, 1);

9.1.4 Why recomputation is almost for free

An absolutely fundamental property of the above hybrid is that an equivalent space is com-
puted without performing any constraint propagation! Remember: committing just reposts
constraints but does not perform constraint propagation.

Reconsider the example from Figure 9.2. Search has just failed at node 4 and must com-
pute a space for node ?.

Suppose that only cloning but no recomputation is used. Then, a clone of the space for
node 3 is created (from the clone that is stored in node 3) and that clone is committed to the
first alternative of d3 (this corresponds to the slightly thicker edge in Figure 9.2). After that,
constraint propagation is performed (by executing the status() function of a space, see also
Tip 2.2) to find out if and how search must continue. That is: there is one clone operation,
one commit operation, and one status operation to perform constraint propagation.

With hybrid recomputation, one clone operation, three commit operations, and one
status operation to perform constraint propagation are needed (as shown above). The good
news is that commit operations are very cheap (most often, just modifying a single variable
or posting a constraint). What is essential is that in both cases only a single status operation
is executed. Hence, the cost for constraint propagation during hybrid recomputation turns
out to be not much higher than the cost without recomputation.

For hybrid recomputation, some additional propagation might have to be done compared
to cloning. As it turns out, the additional cost is rather small. This is due to the fact that
constraint propagation executes all propagators that might be able to remove values for vari-
ables until no more propagation is possible (a fixpoint for the propagators is computed). Due
to the approximative nature of “might be able to remove values” the additional propagation
tends to show only a very small increase in runtime.

9.1.5 Adaptive recomputation

Consider the case that a search engine finds a failed node. That means that some brancher
has made an erroneous decision and now search has to recover from that decision. It is
quite likely that not only the last decision is wrong but that the decision that lead to failure
is somewhere higher up in the search tree. With other words, it is quite likely that search
following a depth-first left-most strategy must explore an entire failed subtree to recover from
the erroneous decision. In that case it would be better for hybrid recomputation if there was
a clone close to the failed node rather than far away.

152

To optimize recomputation in this example scenario, Gecode uses adaptive recomputation:
if a node must be recomputed, adaptive recomputation creates an additional clone in the
middle of the recomputation path. A clone created during adaptive recomputation is likely
to be a good investment. Most likely, an entire failed subtree will be explored. Hence, the
clone will be reused several times for reducing the amount of constraint propagation during
recomputation.

More information about search based on recomputation (although not using choices) can
be found in [49]. Search using choices has been inspired by batch recomputation [12] and
decomposition-based search [37]. For an empirical evaluation of different techniques for
search, see [44].

9.1.6 Controlling recomputation

Hybrid and adaptive recomputation can be easily controlled by two integers cd (commit dis-

tance) and ad (adaptive distance). The value for cd controls how many clones are created
during exploration: a search engine creates clones during exploration to ensure that recom-
putation executes at most cd commit operations. The value for ad controls adaptive recom-
putation: only if the clone for recomputation is more than ad commit operations away from
the node to be recomputed, adaptive recomputation is used.

Values for cd and ad are used to configure the behavior of search engines using hybrid
and adaptive recomputation, see more in the next Section.

The number of commit operations as distance measure is approximately the same as
the length of a path in the search tree. It is only an approximation as search engines use
additional techniques to avoid some unused clone and commit operations.

Tip 9.2 (Values for cd and ad). If cd = 1, recomputation is never used (you might not want to
try that for any other reason but curiosity; it takes too much memory to be useful). Likewise,
to switch off cloning, you can use a value for cd that is larger than the expected depth of the
search tree. If ad ≥ cd , adaptive recomputation is never used. ◭

9.2 Parallel search

Parallel search has but one motivation: try to make search more efficient by employing several
threads (or workers) to explore different parts of the search tree in parallel.

Gecode uses a standard work-stealing architecture for parallel search: initially, all work
(the entire search tree to be explored) is given to a single worker for exploration, making the
worker busy. All other workers are initially idle, and try to steal work from a busy worker.
Stealing work means that part of the search tree is given from a busy worker to an idle worker
such that the idle worker can become busy itself. If a busy worker becomes idle, it tries to
steal new work from a busy worker.

As work-stealing is indeterministic (depending on how threads are scheduled, machine
load, and other factors), the work that is stolen varies over different runs for the very same

153

problem: an idle worker could potentially steal different subtrees from different busy work-
ers. As different subtrees contain different solutions, it is indeterministic which solution is
found first.

When using parallel search one needs to take the following facts into account (note that
some facts are not particular to parallel search, check Tip 9.1: they are just more likely to
occur):

■ The order in which solutions are found might be different compared to the order in
which sequential search finds solutions. Likewise, the order in which solutions are
found might differ from one parallel search to the next. This is just a direct consequence
of the indeterministic nature of parallel search.

■ Naturally, the amount of search needed to find a first solution might differ both from
sequential search and among different parallel searches. Note that this might actually
lead to super-linear speedup (for n workers, the time to find a first solution is less than
1/n the time of sequential search) or also to real slowdown.

■ For best solution search, the number of solutions until a best solution is found as well
as the solutions found are indeterministic. First, any better solution is legal (it does not
matter which one) and different runs will sometimes be lucky (or not so lucky) to find a
good solution rather quickly. Second, as a better solution prunes the remaining search
space the size of the search space depends crucially on how quickly good solutions are
found.

■ As a corollary to the above items, the deviation in runtime and number of nodes ex-
plored for parallel search can be quite high for different runs of the same problem.

■ Parallel search needs more memory. As a rule of thumb, the amount of memory needed
scales linearly with the number of workers used.

■ For parallel search to deliver some speedup, the search tree must be sufficiently large.
Otherwise, not all threads might be able to find work and idle threads might slow down
busy threads by the overhead of unsuccessful work-stealing.

■ From all the facts listed, it should be clear that for depth-first left-most search for just
a single solution it is notoriously difficult to obtain consistent speedup. If the heuristic
is very good (there are almost no failures), sequential left-most depth-first search is
optimal in exploring the single path to the first solution. Hence, all additional work
will be wasted and the work-stealing overhead might slow down the otherwise optimal
search.

Tip 9.3 (Be optimistic about parallel search). After reading the above list of facts you might
have come to the conclusion that parallel search is not worth it as it does not exploit the
parallelism of your computer very well. Well, why not turn the argument upside down: your
machine will almost for sure have more than a single processing unit and maybe quite some.
With sequential search, all units but one will be idle anyway.

154

GolombRuler

m[12] = {0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122}

m[12] = {0, 1, 3, 7, 12, 20, 30, 44, 65, 90, 105, 121}

m[12] = {0, 1, 3, 7, 12, 20, 30, 45, 61, 82, 96, 118}

· · · (additional solutions omitted)

m[12] = {0, 2, 6, 24, 29, 40, 43, 55, 68, 75, 76, 85}

Initial

propagators: 58

branchers: 1

Summary

runtime: 14.866 (14866.000 ms)

solutions: 17

propagations: 519555681

nodes: 3836351

failures: 1918148

restarts: 0

no-goods: 0

peak depth: 26

Figure 9.3: Output for Golomb rulers with eight workers

The point of parallel search is to make search go faster. It is not to perfectly utilize your
parallel hardware. Parallel search makes good use (and very often excellent use for large
problems with large search trees) of the additional processing power your computer has
anyway.

For example, on my machine with eight cores and using Gecode 4.2.0, running
Finding optimal Golomb rulers for size 12 as follows

golomb-ruler.exe -threads 8 12

prints something like shown in Figure 9.3.

Compared to sequential search where one gets something like shown in Figure 9.4 one
gets a speedup of 7.2. ◭

Parallel search is controlled by the number of threads (or workers) used for search. If a
single worker is requested, sequential search is used. The number of threads to be used for
search is controlled by the search options passed to a search engine, see the following section
for details.

Gecode also provides parallel portfolio search which is discussed in Section 9.5.

155

https://www.gecode.org/doc/6.2.0/reference/golomb-ruler_8cpp.html

GolombRuler

m[12] = {0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122}

m[12] = {0, 1, 3, 7, 12, 20, 30, 44, 65, 90, 105, 121}

m[12] = {0, 1, 3, 7, 12, 20, 30, 45, 61, 82, 96, 118}

· · · (additional solutions omitted)

m[12] = {0, 2, 6, 24, 29, 40, 43, 55, 68, 75, 76, 85}

Initial

propagators: 58

branchers: 1

Summary

runtime: 1:47.316 (107316.000 ms)

solutions: 16

propagations: 692676452

nodes: 5313357

failures: 2656663

restarts: 0

no-goods: 0

peak depth: 24

Figure 9.4: Output for Golomb rulers with one worker

156

member type meaning

propagate unsigned long int propagators executed

fail unsigned long int failed nodes explored
node unsigned long int nodes explored
restart unsigned long int restarts performed
nogood unsigned long int no-goods generated

depth unsigned long int maximal depth of explored tree

Figure 9.5: Search statistics (partial)

Tip 9.4 (Do not optimize by branching alone). A common modeling technique for optimiza-
tion problems that does not work for parallel search is the following. Suppose, one has a
variable c for the cost of a problem and one wants to minimize the cost. Then, one could use
the following code fragment

branch(home, c, INT_VAL_MIN());

which will try the values for c in increasing order.
With sequential search, searching for the first solution with a standard depth-first left-

most search engine will deliver a best solution, that is, a solution with least cost for c.
With parallel search, the first solution found might of course not be a best one. Hence,

instead of using plain left-most depth-first search, one should use best solution search with
a proper constrain function that guarantees that c will be minimized. This will as always
guarantee that the last solution found is the best.

For an example, see the naive model for the bin packing case study in Section 20.2 where
a branching first branches on the number of required bins. ◭

9.3 Search engines

Important. Do not forget to add

#include <gecode/search.hh>

to your program when you want to use search engines.
All search engines in Gecode are parametric (are templates) with respect to a subclass T

of Space (for example, SendMoreMoney in Section 2.1). Moreover, all search engines share
the same interface:

■ The search engine is initialized by a constructor taking a pointer to an instance of the
space subclass T as argument. By default, the search engine takes a clone of the space
passed.

This behavior can be changed, as can be other aspects of a search engine, see
Section 9.3.1.

157

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html

engine shortcut exploration best solution parallel

DFS dfs depth-first left-most ✓

LDS lds limited discrepancy [23]

BAB bab branch-and-bound ✓ ✓

Figure 9.6: Available search engines

■ A next solution can be requested by a next() member function. If no more solutions
exist, next() returns NULL. Otherwise, the engine returns a solution which again is an
instance of T. The client of the search engine is responsible for deleting solutions.

■ A search engine can be asked for statistics information by the statistics() member
function. The function returns an object of type Search::Statistics. The statistics
information provided is partially summarized in Figure 9.5 (see Section 9.4 for the
meaning of restart and Section 9.6 for the meaning of nogood).

■ A search engine can be queried by stopped() whether the search engine has been
stopped by a stop object. Stop objects are discussed in Section 9.3.2.

■ The destructor deletes all resources used by the search engine.

Note that search engines use pointers to objects rather than references to objects. The
reason is that some pointers might be NULL-pointers (for example, if next() fails to find a
solution) and that users of search engines have to think about deleting solutions computed
by search engines.

For each search engine there also exists a convenient shortcut function (of the same name
but entirely in lowercase letters) that returns either the first solution or, in the case of best
solution search, the last (and hence best) solution. The available search engines are summa-
rized in Figure 9.6.

BAB continues search when a solution is found by adding a constraint (through the
constrain() function as discussed in Section 2.5) to search for a better solution to all re-
maining nodes of the search tree.

Note that the version of Gecode (6.2.0) this document corresponds to does not support
parallel search for LDS.

9.3.1 Search options

All search engines can take a default option value of type Search::Options when being
created. The options are summarized in Figure 9.7. The default values for the options are
defined in the namespace Search::Config.

The meaning of the values for the search options are straightforward but for threads

(cutoff is explained in Section 9.4, assets is explained in Section 9.5, nogoods_limit is
explained in Section 9.6, and tracer is explained in Section 9.7).

158

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFS.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1LDS.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BAB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Statistics.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Options.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Search_1_1Config.html

member type meaning

threads double number of parallel threads to use

c_d unsigned int commit recomputation distance
a_d unsigned int adaptive recomputation distance

clone bool whether engine uses a clone when created

d_l unsigned int discrepancy limit (for LDS)

nogoods_limit unsigned int depth limit for no-good generation

assets unsigned int number of assets in a portfolio

stop Search::Stop* stop object (NULL if none)

cutoff Search::Cutoff* cutoff object (NULL if none)

tracer SearchTracer* search tracer (NULL if none)

Figure 9.7: Search options

Assume that your computer has m processing units1 and that the value for threads is n.

■ If n= 0, then m threads are used (as many as available processing units).

■ If n≥ 1, then n threads are used (absolute number of threads to be used).

■ If n≤ −1, then m+ n threads are used (absolute number of processing units not to be
used). For example, when n= −6 and m= 8, then 2 threads are used.

■ If 0 < n < 1, then n · m threads are used (relative number of processing units to be
used). For example, when n= 0.5 and m= 8, then 4 threads are used.

■ If −1 < n < 0, then (1+ n) ·m threads are used (relative number of processing units
not to be used). For example, when n= −0.25 and m= 8, then 6 threads are used.

Note that all values are of course rounded and that at least one thread will be used.

9.3.2 Stop objects

A stop object (a subclass of Search::Stop) implements a single virtual member function
stop() that takes two arguments, the first of type Search::Statistics and the second of
type Search::Options, and returns either true or false. If a stop object is passed to a search
engine (by passing it as stop member of a search option), the search engine calls the stop()

function of the stop object before every exploration step and passes the current statistics as
argument. If the stop() function returns true, the search engine stops its execution.

1This is a very rough characterization: a processing unit could be a CPU, a processor core, or a multi-
threading unit. If you want to find out how many processing units Gecode believes your machine has, invoke
the configuration summary as described in Tip 3.3.

159

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Stop.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Statistics.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Options.html

class description

Search::NodeStop node limit exceeded

Search::FailStop failure limit exceeded

Search::TimeStop time limit exceeded

Figure 9.8: Predefined stop objects

When a search engine is stopped its next() function returns NULL as solution. To find
out whether a search engine has been stopped or whether there are no more solutions, the
stopped() member function of a search engine can be used. Search can be resumed by
calling next() again after the stop object has been modified (for example, by increasing the
node or time limit).

Note that when using several threads for parallel search, each thread checks whether it
is stopped independently using the very same stop object. If one thread is stopped, then the
entire search engine is stopped.

Gecode provides several predefined stop objects, see Stop-objects for stopping search. For
an overview see Figure 9.8. Objects of these classes can be created conveniently by, for
example:

Stop* s = Search::Stop::node(l);

The class Search::Stop also provides similar static functions fail() and time().

Tip 9.5 (Number of threads for stop objects). As mentioned above, each thread in par-
allel search uses the very same stop object. For example, when using the predefined
Search::NodeStop stop object with a node limit of n, then each thread can explore up to n

nodes.
If you want to have finer control (say, only allow each thread to explore up to n/m nodes

where m is the number of threads) you can use the search option argument that is passed as
the second argument to the stop member function to scale the node limit according to the
number of available threads. ◭

9.4 Restart-based search

The idea of restart-based search is to run search with a given cutoff (Gecode uses the number
of failures during search as cutoff-measure). When search reaches the cutoff, it is stopped
and then restarted with a new and typically increased cutoff.

The whole point of restarting search is that it is not restarted on exactly the same prob-
lem but on a modified or re-configured problem. Possible modifications include but are not
limited to:

■ Improved information from the search for branching heuristics such as action (see
Section 8.5.3) or AFC (see Section 8.5.2): the now stopped search has gathered some
information of which branching can take advantage in the next restart of search.

160

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1NodeStop.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1FailStop.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1TimeStop.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelSearchStop.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Stop.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1NodeStop.html

■ The next search can use different random numbers that controls branching. A typical
strategy would be to use tie-breaking for combining a branching heuristic with a ran-
dom branching heuristic (see Section 8.9) and control the degree of randomness by a
tie-breaking limit function.

■ The next search uses an entirely different branching heuristic.

■ The next search adds so-called no-goods derived from the now stopped search. No-
goods are additional constraints that prevent the restarted search to make decisions
during search that lead to failure in the stopped search. No-goods are discussed in
detail in Section 9.6.

■ The next search “keeps” only a randomly selected part of a previous solution and tries
to find a different solution. This is often used for optimization problems and is known
as LNS (Large Neighborhood Search) [57]. How restart-based can be used for LNS is
discussed in Section 9.4.5.

For an example illustrating the effect of restart-based search, see Section 22.4. A general
overview of restart-based search can be found in [64].

9.4.1 Restart-based search as a meta search engine

Restart-based search in Gecode is implemented as a meta search engine: the meta search
engine uses one of the Gecode search engines discussed in Section 9.3 to perform search for
each individual restart. The meta engine then controls the engine, the cutoff values, and
how the problem is configured before each restart. The interface of the meta search engine
in Gecode is exactly the same as the interface of a non-meta search engine. In addition to the
restart meta search engine, Gecode offers a portfolio meta search engine which is described
in Section 9.5.

The restart meta search engine RBS is parametric with respect to both the script to be
solved (a subclass of Space) and the search engine to be used. For example, when we want
to use the DFS engine for the script s of class type Script, the meta engine e can be created
by (o are mandatory search options, see below):

RBS<Script,DFS> e(s,o);

Now e implements exactly the same interface as the normal engines (that is, next() to re-
quest the next solution, statistics() to return the meta engine’s statistic, and stopped()

to check whether the meta engine has been stopped).

The meta engine honors all search options as discussed in Section 9.3.1. If parallel search
is requested, the engine used by the meta engine will use the specified number of processing
units to perform parallel search. The meta engine requires that the search options specify a
Search::Cutoff object defining the cutoff sequence.

161

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1RBS.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFS.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Cutoff.html

Best solution search. Restart-based search can be used for both finding any solution or
finding a best solution. For searching for a best solution, the meta engine should be used
with the BAB engine, for example as:

RBS<Script,BAB> e(s,o);

The behavior whether the engine performs a restart when a better solution is performed
or whether the BAB engine continues to find a better solution with a restart can be controlled
as described in Section 9.4.4.

When using restart-based search for finding a best solution it is essential to use the BAB

engine when used as part of a portfolio-based search engine, see Section 9.5.4.

Parallel search. The restart-based search engine supports parallel search in that the engine
used for performing the restarts can be run in parallel. The number of threads used can be
described by the search options passed to the restart-based search engine as described in
Section 9.2.

Tip 9.6 (Controlling restart-based search with the commandline driver). The commandline
driver transparently supports restart-based search. Depending on which options are passed
on the commandline, either a search engine or the restart-based meta search engine is used
for search. See Section 11.1 for details. ◭

9.4.2 Cutoff generators

The meta engine uses a cutoff generator that generates a sequence of cutoff values. A cutoff
generator must be implemented by inheriting from the class Search::Cutoff. This abstract
class requires that two virtual member functions operator()() and operator++() are im-
plemented, where the first returns the current cutoff value and the second increments to the
next cutoff value and returns it. Cutoff values are of type unsigned long int.

When using the restart meta engine, an instance of a subclass of Search::Cutoff must
be passed to the engine by using the search options (see Section 9.3.1). For example, when
s is a space to be solved and c a cutoff generator, then the restart engine can be created by:

Search::Options o;

o.cutoff = c;

RBS<Script,DFS> e(s,o);

Gecode provides some commonly used cutoff generators:

Geometric. A geometric cutoff sequence is defined by the scale-factor s and the base b.
Then, the sequence consists of the cutoff values:

s · bi for i = 0, 1, 2, . . .

162

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BAB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BAB.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Cutoff.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Cutoff.html

A cutoff generator c for a geometric cutoff sequence with scale-factor s (of type
unsigned long int) and base b (of type double) is created by:

Search::Cutoff* c = Search::Cutoff::geometric(s,b);

The generator is implemented by the class Search::CutoffGeometric.

Luby. A Luby cutoff sequence is based on the Luby-sequence from [33]. The sequence starts
with a 1. The next part of the sequence is the entire previous sequence (only 1) with
the last value of the previous sequence (1 again) doubled. This construction is then
repeated, leading to the sequence:

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .

To be practically useful, the values in the Luby sequence are scaled by multiplying them
with a scale-factor s.

A cutoff generator c for a Luby cutoff sequence with scale-factor s (of type
unsigned long int) is created by:

Search::Cutoff* c = Search::Cutoff::luby(s);

The generator is implemented by the class Search::CutoffLuby.

Random. A random cutoff sequence consists of uniformly randomly chosen values between
a lower bound min and an upper bound max. To focus on rather different values, only
values from the set of n+ 1 values:

{min+ ⌊i · (max− min)/n⌋ | i = 0, . . . ,n}
are chosen randomly.

A cutoff generator c for a random sequence with lower bound min, upper bound max,
and number of values n (all of type unsigned long int) is created by:

Search::Cutoff* c = Search::Cutoff::rnd(seed,min,max,n);

where seed (of type unsigned int) defines the seed value for the random number
generator used. The generator is implemented by the class Search::CutoffRandom.

Constant. A constant cutoff sequence is defined by the scale-factor s. Then, the sequence
consists of the cutoff values:

s,s,s, . . .

The generator is implemented by the class Search::CutoffConstant.

A cutoff generator c for a constant cutoff sequence with scale-factor s (of type
unsigned long int) is created by:

Search::Cutoff* c = Search::Cutoff::constant(s);

163

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffGeometric.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffLuby.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffRandom.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffConstant.html

Linear. A linear cutoff sequence is defined by the scale-factor s. Then, the sequence consists
of the cutoff values:

1 · s, 2 · s, 3 · s, . . .

A cutoff generator c for a linear cutoff sequence with scale-factor s (of type
unsigned long int) is created by:

Search::Cutoff* c = Search::Cutoff::linear(s);

The generator is implemented by the class Search::CutoffLinear.

Append. An appended cutoff sequence c for n values from the cutoff sequence c1 (with
values k0, k1, k2, . . .) followed by the values from the cutoff sequence c2 (with values
l0, l1, l2, . . .) consists of the following values:

k0, k1, . . . , kn−2, kn−1, l0, l1, l2, . . .

A cutoff generator c for an appended cutoff sequence with n (of type
unsigned long int) values from cutoff generator c1 followed by values from
cutoff generator c2 is created by:

Search::Cutoff* c = Search::Cutoff::append(c1,n,c2);

The generator is implemented by the class Search::CutoffAppend.

Merge. A merged cutoff sequence c for values from the cutoff sequence c1 (with val-
ues k0, k1, k2, . . .) merged with the values from the cutoff sequence c2 (with values
l0, l1, l2, . . .) consists of the following values:

k0, l0, k1, l1, k2, l2, . . .

A cutoff generator c for a merged cutoff sequence with values from cutoff generator c1
merged with values from cutoff generator c2 is created by:

Search::Cutoff* c = Search::Cutoff::merge(c1,c2);

The generator is implemented by the class Search::CutoffMerge.

Repeat. A repeated cutoff sequence c with repeat factor n (of type unsigned long int) for
the cutoff sequence c′ (with values k0, k1, k2, . . .) consists of the following values:

k0, k0, . . . , k0
︸ ︷︷ ︸

,k1, k1, . . . , k1
︸ ︷︷ ︸

,k2, k2, . . . , k2
︸ ︷︷ ︸

,. . .

n times n times n times

A cutoff generator c for a repeated cutoff sequence with repeat factor n (of type
unsigned long int) and values from the cutoff generator c1 is created by:

Search::Cutoff* c = Search::Cutoff::repeat(c1,n);

The generator is implemented by the class Search::CutoffRepeat.

164

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffLinear.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffAppend.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffMerge.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1CutoffRepeat.html

9.4.3 Computing a next solution

When the restart meta engine is asked for a next solution by calling next(), there are three
possible scenarios:

■ next() returns a pointer to a space (which might be NULL in case there are no more
solutions or the engine has been stopped). Deleting the space is as with other engines
the responsibility of the meta engine’s user.

By default, asking the meta engine for another solution will perform a restart. However,
this behavior can be changed such that the current cutoff value (minus the failed nodes
it took to find the current solution) is used for finding a next solution. For details, see
Section 9.4.4.

■ The meta engine reaches the current cutoff value. It restarts search with the next cutoff
value.

■ The meta engine is stopped by the stop object passed to it. Then next() returns NULL
and stopped() returns true (to be able to distinguish this scenario from the one where
there are no more solutions).

9.4.4 Master and slave configuration

The meta engine maintains a master space and each time the meta engine performs a restart,
it passes a slave space (a clone of the master space) to the engine. Configuration is as follows:
the master is configured, the slave is created as a clone of the master, and then the slave is
configured. Initially, when the meta engine starts and creates a first slave space, it also
configures the slave space.

More accurately, it leaves the actual configuration to the user: it calls the virtual member
function master() on the master space and then calls the virtual member function slave()

on the slave space. As mentioned above, the slave() function is also called the first time a
slave is created. In that way, by redefining master() and slave() the user can control how
master and slave are being configured (this is exactly the same idea how constrain() works
for best solution search).

By default, every space implements the two member functions master() and slave().
Both functions take an argument of class MetaInfo that contains information about the cur-
rent restart (and also for different assets in a portfolio, see Section 9.5). The class MetaInfo
provides the member functions as shown in Figure 9.9.

For a meta information object mi, the function mi.type() returns either
MetaInfo::RESTART or MetaInfo::PORTFOLIO. In this section, we are only interested
in the functions that are concerned with restart-based search.

The default slave() function does nothing and returns true, indicating that the search
in the slave space is going to be complete. This means that if the search in the slave space
finishes exhaustively, the meta search will also finish. Returning false instead would indicate

165

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MetaInfo.html

function type meaning

type() MetaInfo::Type type of meta information

restart-based information

restart() unsigned long int number of restart
solution() unsigned long int number of solutions since last restart
fail() unsigned long int number of failures since last restart
last() const Space* last solution found (or NULL)
nogoods() const NoGoods& no-goods recorded from restart

portfolio information

asset() unsigned int number of asset (slave)

Figure 9.9: Meta information member functions

that the slave search is incomplete, for example if it only explores a limited neighborhood of
the previous solution.

The default master() function does the following (for a restart, that is):

■ It calls the constrain() member function with the last solution found as argument (if
a solution has already been found).

■ It possibly posts no-goods as explained in Section 9.6.

■ It returns true forcing a restart even if a solution has been found. Returning false

instead would continue search without a restart.

For example, a class Script can define the member functions as follows:

class Script : public Space {

· · ·
virtual bool master(const MetaInfo& mi) {

// Configure the master

· · ·
// Whether to restart or not

return true;

}

virtual bool slave(const MetaInfo& mi) {

// Configure the slave

· · ·
// Search is complete

return true;

}

};

166

DEFAULT MASTER AND SLAVE FUNCTIONS ≡
virtual bool Space::master(const MetaInfo& mi) {

switch (mi.type()) {

case MetaInfo::RESTART:

◮ RESTART-BASED SEARCH

case MetaInfo::PORTFOLIO:

◮ PORTFOLIO SEARCH

default:

break;

}

return true;

}

virtual bool Space::slave(const MetaInfo& mi) {

return true;

}

Figure 9.10: Default master() and slave() functions

The default master() and slave() member functions are shown in Figure 9.10. The part
of the master() function that is specific for restart-based search is as follows:

RESTART-BASED SEARCH ≡
if (mi.last() != NULL)

constrain(*mi.last());

mi.nogoods().post(*this);

return true;

9.4.5 Large Neighborhood Search

The design of restart-based search in Gecode is general enough to support LNS (Large Neigh-
borhood Search) [57]. The idea of LNS is quite simple, where LNS looks for a good solution:

■ Search finds a first solution where typically preference is given to find a reasonably
good solution quickly.

■ During LNS, a new problem is generated that only keeps part of the so-far best solution
(typically, the part to keep is randomly selected). This is often referred to as relaxing

the so-far best solution. Then, search tries to find a next and better solution within a
given cutoff.

If the cutoff is reached without finding a solution, search can either decide to terminate
or randomly retry again.

Figure 9.11 sketches a model that supports LNS. The constructor Model() initializes the
model with all variables and constraints that are common for finding the first solution as

167

MODEL SKETCH FOR LNS ≡
class Model : public Space {

protected:

IntVarArray x;

Rnd r;

public:

Model(void) : · · · {
// Initialize master

· · ·
}

void first(void) {

// Initialize slave for first solution

· · ·
}

void next(const Model& b) {

// Initialize slave for next solution

· · ·
}

· · ·
◮ SLAVE FUNCTION

virtual bool master(const MetaInfo& mi) {

· · ·
}

};

Figure 9.11: Model sketch for LNS

168

well as for finding further solutions. Note that the model has a random number generator
of class Rnd as member r to illustrate that typically some form of randomness is needed for
restarting. However, in a real life problem additional data structures might be needed.

The first() function is responsible for posting additional constraints and branchings
such that search can find the first solution. The next() function takes the so-far best solution
b and posts additional constraints and branchings to find a next and better solution than b.
This will typically mean that some but not all variables in the current space are assigned to
values as defined by the so-far best solution b or that additional constraints are posted that
depend on b.

Both first() and next() are executed on the slave space when the restart-based search
engine performs a restart or executes search for the first time. This can be achieved by
defining the slave() function as follows. Note how it returns true to indicate that the
search is going to be complete until it has found a first solution2 but false for subsequent
restarts, which only explore a neighborhood and are therefore incomplete:

SLAVE FUNCTION ≡
virtual bool slave(const MetaInfo& mi) {

if (mi.type() == MetaInfo::RESTART) {

if (mi.last() == nullptr) {

first();

return true;

} else {

next(static_cast<const Model&>(*mi.last()));

return false;

}

} else {

· · ·
}

}

The default master() function as shown in Section 9.4.4 is already general enough to support
LNS.

Relaxing variable assignments. A typical way to relax a given solution, is to assign some
but not all variables before a restart to a value from a previous solution. This is supported
by the relax() function for integer, Boolean, set, and float variables.

Assume that x is an array of integer variables in the Model script sketched in Figure 9.11.
Then, the following next() function:

void next(const Model& b) {

relax(*this, x, b.x, r, 0.7);

}

2Please note that the engine might restart several times until a first solution has been found.

169

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Rnd.html

relaxes each variable in x with a probability of 0.7 (or, with other words: each variable in x

would be assigned the value from b.x with a probability of 0.3). The random numbers are
drawn from the random number generator r.

The relax() function makes sure that at least one of the variables in x remains unassigned
(if needed, the variable to remain unassigned is determined uniformly randomly).

For an example using LNS and the relax() function please consult
Placing people on a photo.

9.5 Portfolio search

The idea of portfolio search is to run several copies, where each copy is called an asset or a
slave, of the same problem independently where each copy typically uses a different branch-
ing heuristic (the copies might of course also differ in how the same problem is modeled).
The goal is to increase the likelihood of finding a solution to the problem quickly and hence
to increase search robustness.

Portfolio search in Gecode is provided as a meta search engine, for the general idea of
a meta search engine, please consult Section 9.4.1. For more information on portfolios in
constraint programming, see [21].

9.5.1 Simple portfolio search as a meta search engine

Portfolio search is, like restart-based search, implemented as a meta search engine. The meta
engine creates one slave search engine per asset of the portfolio and coordinates their execu-
tion. The portfolio search engine has two interfaces, a simple one that is very similar to the
interfaces of non-meta search engines and of restart-based search engines, and a second in-
terface that is considerably more powerful in that it can mix different types of search engines
in one portfolio. The advanced interface is described in Section 9.5.4.

The key parameter for portfolio search is the number of assets. For example, a portfolio
engine with four assets can be created by:

Search::Options o;

o.assets = 4;

PBS<Script,DFS> e(s,o);

Here, for each asset an engine of type DFS is created for a clone of the master space s.

Before the clones are created, the master() member function as implemented by the
Script class is called. On each clone, the slave() function is called where the slave function
is called with information about the number of the asset (ranging from 0 to 3, the number
of assets minus one). The following section explains the details of how the master and the
slaves are configured, whereas Section 9.5.3 explains how assets of a portfolio are executed
sequentially or in parallel.

170

https://www.gecode.org/doc/6.2.0/reference/examples_2photo_8cpp.html

9.5.2 Master and slave configuration

The master() function provided by a script is called exactly once on the master space from
which clones are created for each asset. The purpose of the master() function can be to
setup certain aspects of a script specific to portfolio search.

The portfolio-specific part of the default master() function is as follows, the entire
master() function is shown in Figure 9.10:

PORTFOLIO SEARCH ≡
BrancherGroup::all.kill(*this);

break;

That is, by default all branchers contained in the master space are deleted before the slave
spaces are created, for more on killing branchers see Section 12.2. This provides the oppor-
tunity to create branchers specific to each asset by the slave() function.

The default slave() function does nothing, in order to be meaningful for portfolio search
a user needs to define one. Assume that you have four different variants of your model, each
using a different brancher. Then the following slave() function creates branchers specific
for each asset:

virtual bool slave(const MetaInfo& mi) {

if (mi.type() == MetaInfo::PORTFOLIO) {

switch (mi.asset() & 3) {

case 0: branch(· · ·); break;

case 1: branch(· · ·); break;

case 2: branch(· · ·); break;

case 3: branch(· · ·); break;

}

return true;

}

where the function mi.asset() returns the number of the asset being created. Creating more
than four asset for this particular example seems to be not that useful, but in Section 9.5.4
we are going to discuss how different search engines can be run in one portfolio. Here one
could imagine a portfolio that includes an engine running sequential search together with
an engine that runs exactly the same script, however with parallel search using more than
one thread. Note that the return value of the slave() function has no meaning for portfolio
search (but it has for restart-based search).

For an example using several branchers using different random seeds in a portfolio, see
Quasigroup completion.

Tip 9.7 (Kill your branchers, or maybe not. . .). Instead of killing your branchers in the master
space of a portfolio as shown above, a different option is to not post them in the master space
of a portfolio in the first place. Whether a script should become the master of a portfolio is
typically easy to detect when using the options provided by the script commandline driver.
Here the number of assets can be queried by the assets() member function. If the value
returned is larger than 0, the script will be run in a portfolio. ◭

171

https://www.gecode.org/doc/6.2.0/reference/qcp_8cpp.html

9.5.3 Parallel and sequential portfolios

Whether the assets in a portfolio are run in parallel or just concurrently is controlled by the
number of assets in relation to the number of threads requested. The way how threads are
allocated to assets is conservative: there will be never more threads running than requested,
possibly at the expense of running fewer assets than requested.

Sequential portfolios. A sequential portfolio consisting of n assets is executed in a simple
round-robin scheme: the first asset is given a certain slice, measured in the number of failures
encountered during search for that asset. If a solution is found within this slice, the portfolio
search engine reports this solution (as a result of its next() function). If no solution is found,
the portfolio engine gives a slice to the second assets, and so on. If the last asset exceeds its
slice, search continues with the first asset again.

The size of the slice can be controlled by the options passed to the portfolio engine. For
example,

Search::Options o;

o.assets = 3;

o.slice = 50;

PBS<Script,BAB> e(s,o);

creates a portfolio with three assets, where a slice is 50 failures. The default value for a slice
is defined in the namespace Search::Config.

Parallel portfolios. If parallel execution is requested (the numbers of threads requested is
greater than one, see Section 9.3.1), a parallel portfolio engine is created where each asset
is run in its own thread. For example,

Search::Options o;

o.assets = 3; o.threads = 3;

PBS<Script,DFS> e(s,o);

will create three threads each running a (sequential) depth-first search engine.
As mentioned before, threads are created conservatively. That is,

Search::Options o;

o.assets = 4; o.threads = 2;

PBS<Script,DFS> e(s,o);

creates only two threads for two assets.
If more threads than assets are requested, the remaining threads are passed on to the

assets. For example,

Search::Options o;

o.assets = 2; o.threads = 4;

PBS<Script,DFS> e(s,o);

172

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Search_1_1Config.html

creates a portfolio with assets where each asset is a parallel search engine using two threads.
In more detail, requesting n assets and m threads and m> n, then for each asset

�
m

n

�

threads
are requested.

Tip 9.8 (Always use parallel portfolios). The only reasons for not using parallel portfolios
is that the executing platform does not have threads (then a sequential instead of a parallel
portfolio is chosen automatically anyway) or for debugging. Otherwise, an operating system
scheduling several threads even on a single processing unit tends to be the better approach.
◭

Tip 9.9 (Controlling portfolios from the commandline). The commandline driver transpar-
ently supports portfolio search. Depending on which options are passed on the command-
line, either a search engine or a portfolio engine is used for search. The number of assets
(by -assets), the size of a slice for a sequential portfolio (by -slice), and the number of
threads for a parallel portfolio (by -threads) can be specified. See Section 11.1 for details.

◭

9.5.4 Mixed portfolios

The interface discussed in the previous section creates only assets where each asset runs the
same search engine. This is often not desirable. For example, a common strategy is to mix
assets using search with and without restarts.

Therefore a more expressive interface to portfolio search is provided that is based on the
idea of search engine builders (SEBs). A search engine builder is defined by its type and is
created using search options as input (that is, each engine to be built can have its own search
options). Then the portfolio search engine creates an engine as defined by the type and the
options of all SEBs passed as arguments. The type of a SEB can be either dfs (depth-first
search), lds (limited discrepancy search), bab (branch-and-bound solution search for a best
solution), rbs (restart-based search), or pbs (portfolio search). The types dfs, lds, and bab

are parametric with respect to a script type (as the engines DFS, LDS, and BAB are) and the
rbs and pbs types are parametric with respect to both the script type and the engine type (as
the meta engines RBS and PBS are).

Consider the following example: we would like to create a portfolio for the master space
master of type Script which consists of the following assets:

1. A depth-first search engine using two threads; and

2. Another depth-first search engine using a single thread; and

3. A restart-based meta engine using a depth-first engine with a single thread and a Luby
cutoff sequence with scale factor 10 (see Section 9.4.2).

The portfolio engine should use one thread for each asset.

The respective portfolio engine can be created as follows:

173

Search::Options s0, s1, s2;

s0.threads = 2;

s1.threads = 1;

s2.threads = 1;

s2.cutoff = Search::Cutoff::luby(10);

Search::Options s;

s.threads = 3;

PBS<Script> e(master,

SEBs({dfs<Script>(s0),

dfs<Script>(s1),

rbs<Script,DFS>(s2)}),

s);

Note that the number of assets is defined by the number of SEBs passed as argument and not
by s.assets as with the simpler interface. Executing a function such as dfs() in fact creates
a new SEB seb that eventually must be deleted by delete seb. When creating a portfolio
engine from a SEB, the engine takes care of deleting the SEB.

Best solution search. Whether a portfolio search engine created from SEBs performs best
solution search is determined by the SEBs. If the SEBs are created by bab<Script>(),
rbs<Script,BAB>(), or pbs<Script,BAB>() then the engine performs best solution search.
Mixing best solution search SEBs with non-best solution search SEBs throws an exception of
type Search::MixedBest.

Tip 9.10 (Mixing parallel and sequential portfolios). In case a really large number of assets
n is required but one needs to keep the number of threads m sufficiently small, one can use
SEBs to create a parallel portfolio search engine consisting of assets which are sequential
portfolios themselves. Let us assume in the following for simplicity that n is a multiple of m
and that master is the master space of type Script.

Then the following code snippet creates a parallel portfolio containing m assets each being
a sequential portfolio having n

m
assets:

SEBs sebs(m);

for (int i=0; i<m; i++) {

Search::Options o;

o.assets = n / m;

sebs[i] = pbs<Script,DFS>(o);

}

Search::Options o;

o.threads = m;

PBS<Script> e(master, sebs, o);

◭

174

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1MixedBest.html

x≤ 7

y= 0 y 6= 0

z= 3 z 6= 3

Figure 9.12: Search tree after cutoff 3 has been reached

9.6 No-goods from restarts

As discussed in Section 9.4, the idea of using restarts effectively is to restart with an improved
problem with the hope that search is capable of solving the improved problem. No-goods are
constraints that can be learned from the configuration of a depth-first search engine after
it has stopped. The no-goods encode failures during search as constraints: after restarting,
propagation of the no-goods ensures that decisions that lead to failure are avoided. Note
that no-goods are only available from the depth-first search engines DFS and BAB but not
from limited discrepancy search LDS.

Consider the simple example depicted in Figure 9.12. It shows a search tree that has been
explored by the restart-based search engine with a cutoff of 3 failures. The thick edges in the
tree depict the path that is stored by a search engine using depth-first search (such as DFS or
BAB).

What can be immediately derived from this configuration is that the following two con-
straints (they correspond to conjunctions of alternatives shown in Figure 9.12):

(x≤ 7)∧ (y= 0) and (x≤ 7)∧ (y 6= 0)∧ (z= 3)

are no-goods: they cannot be satisfied by any solution of the problem (after all, search just
proved that). The alternatives in the conjunction are also known as no-good literals.

When restarting search, the negation of the no-goods can be added to the master space
as constraints and can be propagated. That is, the following constraints can be added:

¬ ((x≤ 7)∧ (y= 0)) and ¬ ((x≤ 7)∧ (y 6= 0)∧ (z= 3))

or, equivalently, the constraints:

¬(x≤ 7)∨¬(y= 0) and ¬(x≤ 7)∨¬(y 6= 0)∨¬(z= 3)

Now assume that when restarting, after some search the constraint x ≤ 7 becomes sub-
sumed. Then, it can be propagated that y 6= 0. With other words, whenever x ≤ 7 holds,

175

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DFS.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BAB.html

then also y 6= 0 holds. This explains (if you know about resolution, you have figured out that
one already anyway) that it is equivalent to use the following two constraints:

¬(x≤ 7)∨¬(y= 0) and ¬(x≤ 7)∨¬(z= 3)

No-goods from restarts in Gecode follow the idea from [29], however the implementa-
tion differs. Moreover, the no-good literals used in Gecode can be arbitrary constraints and
hence generalize the ideas from [25] and [29]. Also no-goods in Gecode support choices of
arbitrary arity and are not restricted to binary choices. For more details, see Chapter 33 and
in particular Section 33.2.

Generating and posting no-goods. When the restart-based search engine reaches the cur-
rent cutoff limit or finds a solution it calls the master() member function as discussed in the
previous section.

From the argument of class MetaInfo that is passed to the master() function a no-good
of class NoGoods can be retrieved by calling the nogoods() function. A no-good It has really
only post() as its single important member function. The following master() function posts
all constraints corresponding to the no-goods that can be derived from a restart (this is also
the default master() function defined by the class Space, see also Section 9.4.4):

virtual bool master(const MetaInfo& mi) {

· · ·
mi.nogoods().post(*this);

· · ·
}

In order to post no-goods it must be enabled that a search engine maintains its internal
state such that no-goods can be extracted. This is done by setting the no-goods depth limit
(the member nogoods_limit of a search option of type unsigned int) to a value larger
than zero. The value of nogoods_limit describes to which depth limit no-goods should be
extracted from the path of the search tree maintained by the search engine. For example, the
following code (it assumes that c refers to a cutoff object):

Search::Options o;

o.cutoff = c;

o.nogoods_limit = 128;

RBS<Script,DFS> e(s,o);

instructs the search engine to extract no-goods up to a depth limit of 128.

The larger the depth limit, the more no-goods can of course be extracted. However, this
comes at a cost:

■ Gecode’s search engines use an optimization that is called LAO (last alternative opti-
mization, see also Section 42.4). LAO saves space by avoiding to store choices on the

176

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MetaInfo.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1NoGoods.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html

search engine’s stack when the last alternative of a choice is being explored. But no-
goods can only be extracted if LAO is disabled as the last alternatives are required for
the computation of no-goods. LAO is automatically disabled for the part of the search
tree with a depth less than the no-goods depth limit. That is, an engine requires more
memory during search with a larger depth limit. This can pose an issue for very deep
search trees.

What also becomes clear from this discussion is that the peak search depth reported by
a search engine increases with an increased depth limit.

■ It is easy to see that no-goods get longer (with more literals) with increasing search tree
depth. The larger a no-good gets, the less useful it gets: the likelihood that all literals
but one are subsumed but not failed (which is required for propagation) decreases.

■ When the no-goods are posted, a single propagator for all no-goods is created. This
propagator requires O(n) memory for n no-good literals. Hence, increasing the depth
limit also increases the memory required by the propagator.

Tip 9.11 (Controlling no-goods with the commandline driver). Whether no-goods are used
and which no-goods depth limit is used can also be controlled from the commandline via the
-nogoods and -nogoods-limit commandline options, see Chapter 11. ◭

No-goods from solutions restarts. The master() function shown above posts no-goods
even when the restart meta search engine has found a solution. When the engine continues
this means that the same solution might not be found again as it has been excluded by a no-
good. The situation is even slightly more complicated: the solution might not be excluded if
it has been found at a depth that exceeds the no-good depth limit.

If no-goods should not be posted when a solution has been found, the master() function
can be redefined as:

virtual bool master(const MetaInfo& mi) {

· · ·
if (mi.solution() == 0)

mi.nogoods().post(*this);

· · ·
}

Limitations. Not all branchers support the generation of no-goods. In that case the longest
sequence of no-goods starting from the root of the search tree up to the first choice that
belongs to a brancher that does not support no-goods is used.

All pre-defined branchers for integer, Boolean, and set variables support no-goods unless
user-defined commit functions are used (see Section 8.8). Branchers for float variables and
branchers for executing code (see Section 8.14) do not support no-goods.

177

No-goods and parallel search. The reason why after a restart no-goods can be extracted
is because search computed the no-goods by exploring entire failed subtrees during search.
This might not be true during parallel search. While parallel search engines also support the
extraction of no-goods, the number of no-goods that can be extracted tend to be rather small.

9.7 Tracing search

The execution of search engines can be traced, where all important events of a search engine
can be recorded and processed by a search tracer. A search tracer is implemented by a subclass
of SearchTracer where several virtual member functions must be implemented that are
called when a corresponding event occurs:

■ A single init-event occurs when the initialization of a search engine together with all
of its components such as sub-engines and workers is complete. See below for more
details about sub-engines and workers.

■ A single done-event occurs when all components (workers) of a search engine have been
deleted.

■ Each time a new node of the search tree is created, a node-event occurs that provides
information about the newly created node and the edge leading to it (unless it is the
root node).

■ Some search engines perform several rounds: each time a new round starts, a round-

event occurs. Restart-based search (RBS) starts a new round by performing a restart
(see Section 9.4) and limited-discrepancy search (LDS) starts a new round for each
probe with a different discrepancy.

■ Some search engines might skip edges, in these cases a skip-event is generated. See
below for more details.

Search tracers. A simple search tracer printing information to std::cout is shown in
Figure 9.13. A similar search tracer is defined by the class StdSearchTracer.

As mentioned above, all events correspond to virtual member functions that are called
when an event occurs. The member functions are executed in mutual exclusion as the events
might occur in parallel from search engines using multiple workers (threads).

Defining a search tracer. A search tracer can be defined as part of the search options (see
Section 9.3.1). For example, if t is a search tracer, then creating a depth-first search engine
using the tracer t can be done as follows:

Search::Options o;

o.tracer = t;

DFS<Script> e(s,o);

178

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SearchTracer.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1StdSearchTracer.html

EXAMPLE SEARCH TRACER ≡ [DOWNLOAD]

· · ·
class SimpleSearchTracer : public SearchTracer {

protected:

static const char* t2s(EngineType et) {

· · ·
}

public:

SimpleSearchTracer(void) {}

◮ INIT

◮ NODE

◮ ROUND

◮ SKIP

◮ DONE

virtual ~SimpleSearchTracer(void) {}

};

Figure 9.13: A simple tracer printing to std::cout

Init-event. After the search engine(s) have completed their initialization, the member func-
tion init() is called. The class SearchTracer provides member functions with which the
configuration of the search engine can be inspected. Search engines are identified by engine
identifiers of type unsigned int.

The root engine has always the identifier 0U. Meta engines such as restart-based search
(RBS) and portfolio-based search (PBS) have sub engines whereas non-meta engines have
workers that perform the actual exploration of the search tree. The following code:

INIT ≡
virtual void init(void) {

std::cout << "trace<Search>::init()" << std::endl;

for (unsigned int e=0U; e<engines(); e++) {

std::cout << "\t" << e << ": "

<< t2s(engine(e).type());

if (engine(e).meta()) {

◮ INIT FOR META ENGINES

} else {

◮ INIT FOR ENGINES

}

std::cout << "}" << std::endl;

}

}

lists all engines together with their engine identifiers starting with the root engine (the mem-

179

https://www.gecode.org/doc/6.2.0/MPG/example-search-tracer.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SearchTracer.html

ber function engines() returns the number of engines). Information about an engine is
provided by the member function engine() which takes an engine identifier and returns a
reference to an object of type SearchTracer::EngineInfo providing information about an
engine.

For simple engines (that is, non-meta engines) such as depth-first (DFS), branch-and-
bound (BAB), and limited-discrepancy search (LDS), the following code prints information
about their workers:

INIT FOR ENGINES ≡
std::cout << ", workers: {";

for (unsigned int i=engine(e).wfst(); i<engine(e).wlst(); i++) {

std::cout << i; if (i+1 < engine(e).wlst()) std::cout << ",";

}

An engine of type AOE (for any other engine) is an engine that Gecode creates in certain
situations if the root of the search tree is already known to be failed.

For meta engines, the following code prints information about their sub-engines:

INIT FOR META ENGINES ≡
std::cout << ", engines: {";

for (unsigned int i=engine(e).efst(); i<engine(e).elst(); i++) {

std::cout << i; if (i+1 < engine(e).elst()) std::cout << ",";

}

For example, for a branch-and-bound engine with a single worker (using a single thread),
the init() function prints:

0: BAB, workers: {0}

For a branch-and-bound engine with four workers (using four threads), the init() func-
tion prints:

trace<Search>::init()

0: DFS, workers: {0,1,2,3}

For a restart-based search engine using a depth-first engine with a single worker (using
a single thread), the init() function prints:

trace<Search>::init()

0: RBS, engines: {1}

1: DFS, workers: {0}

For a portfolio-based search engines with two depth-first search engines as assets using
four threads, the init() function prints:

trace<Search>::init()

0: PBS, engines: {1,2}

1: DFS, workers: {0,1}

2: DFS, workers: {2,3}

Note that assets can be also restart-based search engines.

180

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SearchTracer_1_1EngineInfo.html

NODE ≡
virtual void node(const EdgeInfo& ei, const NodeInfo& ni) {

std::cout << "trace<Search>::node(";

switch (ni.type()) {

· · ·
case NodeType::BRANCH:

std::cout << "BRANCH(" << ni.choice().alternatives() << ")";

break;

}

std::cout << ’,’ << "w:" << ni.wid() << ’,’

<< "n:" << ni.nid() << ’)’;

if (ei) {

if (ei.wid() != ni.wid())

std::cout << " [stolen from w:" << ei.wid() << "]";

std::cout << std::endl << ’\t’ << ei.string()

<< std::endl;

} else {

std::cout << std::endl;

}

}

Figure 9.14: Member function for node-events

Node-events. The virtual member function called for a node-event takes information about
an edge of type SearchTracer::EdgeInfo and a node of type SearchTracer::NodeInfo as
input. The code shown in Figure 9.14 prints the type of the node. It then prints information
about the worker identifier (ni.wid()) and node identifier (ni.nid()). Both worker and
node identifiers are of type unsigned int. Note that the edge also has information about
the parent node of the current node and which worker created it. In case the edge does not
exist (that is, the test ei is false), the node is in fact the root node of the search tree. The string
printed is the output printed by the brancher corresponding to the edge (see Section 8.12 for
more information).

Note that the node identifiers are unique per worker. As the number of workers is avail-
able with the workers() member function, the numbers can be made easily unique globally.

Round-events. A round-event is generated either before a restart by a restart-based search
engine or when a limited-discrepancy search engine starts a new probe with an increased
discrepancy. The information passed to the round() member function is the engine identifier
corresponding to the engine starting a new round:

181

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SearchTracer_1_1EdgeInfo.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SearchTracer_1_1NodeInfo.html

ROUND ≡
virtual void round(unsigned int eid) {

std::cout << "trace<Search>::round(e:" << eid << ")" << std::endl;

}

Note that the node identifiers are not reset at a round-event.

Skip-events. A skip event occurs when a worker decides that a certain node does not need
to be explored. This can happen for branch-and-bound search engines where an entire sub-
tree is pruned or for limited discrepancy search where a solution is omitted as it had already
been found during a previous probe with a smaller discrepancy limit. The information pro-
vided to the skip() member function is of type SearchTracer::EdgeInfo:

SKIP ≡
virtual void skip(const EdgeInfo& ei) {

std::cout << "trace<Search>Search::skip(w:" << ei.wid()

<< ",n:" << ei.nid()

<< ",a:" << ei.alternative() << ")" << std::endl;

}

Done-event. The done event is executed if all workers have terminated. Here it just prints
this fact:

DONE ≡
virtual void done(void) {

std::cout << "trace<Search>::done()" << std::endl;

}

Note that, however that the tracer is not deleted after a done event. This is the obligation
of the user of the tracer.

9.8 Using the CPProfiler

The CPProfiler is a graphical tool for better understanding the search space of a problem [59].
It can be downloaded from github.com/cp-profiler.

Gecode can connect to an already running instance of the CPProfiler by means of creating
a search tracer. The tracer then sends all search trace information to the respective instance
of the CPProfiler, which then can use the trace information for visualization and analysis.

A search tracer to connect to a running CPProfiler instance can be created by creating an
object of class CPProfilerSearchTracer as follows:

auto t = new CPProfilerSearchTracer(id,name,port,gi);

182

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SearchTracer_1_1EdgeInfo.html
https://github.com/cp-profiler/cp-profiler
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1CPProfilerSearchTracer.html

where id (an integer) defines the execution identifier to be displayed by the CPProfiler, name
(a string of type std::string) defines the name displayed by the CPProfiler, port (an un-
signed integer) defines the network port used by the CPProfiler, and gi is a pointer to an
object of class CPProfilerSearchTracer::GetInfo for information about a search tree to
be displayed by the CPProfiler. The arguments for port and gi are optional, the default for
port is defined by Search::Config::cpprofiler_port (currently 6565) and the default for
gi is nullptr.

Note that commandline support for the CPProfiler is provided, see Section 11.1. There
are options to specify the execution identifier, the port, and whether default information
about nodes in the search tree should be transferred to the CPProfiler.

An object that determines which information about a search tree node should be displayed
when the node is inspected in the CPProfiler, can be defined by inheriting from the class
CPProfilerSearchTracer::GetInfo and defining the virtual member function:

virtual std::string getInfo(const Space& home) const;

that must return an information string of type std::string for the search tree node home.

183

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1CPProfilerSearchTracer_1_1GetInfo.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1CPProfilerSearchTracer_1_1GetInfo.html

184

10 Gist

The Graphical Interactive Search Tool, Gist, provides user-controlled search, search tree vi-
sualization, and inspection of arbitrary nodes in the search tree. Gist can be helpful when
experimenting with different branching strategies, with different models for the same prob-
lem (for instance adding redundant constraints), or with propagation strength (for instance
bounds versus domain propagation). It gives you direct feedback how the search tree looks
like, if your branching heuristic works, or where propagation is weaker than you expected.

Overview. How the search tree of a problem is used as the central metaphor in Gist is
sketched in Section 10.1. Section 10.2 explains how to invoke Gist, whereas Section 10.3
explains how to use Gist.

Important. Do not forget to add

#include <gecode/gist.hh>

to your program when you want to use Gist.

10.1 The search tree

The central metaphor in Gist is the search tree. Each node in the tree represents a fixpoint of
propagation (that is, an invocation of status(), see Tip 2.2). Inner nodes stand for choices

Figure 10.1: A search tree

185

Figure 10.2: Gist, solving the Send More Money problem

(fixpoints with a subsequent brancher), while leaf nodes correspond to failure (dead ends in
the search) or solutions of the problem. Figure 10.1 shows a search tree as drawn by Gist.
The inner nodes (blue circles) are choices, the red square leaf nodes are failures, and the
green diamond leaf node is a solution.

Conceptually, every node in the tree contains a corresponding space, which the user can
access in order to inspect the node. Internally, Gist does not store all these spaces, but re-
computes them on demand. That way, Gist can handle very large search trees (with millions
of nodes) efficiently.

10.2 Invoking Gist

Gist is implemented using the Qt application framework. It can be invoked either as a stan-
dalone component, or as part of a bigger Qt-based application.

The screenshots in this chapter show Gist running on Mac OS X, but the functionality, the
menus and the keyboard shortcuts are the same on all platforms (with small exceptions that
will be mentioned later).

10.2.1 Standalone use

When used as a standalone component, invoking Gist merely amounts to calling

Gist::dfs(m);

where m is a pointer to the space that contains the model to be solved. This call opens a new
instance of Gist, with the root node initialized with m. Figure 10.2 (left) shows Gist initialized
with the Send More Money puzzle from Chapter 2.

If you want to solve an optimization problem using branch-and-bound search, you can
invoke Gist with optimization turned on:

186

http://www.qtsoftware.com/

Gist::bab(m);

10.2.2 Use as a Qt widget

If you are developing an application with a graphical user interface using the Qt toolkit, you
can embed Gist as a widget. Either use Gist::GistMainWindow, which gives you an inde-
pendent widget that inherits from QMainWindow, or directly embed the Gist::Gist widget
into your own widgets. You have to include the files gecode/gist/mainwindow.hh for the
independent widget, or gecode/gist/qtgist.hh for the widget you can embed.

Apart from the integration into your own application, the advantage over the standalone
approach is that you get access to Gist’s signals and slots. For example, you can use more than
one inspector, or you can control the search programatically instead of by user input. The
details of this are beyond the scope of this document, please refer to the reference documen-
tation of the corresponding classes for more information, and have a look at the directory
gecode/gist/standalone-example in the Gecode source distribution.

10.3 Using Gist

This section gives an overview of the functionality available in Gist. Most of Gist is intuitive
to use, and the easiest way of learning how to use it is to start one of the examples that come
with Gecode using the -mode gist commandline option, and then play around.

10.3.1 Automatic search

When you invoke Gist, it initializes the root node of the search tree, as seen in Figure 10.2.
Any node that has not yet been explored by the search is drawn as a white circle, indicating
that it is not yet known whether this node is in fact a choice, failure, or solution. White nodes
are called open.

Obviously, the first thing a user will then want to do is to search for a solution of the given
problem. Gist provides an automatic first-solution and all-solution depth-first search engine.
It can be activated from the Search menu:

If you click All solutions (or alternatively press the A key), Gist will explore the entire tree.
The result appears in Figure 10.2 (right). Depending on the preferences, Gist may collapse
subtrees that contain only failed nodes (such as the rightmost subtree in the figure) into big
red triangles.

187

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1GistMainWindow.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Gist.html

Figure 10.3: A hidden subtree in Gist

The search engines always only explore the subtree under the currently selected node,
which is marked by a shadow. For example, the root node is selected after initialization, and
the rightmost choice node is selected in Figure 10.2 (right). A single click selects a node, and
there is always exactly one selected node.

Stopping search after exhausting a branching. If you want to learn more about how
your branchings affect the shape of the search tree, you can add stop branchings to your
problem using the Gist::stopBranch() function. This will install a brancher that does
not modify the search tree (in fact, it simply inserts a single unary choice), but Gist will
recognize the brancher and halt exploration. A special node (shaped like a stop-sign) marks
the position in the tree where the stop brancher was active. You can toggle whether Gist
continues exploration beyond the brancher using the options in the Node menu. Obviously,
this is most useful if the call to stopBranch is placed between calls to other branchings.

10.3.2 Interactive search

As an alternative to automatic search, you can also explore the search tree interactively. Just
select an arbitrary open (white) node and choose Inspect from the Node-Inspect menu (or
press the Return key).

You can navigate in the tree using the arrow keys (or the corresponding options from the
Node menu). Automatic and interactive search can be freely mixed. In order to focus on
interesting parts of the search tree, you can hide subtrees using the Hide/unhide option, or
hide all subtrees below the selected node that are completely failed. The option Unhide all

expands all hidden subtrees below the current node again. The red triangle in Figure 10.3 is
a hidden subtree.

If you want to start over, the Search menu provides an option to reset Gist.

188

Figure 10.4: The Node menu

Bookmarks. The Node menu has a submenu Bookmarks, where you can collect nodes for
quick access. You can set a bookmark for the currently selected node by chosing Add/remove

bookmark from the submenue, or by pressing Shift+B. You can then enter a name for the
bookmark (or leave it empty, then the bookmark will get a number). Chosing Add/remove

bookmark for an already bookmarked node removes the bookmark. Bookmarked nodes are
drawn with a small black circle. Selecting a bookmark moves you directly to the correspond-
ing node.

10.3.3 Branch-and-bound search

If Gist has been invoked in branch-and-bound mode, it prunes the search tree with each new
solution that is found. Branch-and-bound works with any order of exploration, so you can
for instance explore interactively, or start automatic search for just a subtree.

The last solution that was found, which in branch-and-bound is always the best solution
known so far, is displayed in orange instead of green.

10.3.4 Inspecting and comparing nodes

Of course just looking at the shape of the tree is most of the time not very enlightening by
itself. We want to see the content of the nodes. For this, you can display information about

189

Figure 10.5: Branch information in Gist

the alternatives in the tree (provided by print functions, see Section 8.12), and add inspectors

and comparators to Gist. Inspectors and comparators can be called on solution, choice, or
failure nodes (but obviously not on open nodes).

Displaying branching information. The Node menu (Figure 10.4) has two options for dis-
playing information about branches in the tree. Choosing Label/clear branches will add in-
formation on all branches in the subtree below the currently selected node (or clear that
information if it is already present). Label/clear path adds that information on the path from
the current node to the root. Figure 10.5 shows branching information for the Send More
Money problem.

Gist uses print functions provided by the branchers of a space. For variable-value branch-
ers as described in Chapter 8, the information displayed for the branches can be supplied by
the user, see Section 8.12 for details. Also other branchers can define which information is
printed for a branch, see Section 32.2.1.

Invoking inspectors and comparators. The Node menu (Figure 10.4) provides several op-
tions for inspecting and comparing nodes. If you choose Inspect from the Inspect submenu (or
simply press Return), all double-click inspectors that are active in the Tools menu (see below)
will be invoked for the currently selected node. You can also invoke a particular inspector
by choosing it from th Inspect menu or typing its shortcut (the first nine inspectors get the
shortcuts 0–9).

If you choose an inspector from the Inspect before fixpoint menu instead, the state of the
node after branching but before fixpoint propagation is shown.

When choosing the Compare option, the mouse cursor turns into a crosshair, and clicking
on another node will invoke the comparators that have been activated in the Tools menu.
Again, Compare before fixpoint considers the state of the second node after branching but
before fixpoint propagation. This is especially useful to find out what the branching does at

190

Figure 10.6: The Tools menu

a particular node: Select a node, choose Compare before fixpoint, and click on the child node
you are interested in. The comparison will show you exactly how the branching has changed
the variable domains.

Choosing the active inspectors and comparators. Gist distinguishes between three
groups of inspectors, and the group of comparators, which can be chosen from the Tools

menu (Figure 10.6):

■ Move inspectors are called whenever the user moves to a different node.

■ Solution inspectors are called for each new solution that is found.

■ Double-click inspectors are called when the user explicitly inspects a node, for instance
by choosing Inspect from the Node menu or by double-clicking.

■ Comparators are called when the user chooses Compare or Compare before fixpoint, and
then clicks on another node to compare the currently selected one to.

The printing inspector. The simplest way to add an inspector to your model is to use the
Gist::Print inspector, as demonstrated in Section 2.4. Figure 10.7 shows the Gist::Print
inspector after double-clicking the solution of the Send More Money problem.

Implementing inspectors. An inspector is an object that inherits from the abstract base
class Gist::Inspector. The abstract base class declares a virtual member function,
inspect(const Space& s), which is called when one of the events described above hap-
pens. The space that is passed as an argument corresponds to the inspected node in the tree.
The inspector is free to perform any const operation on the space.

The variable comparator. Similar to the printing inspector, there is a predefined com-
parator Gist::VarComparator that can be easily added to scripts. It requires the script to
implement a member function compare() in which it outputs the result of comparing itself to
another space. Figure 10.8 shows how to add comparison to the example from Section 2.4.
It uses a convenience member function from the class Gist::Comparator that produces a
string representation of the differences between two variable arrays.

191

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Print.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Print.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Inspector.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1VarComparator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Comparator.html

Figure 10.7: Inspecting a solution in Gist

Implementing comparators. A comparator inherits from Gist::Comparator and imple-
ments at least its compare(const Space& s0, const Space& s1) member function. This
function is called when the currently selected node with space s0 is compared to the node
with space s1. As for inspectors, a comparator can perform any const operation on these
two spaces.

Subtree statistics. The Node menu provides an option Node statistics, which when clicked
opens a small window that displays statistics of the subtree rooted at the currently selected
node, as shown in Figure 10.9. The statistics include the depth of the current node (the upper
right number in Figure 10.9), the maximum depth of the subtree (the lower right number),
and how many of the different node types the subtree contains (the numbers at the small
nodes). The information is automatically updated when you select a different node.

10.3.5 Zooming, centering, exporting, printing

Here is some functionality you may have already found during your experiments with Gist.

Mouse wheel zoom. You probably noticed that the slider right of the search tree lets you
zoom in and out. Another way of zooming is to hold Shift while using the mouse wheel. It
will zoom in and out keeping the area under the mouse cursor visible.

Zoom and center. In addition to manual zooming, Gist provides automatic options. The
button with the magnifying glass icon above the zoom slider toggles the auto-zoom feature,

192

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Comparator.html

SEND MORE MONEY WITH GIST COMPARISON ≡ [DOWNLOAD]

#include <gecode/int.hh>

#include <gecode/gist.hh>

· · ·
class SendMoreMoney : public Space {

· · ·
void compare(const Space& s, std::ostream& os) const {

os << Gist::Comparator::compare<IntVar>("l",l,

static_cast<const SendMoreMoney&>(s).l);

}

};

int main(int argc, char* argv[]) {

SendMoreMoney* m = new SendMoreMoney;

Gist::Print<SendMoreMoney> p("Print solution");

Gist::VarComparator<SendMoreMoney> c("Compare nodes");

Gist::Options o;

o.inspect.click(&p);

o.inspect.compare(&c);

Gist::dfs(m,o);

delete m;

return 0;

}

Figure 10.8: Using Gist for Send More Money with node comparison

193

https://www.gecode.org/doc/6.2.0/MPG/send-more-money-with-gist-comparison.cpp

Figure 10.9: Node statistics

which always zooms the tree such that as much of it as possible is visible in the window.
During auto-zoom, the manual zoom is disabled. Instead of auto-zoom, you can also select
Zoom to fit from the Node menu (or press Z) in order to adjust the zoom so that the current
tree fits. When working with large trees, it is sometimes useful to scroll back to the currently
selected node by choosing Center current node from the Node menu or pressing C.

Exporting and printing. The File menu provides options for exporting the current search
tree as a PDF file or printing it. If you want to export a single subtree, select Export subtree

PDF from the Node menu. The tree is exported or printed as seen, including hidden nodes.

10.3.6 Options and preferences

When invoking Gist, you can pass it an optional argument of type Gist::Options. This
options class inherits from the standard search options discussed in Section 9.3.1, but adds
a class with two member functions, inspect.click() and inspect.solution(), that you
can use to pass inspectors to Gist.

The two options for recomputation, c_d and a_d, as well as the clone option of
Search::Options are honored by Gist; the remaining options are ignored.

During execution, Gist can be configured using the Preferences dialog, available from the
program menu on Mac OS or the File menu on Windows and Linux.

194

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Options.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1Options.html

Figure 10.10: Gist preferences

The drawing preferences (Figure 10.10, left) let you specify whether failed subtrees are
hidden automatically during search, and whether the auto-zoom and smooth scrolling fea-
tures are enabled at start-up. Furthermore, you can set the refresh interval – this is the num-
ber of nodes that are explored before the tree is redrawn. If you set this to a large number,
search will be faster, but you get less visual feedback. You can enable slow search, which will
explore only around three nodes per second, useful for demonstrating how search proceeds.
Finally, enabling the “Move cursor during search” option means that the move inspectors will
be called for every single node during search. Again, this is great for demonstration and de-
bugging purposes, but it slows down the search considerably. Drawing preferences (except
for the slow-down and cursor moving options) are remembered between sessions and across
different invocations of Gist.

The search preferences are exactly the parameters you can pass using the Gist::Options
class. In addition, you can switch on the display of where Gist actually stores spaces in the
tree, as shown in Figure 10.11. A small red circle indicates a clone used for recomputation,
while a small yellow circle shows that the node has an active space used for exploration (a
so-called working clone).

The recomputation parameters are not remembered between sessions.

195

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Gist_1_1Options.html

Figure 10.11: Displaying where Gist stores spaces in the tree

196

11 Script commandline
driver

The commandline driver (see Script commandline driver) provides support for passing com-
mon commandline options to programs and a sub-class for spaces called Script that can
take advantage of the options.

Overview. Section 11.1 summarizes the commandline options supported by the comman-
dline driver. The base classes for scripts that work together with the commandline driver are
sketched in Section 11.2.

Important. Do not forget to add

#include <gecode/driver.hh>

to your program when you want to use the script commandline driver.

11.1 Commandline options

The commandline driver provides classes Options, SizeOptions, and InstanceOptions that
support parsing commandline options. All classes support the options as summarized in
Figure 11.1, Figure 11.2, and Figure 11.3. Here, for a commandline option with name -name,
the option classes provide two functions with name name(): one that takes no argument and
returns the current value of the option, and one that takes an argument of the listed type
and sets the option to that value. If the commandline options contains a hyphen -, then the
member function contain an underscore _ instead. For example, for the options -c-d, -a-d,
and -d-l the member functions are named c_d(), a_d(), d_l().

The values for -threads are interpreted as described in Section 9.3.1.

Note that all commanline options can also be used with a starting double hyphen --

instead of a single hyphen.

Invoking help. The only option for which no value exists is -help: it prints some configu-
ration information and a help text for the options and stops program execution.

197

https://www.gecode.org/doc/6.2.0/reference/group__TaskDriver.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Options.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SizeOptions.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1InstanceOptions.html

option type explanation

propagation options

-ipl {def,val,bnd,dom} integer propagation level

branching options

-decay double decay-factor
-seed unsigned int seed for random numbers

search options

-solutions unsigned int how many solutions (0 for all)
-threads double how many threads
-c-d unsigned int commit recomputation distance
-a-d unsigned int adaptive recomputation distance
-d-l unsigned int discrepancy limit for LDS
-node unsigned int cutoff for number of nodes
-fail unsigned int cutoff for number of failures
-time unsigned int cutoff for time in milliseconds
-step double improvement step for floats

restart-based and portfolio search options

-restart {none,constant,linear, enable restarts, define cutoff
geometric,luby}

-restart-scale unsigned int scale-factor for cutoff values
-restart-base double base for geometric cutoff values
-nogoods {false,true,0,1} whether to post no-goods
-nogoods-limit unsigned int depth limit for no-good recording
-assets unsigned int number of assets in a portfolio

Figure 11.1: Predefined commandline options

198

option type explanation

execution options

-mode {solution,time,stat, script mode to run
gist,cpprofiler}

-samples unsigned int how many samples
-iterations unsigned int how many iterations per sample
-print-last {false,true,0,1} whether to only print last solution
-file-sol {stdout,stdlog,stderr} where to print solutions
-file-stat {stdout,stdlog,stderr} where to print statistics
-interrupt {false,true,0,1} whether driver catches Ctrl-C
-trace {init,prune,fix,fail,done, which events to trace

propagate,commit,none,all}
-cpprofiler-id int execution identifier for CPProfiler
-cpprofiler-port unsigned int port used to connect to CPProfiler
-cpprofiler-info {false,true,0,1} whether to send node information

Figure 11.2: Predefined commandline options, continued

option type explanation

-branching string branching options
-model string general model options
-propagation string propagation options
-symmetry string symmetry breaking options
-search string search options

Figure 11.3: User-definable commandline options

199

Size and instance options. The class SizeOptions accepts an unsigned integer as the last
value on the commandline (of course, without an option). The value can be retrieved or set
by member functions size().

The class InstanceOptions accepts a string as the last value on the commandline
(of course, without an option). The value can be retrieved or set by member functions
instance().

Integer propagation level options. The command line option -ipl accepts a comma sep-
arated list of the basic integer propagation levels: def for the default level, val for value
propagation, bnd for bounds propagation, and dom for domain propagation. In addition it
accepts the modifiers speed, memory, basic, and advanced that are used by some constraints
and can be given in addition to a basic integer propagation level.

Mode options. The different modes passed as argument for the option -mode have the
following meaning:

■ solution prints solutions together with some runtime statistics.

■ time can be used for benchmarking: average runtime and coefficient of deviation is
printed, where the example is run -samples times. For examples with short runtime,
-iterations can be used to repeat the example several times before measuring run-
time. Note that the runtime includes also setup time (the creation of the space for the
model).

■ stat prints short execution statistics.

■ gist runs Gist rather than search engines that print information. Gist is put into depth-
first mode, when a non best solution search engine is used (that is, DFS), and into
branch-and-bound mode otherwise (that is, BAB).

If Gecode has not been compiled with support for Gist (see Tip 3.3 for how to find out
about Gecode’s configuration), the mode gist will be ignored and the mode solution

is used instead.

■ cpprofiler runs the script in solution mode but also connects to the CPProfiler, see
also Section 9.8.

If Gecode has not been compiled with support for the CPProfiler (see Tip 3.3 for how
to find out about Gecode’s configuration), the mode cpprofiler will be ignored and
the mode solution is used instead.

Trace options. Which events to trace (see also Chapter 12) can be specified by the -trace

commandline option. It accepts a comma-separated list of the event types to trace, that is
init, prune, fix for fixpoint, fail for failure, and done as well as none to trace no events
and all to trace events of all types.

200

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SizeOptions.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1InstanceOptions.html

Examples with tracing include SEND+MORE=MONEY puzzle,
Generating Hamming codes, and Folium of Descartes.

CPProfiler options. For more details on the CPProfiler, please consult Section 9.8 as the
commandline arguments are used exactly as described there.

Examples. For an example, in particular, how to use the user-defined options, see
Section 3.3. As all examples that come with Gecode use the script commandline driver, a
plethora of examples is available (see Example scripts (models)). Also adding additional
options is straightforward, for an example see Golf tournament.

Gist inspectors and comparators. The driver options can pass inspectors and compara-
tors (see Section 10.3.4) to Gist. To register an inspector i, use the inspect.click(&i),
inspect.solution(&i), or inspect.move(&i) methods of the option object, for a com-
parator c, use inspect.compare(&c).

11.2 Scripts

Scripts (see Script classes) are subclasses of Space that are designed to work together with
option objects of class Options and SizeOptions.

In particular, the driver module defines scripts IntMinimizeScript,
IntMaximizeScript, IntLexMinimizeScript, IntLexMaximizeScript,
FloatMinimizeScript, and FloatMaximizeScript that can be used for finding best
solutions based on a virtual cost() function, see also Section 3.2 and Section 7.3.

Subclasses of FloatMinimizeScript and FloatMaximizeScript use the value passed on
the command line option -step as value for the improvement step (see Section 7.3). For an
example, see Golden spiral.

As scripts are absolutely straightforward, all can be understood by following some ex-
amples. For an example see Section 3.3 or all examples that come with Gecode, see
Example scripts (models).

201

https://www.gecode.org/doc/6.2.0/reference/money_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/hamming_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/descartes-folium_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__Example.html
https://www.gecode.org/doc/6.2.0/reference/golf_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskDriverScript.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Options.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SizeOptions.html
https://www.gecode.org/doc/6.2.0/reference/golden-spiral_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/group__Example.html

202

12 Groups and tracing

Groups are a means to control certain execution aspects of propagators and branchers. Trac-
ing can be used for tracing constraint propagation on variables as well as the general execu-
tion of propagators and branchers. Groups are ultimately linked to tracing, as the generated
traces can be filtered according to group membership.

Overview. Section 12.1 explains groups of propagators, whereas Section 12.2 explains
groups of branchers. Tracing variables is explained in Section 12.3 and general tracing in
Section 12.4. Section 12.5 shows how variable tracers and Section 12.6 shows how general
tracers (the objects that process trace information) can be programmed.

12.1 Propagator groups

Each propagator belongs to exactly one propagator group of type PropagatorGroup. When
a propagator is created, it is added to a group. Group membership of a propagator remains
stable during copying of spaces.

Adding propagators to groups. The following code creates a propagator group pg:

PropagatorGroup pg;

A propagator can be added to the group pg by passing the group as additional information ad-
joined to the home information when the propagator is posted. For example, when assuming
that home refers to a space of type Space&, then

distinct(home(pg), x);

adds all propagators created by the constraint post function distinct() to the propagator
group pg. Equivalently, one can also use:

distinct(pg(home), x);

If no propagator group is specified when a propagator is created, then the propagator is
added to the default propagator group PropagatorGroup::def.

203

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PropagatorGroup.html

Moving propagators between groups. Propagators can be moved from one group to an-
other. For example, if pga and pgb are propagator groups, then

pga.move(home,pgb);

moves all propagators from group pgb into group pga. An individual propagator p (of type
Propagator&) can also be moved into a propagator group pg by

pg.move(home,p);

A propagator p can also be moved by giving its identity p.id(). For example, the follow-
ing is equivalent to the previous example:

unsigned int id = p.id();

pg.move(home,id);

If no propagator with a given id exists, an exception of type UnknownPropagator is thrown.
In order to remove a propagator from its group or all propagators of a group from their

group, one can use the default group. For example, if pg is a propagator group, all of its
propagators are removed from pg by

PropagatorGroup::def.move(home,pg);

Move operations can be concatenated as they return their group. For example, if pg is a
propagator group and p and q are two propagators, then

pg.move(p).move(q);

moves both p and q to pg.

Operations on propagator groups. The number of propagators in a group can be com-
puted by the size() member function. The following expression:

pg.size(home)

evaluates to the number of propagators in the group pg. Each group has a unique identifier
of type unsigned int which can be accessed by:

pg.id()

One can iterate over all propagators in a group. For example,

for (Propagators p(home,pg); p() ++p)

std::cout << p.propagator.id() << ’ ’ << std::endl;

prints the unique identifier of each propagator contained in group pg. A propagator also
provides access to the group it belongs to, assume that p is of type Propagator&, then

p.group()

204

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1UnknownPropagator.html

evaluates to the group p belongs to.
The propagators of a group can be disabled and enabled. By

pg.disable(home);

all propagators in pg are disabled in that they are not any longer performing any propagation
(for more details on disabling and enabling propagators, see also Section 23.1). Similarly,
propagators can be enabled by

pg.enable(home);

By default, enabling a disabled propagator will schedule the propagator for execution
if necessary. Hence, next time the status() function of the propagator’s home space is
executed, the propagator will be executed again. It is also possible to enable propagators in
a group without scheduling them by:

pg.enable(home,false);

All propagators in a group can be killed by

pg.kill(home);

Groups for all propagators. For convenience, there is one special propagator group
PropagatorGroup::all which refers to all propagators in a space (one can think of it as
the union of all propagator groups). For example,

PropagatorGroup::all.size(home)

evaluates to the number of all propagators in the space home.

12.2 Brancher groups

Brancher groups contain branchers and each brancher belongs to exactly one brancher group
of type BrancherGroup. Brancher groups are similar to propagator groups as described in
the previous section:

■ A brancher group bg is created as follows:

BrancherGroup bg;

■ A brancher is added to the group bg by passing the group as additional information
adjoined to the home information when the propagator is posted. For example, the
brancher created by

branch(home(bg), x, INT_VAR_NONE(), INT_VAL_MIN());

205

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BrancherGroup.html

adds the newly created brancher created to the brancher group bg. Equivalently, one
can also write bg(home) instead of home(bg).

■ Brancher groups provide move() functions for moving branchers into brancher groups
that are analogous to the move() functions for propagator groups.

■ If no brancher group is specified, branchers are added to the default group
BrancherGroup::def.

■ The number of branchers in a group can be computed by the size() member function.
Each group has a unique identifier of type unsigned int which can be accessed by
bg.id().

■ One can iterate over all branchers in a group by using the iterator class Branchers.

■ Each brancher provides access to the group it belongs to, assume that b is of type
Brancher&, then

b.group()

evaluates to the group b belongs to.

■ All branchers in a group can be killed by

bg.kill(home);

■ There is one special brancher group BrancherGroup::all which refers to all branchers
in a space.

12.3 Variable tracing

Gecode offers support to trace constraint propagation on an array of variables. Variable
tracing distinguishes two components: a variable trace recorder that records information
about relevant events during constraint propagation and a variable tracer that processes
the recorded trace information. A very simple variable tracer instance would just print
some textual information about recorded trace events. In fact, Gecode offers default trac-
ers for each variable type that comes with Gecode that just print to an output stream of type
std::ostream.

206

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Branchers.html

12.3.1 Creating a variable trace recorder

A variable trace recorder can be created by calling the overloaded function trace() together
with an array of variables. For example,

trace(home, x);

creates a variable trace recorder for an array of variables x. Here, x can be an array of integer,
Boolean, set, or float variables.

The variable trace recorder records the following events:

■ A single init-event providing some information about the variables for which the vari-
able trace recorder will record information.

■ Each time the domain of a variable changes, a prune-event is recorded. The variable
trace recorder provides information about which variable has been changed, how the
variable has been changed, and on behalf of which entity (a propagator, a brancher, or
a constraint post function performing pruning outside a propagator or brancher) the
variable has been changed.

■ A fixpoint-event is recorded when the space containing the variable trace recorder
reaches a fixpoint, triggered by the execution of the space’s status() function.

■ A failure-event is recorded when the space containing the variable trace recorder fails,
triggered by the execution of the space’s status() function.

■ A done-event that is recorded when all of the variable trace recorder’s variables have
been assigned and hence no further recording is needed. Note that this event can occur
only once per space, however when using tracing during search the event might occur
several times for different spaces.

The information that is recorded for each event depends on the variable trace recorder’s
variable type.

12.3.2 Default variable tracers

The following paragraphs explain the information printed by the default variable tracer for
a given variable type.

Integer and Boolean variables. Running the SEND+MORE=MONEY puzzle (see
Chapter 2 and Chapter 3 for the Send More Money problem) with the commandline op-
tion -trace all (trace events to be recorded can be specified on the command line, see
Section 11.1), the default variable tracer for integer variables prints information about all
trace events to std::cerr. An excerpt of the information printed is shown in Figure 12.1
where the variable trace recorder has been posted with

207

https://www.gecode.org/doc/6.2.0/reference/money_8cpp.html

SEND+MORE=MONEY

trace<Int>::init(id:0) slack: 100.00% (72 values)

trace<Int>::prune(id:0): [0] = [1..9] - {0} by post()

trace<Int>::prune(id:0): [4] = [1..9] - {0} by post()

trace<Int>::prune(id:0): [0] = 9 - {1..8} by propagator(id:2)

· · ·
trace<Int>::fix(id:0) slack: 33.33% - 66.67%

· · ·
trace<Int>::done(id:0) slack: 0%

{9, 5, 6, 7, 1, 0, 8, 2}

trace<Int>::prune(id:0): [1] = [6..7] - {5} by brancher(id:1)

· · ·

Figure 12.1: Abridged output for variable tracing Send More Money

trace(home, le);

where le is the array of eight variables used in Send More Money.

Tip 12.1 (Enabling tracing with a commandline option). As mentioned above, the Gecode
driver offers also support for tracing. If opt is an object of class Options, then adding the
following code

if (opt.trace() != 0)

trace(home, x, opt.trace());

enables variable tracing if the -trace commandline option is used. The option takes all as
value for tracing all events as well as a comma-separated list of init, prune, fix, fail, and
done for the respective event types. Also general tracing can be controlled by this comman-
dline option, see Section 12.4. ◭

The output for each event starts with the information

trace<Int>::

signaling that integer variables are being traced. After that, the type of event is shown (init,
prune, fix for fixpoint, fail for failure, or done). This is followed by information about the
identifier of the variable trace recorder (a variable trace recorder is in fact a propagator and
hence has a unique identifier, see Section 12.3.5). If the variable trace recorder belongs to
a propagator group different from the default propagator group, also the identifier of the
respective propagator group is printed.

The information for each event type is as follows:

■ For an init-event, the total slack of all variables is shown where the slack of a variable
is the number of values that must be removed before the variable becomes assigned to
a single value. This information serves as a measure of how much propagation is still
to be done.

208

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Options.html

■ For a prune-event, it is printed which variable has been pruned where the variable
is identified by its position in the variable array of the variable trace recorder (for
example, the first prune event in Figure 12.1 shows [0] as the variable at position 0

has been pruned).

Next, the current domain of the variable is printed (that is, [1..9]) and that the value
0 has been pruned (that is, - {0}).

This is followed by information which entity has pruned the variable: a constraint post
function (as is the case for the first two prune-events in Figure 12.1), a propagator (as is
the case for the third prune-event in Figure 12.1), a brancher (as is the case for the last
prune-event in Figure 12.1), or unknown. In case the prune-event has been caused by a
propagator or brancher, their identifiers are shown. In case the propagator or brancher
belong to a group different from the respective default group, also the group’s identifier
is shown. This is also true if the event has been caused by a constraint post function
where some group information had been passed to the constraint post function.

■ For a fixpoint-event, the current slack and its change since the last fixpoint are shown.

■ For a failure-event, the current slack and its change since the last fixpoint are shown.

■ For a done-event, the current slack is shown (unsurprisingly, the slack is 0% as all
variables have been assigned).

The information printed by the default variable tracer for Boolean variables is exactly the
same as for integer variables.

Defining custom variable tracers is straightforward, this is explained in Section 12.5.

Set variables. The information printed for init-, fixpoint-, failure-, and done-events for set
variables is analogous to the information for integer variables. The slack of a set variable
here is defined as the number of values that can be still included in or excluded from the
set variable (that is, it corresponds to x.unknownSize() where x is a set variable of type
SetVar).

For a prune-event, it is shown which values have been included in the set and which
values have been excluded from the set. For example in

trace<Set>::prune(id:0): [0] = {1..6} + {6..6} - {} by brancher(id:1)

the value 6 has been included into the variable and no value has been excluded whereas in

trace<Set>::prune(id:0): [1] = {1..3} + {} - {4..6} by propagator(id:1)

the values 4, 5, and 6 have been excluded. You can try the Generating Hamming codes
example that supports tracing.

209

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetVar.html
https://www.gecode.org/doc/6.2.0/reference/hamming_8cpp.html

Float variables. For float variables, the slack is defined as the width of the variable domain.
The information printed for the events is analogous to the information for integer variables,
where for a prune-event the interval containing the pruned values is printed.

For an example that supports tracing for float variables, you might want to try the
Folium of Descartes example.

12.3.3 Using trace filters

The amount of prune-events that are generated during tracing can be prohibitive and often
one is only interested in events generated by a subset of the propagators, branchers, or post
functions. Therefore, one can pass as an optional argument a trace filter of type TraceFilter
defined by a trace filter expression (or TFE) of type TFE to a trace recorder.

Assume that pga and pgb are two propagator groups and bg is a brancher group. Then

trace(home, x, pga);

traces only prune-events that have been caused by a propagator or a post function associated
with the group pga. Prune-events caused by propagators or post functions from groups pga
and pgb are traced by

trace(home, x, pga+pgb);

Likewise, prune-events caused by branchers in the group bg or by propagators or post func-
tions not associated with pga are traced by

trace(home, x, bg-pga);

The following only traces post functions associated with pga and propagators included in
pgb:

trace(home, x, post(pga)+propagator(pgb));

In summary, TFEs can be constructed from the unary and binary operators + and - and
the functions post() and propagator() taking a propagator group as argument.

12.3.4 Selecting the events to trace

When creating a trace recorder, it can be defined which events should be recorded by pro-
viding an additional argument. For example

trace(home, x, TE_PRUNE);

only records prune-events, whereas

trace(home, x, TE_PRUNE | TE_FIX);

records prune- and fixpoint-events. All events (the default) are recorded by

trace(home, x,

TE_INIT | TE_PRUNE | TE_FIX | TE_FAIL | TE_DONE);

210

https://www.gecode.org/doc/6.2.0/reference/descartes-folium_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1TraceFilter.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1TFE.html

12.3.5 Enabling and disabling variable trace recorders

A variable trace recorder is implemented by a propagator, hence it can be controlled by
propagator groups. In particular, a variable trace recorder can be disabled and enabled.

For example, by creating a propagator group t by

PropagatorGroup t;

and then creating a variable trace recorder so that it belongs to the group t by

trace(home(t), x);

the variable trace recorder can be controlled through the group t. For example, the variable
trace recorder can be disabled by

t.disable(home);

and the later enabled by

t.enable(home);

One can easily add several variable trace recorders (either for different variables or different
variable types) to the same propagator group and jointly control all variable trace recorders
in that group.

12.4 General tracing

In addition to variable tracing, Gecode offers support to trace the execution of propagators
and branchers. Like with variable tracing, general tracing distinguishes two components: a
general trace recorder (or, trace recorder for short) that records information about relevant
events during constraint propagation as well as branching, and a general tracer (or, tracer for
short) that processes the recorded trace information.

12.4.1 Creating a general trace recorder

A trace recorder can be created by calling the overloaded function trace(). For example,

trace(home);

creates a trace recorder.
A general trace recorder records the following events:

■ Each time a constraint is posted, a post-event is recorded. The recorder provides infor-
mation whether posting has lead to failure, the posted constraint is subsumed (that is,
no propagator has been posted for the constraint), or one or several propagators have
been created.

211

SEND+MORE=MONEY

trace::post(s:posted(1))

trace::post(s:subsumed)

· · ·
trace::propagate(id:2,s:fix)

· · ·
trace::commit(id:1)

var[1] = 4

trace::propagate(id:2,s:subsumed)

· · ·
trace::propagate(id:1,s:failed)

· · ·

Figure 12.2: Abridged output for general tracing of Send More Money

■ Each time a propagator is executed, a propagate-event is recorded. The recorder pro-
vides information about which propagator has been executed and what the status of
the execution is (that is, whether the propagator computed a fixpoint, did not compute
a fixpoint, became subsumed, or resulted in failure).

■ Each time a commit operation on a brancher is executed, a commit-event is recorded.

12.4.2 Default general tracers

The following paragraphs explain the information printed by the default general tracer.

Running the SEND+MORE=MONEY puzzle (see Chapter 2 and Chapter 3 for the Send
More Money problem) with the commandline option -trace propagate,commit (trace
events to be recorded can be specified on the command line, see Section 11.1), the default
tracer prints information about all trace events to std::cerr. An excerpt of the information
printed is shown in Figure 12.2 where the trace recorder has been posted with

trace(home);

The output for each event starts with the information

trace::

After that, the type of event is shown (propagate, choice, or post).

The information for each event type is as follows:

■ For a propagate-event, the propagator identifier is printed, potentially followed by the
propagator group. This is followed by status information.

212

https://www.gecode.org/doc/6.2.0/reference/money_8cpp.html

■ For a choice-event, the brancher identifier is printed, potentially followed by the
brancher group. This is followed by information which alternative the brancher has
been committed to, see also Section 8.12.

■ For a post-event, potentially the propagator group is printed. This is followed by status
information.

Defining custom general tracers is straightforward, this is explained in Section 12.6.

Additional features. Like for variable tracers, general tracers can also be controlled by
trace filters (see Section 12.3.3) and can be disabled (see Section 12.3.5).

When creating a trace recorder, it can be defined which events should be recorded by
providing an additional argument. For example,

trace(home, TE_PROPAGATE);

only records propagate-events, whereas

trace(home, TE_CHOICE);

only records choice-events. All events (the default) are recorded by

trace(home, TE_POST | TE_PROPAGATE | TE_CHOICE);

12.5 Programming variable tracers

Programming variable tracers is straightforward and is done by inheriting from a class that
depends on the variable type and implements one virtual member function for each trace
event type. These virtual member functions are called when an event of that type is be-
ing recorded and the event type has been selected for tracing. For integer variables, the
tracer class to inherit from is IntTracer, for Boolean variables BoolTracer, for set variables
SetTracer, and for float variables FloatTracer.

In the following we are discussing variable tracers for integer and Boolean variables in
some detail in Section 12.5.1 and summarize variable tracers for set and float variables in
Section 12.5.2 and Section 12.5.3 respectively.

12.5.1 Tracers for integer and Boolean variables

The example tracer we discuss is implemented by a class StdCoutIntTracer, prints trace
information to std::cout, and is shown in Figure 12.3. The init(), fail(), and done()

member functions are not discussed as they are similar to the member function fix() which
is discussed below.

213

https://www.gecode.org/doc/6.2.0/reference/group__TaskIntTrace.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskIntTrace.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskSetTrace.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskFloatTrace.html

INTEGER VARIABLE TRACER ≡ [DOWNLOAD]

· · ·
class StdCoutIntTracer : public IntTracer {

protected:

◮ PRINT PROPAGATOR INFORMATION

static void ids(const Brancher& b) {

· · ·
}

◮ PRINT VIEW TRACE INFORMATION

public:

virtual void init(const Space& home, const IntTraceRecorder& t) {

· · ·
}

◮ PRUNE EVENT

◮ FIXPOINT EVENT

virtual void fail(const Space& home, const IntTraceRecorder& t) {

· · ·
}

virtual void done(const Space& home, const IntTraceRecorder& t) {

· · ·
}

};

Figure 12.3: An integer variable tracer printing to std::cout

214

https://www.gecode.org/doc/6.2.0/MPG/integer-variable-tracer.cpp

Printing propagator information. The example tracer prints information about propaga-
tors and branchers using overloaded static member functions ids() (for identifiers). Printing
information about propagators is implemented as follows:

PRINT PROPAGATOR INFORMATION ≡
static void ids(const Propagator& p) {

std::cout << "(id:" << p.id();

if (p.group().in())

std::cout << ",g:" << p.group().id();

std::cout << ’)’;

}

The function always prints the identifier p.id() of the propagator p. If p is in a propa-
gator group p.group() which is different from the default propagator group (tested by the
in() function of a propagator group), then also the group identifier is printed. The over-
loaded function ids() for branchers is identical and hence only shown in abbreviation in
Figure 12.3.

Printing variable trace information. The member function prune() receives as an argu-
ment a reference to an object of class ViewTraceInfo providing information about which
entity triggered the corresponding prune-event. The following function illustrates the infor-
mation provided by an object of class ViewTraceInfo.

PRINT VIEW TRACE INFORMATION ≡
static void info(const ViewTraceInfo& vti) {

switch (vti.what()) {

case ViewTraceInfo::PROPAGATOR:

std::cout << "propagator"; ids(vti.propagator());

break;

case ViewTraceInfo::BRANCHER:

std::cout << "brancher"; ids(vti.brancher());

break;

case ViewTraceInfo::POST:

std::cout << "post(";

if (vti.post().in())

std::cout << "g:" << vti.post().id();

std::cout << ’)’;

break;

case ViewTraceInfo::OTHER:

std::cout << ’-’;

break;

}

}

215

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewTraceInfo.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewTraceInfo.html

Printing prune-events. A prune() member function takes arguments that provide infor-
mation about what is being pruned (this is given by the integer i as the position of the vari-
able in the array passed to the trace() function), how the variable has been pruned (this is
given by the argument d of class IntTraceDelta), and by whom (this is given by the class
ViewTraceInfo, which has been discussed in the previous paragraph). It also gets access to
the trace recorder of type IntTraceRecorder.

The example prune() function prints information as follows:

PRUNE EVENT ≡
virtual void prune(const Space& home, const IntTraceRecorder& t,

const ViewTraceInfo& vti, int i, IntTraceDelta& d) {

std::cout << "trace::prune"; ids(t);

std::cout << ": [" << i << "] = " << t[i] << " - {";

std::cout << d.min();

if (d.width() > 1)

std::cout << ".." << d.max();

++d;

while (d()) {

· · ·
}

std::cout << "} by "; info(vti);

std::cout << std::endl;

}

As can be seen, the argument d of type IntTraceDelta is a range iterator with the same
interface as described in Section 4.1.6 and iterates of the integer ranges that correspond to
the values that have been removed. The trace recorder t provides access to its variables
through the array operator [].

Printing fixpoint-events. The fix() function also receives an argument of type
IntTraceRecorder as shown here:

FIXPOINT EVENT ≡
virtual void fix(const Space& home, const IntTraceRecorder& t) {

std::cout << "trace::fix"; ids(t);

double sl_i = static_cast<double>(t.slack().initial());

double sl_p = static_cast<double>(t.slack().previous());

double sl_c = static_cast<double>(t.slack().current());

· · ·
}

The integer trace recorder t provides access to slack information about all of its variables
through a slack() member function.

For integer variables, the slack is the number of values that still need to be pruned before
all variables become assigned and is of type unsigned long long int. Here, the function

216

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntTraceDelta.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewTraceInfo.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskIntTrace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntTraceDelta.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskIntTrace.html

initial() of t.slack() returns the initial slack when the trace recorder has been created,
previous() returns the slack at the previous fixpoint (or, the initial slack if it is the first
fixpoint), and current() returns the current slack.

Note that the slack information is only updated when a fixpoint-, init-, or done-event
occurs.

Tip 12.2 (Naming propagators, branchers, variables, and groups). Note that all entities rel-
evant for tracing carry a unique and global identity: propagators, branchers, propagator
groups, and brancher groups all provide a function id() that returns a unique identifier
for that entity of type unsigned int. The identity is global in that it does not change when
a space is being cloned during search. Hence naming entities through a hash table mapping
identities to user-defined names is straightforward. ◭

Variable tracers for Boolean variables. Variable tracers for Boolean variables are ex-
actly like variable tracers for integer variables: a Boolean variable trace recorder is of type
BoolTraceRecorder, the trace delta is also a range iterator of class BoolTraceDelta, and
the slack is defined as for integer variables and is also of type unsigned long long int.

Memory and concurrency properties of tracers. There is no automatic memory man-
agement for tracers, the user is responsible for creating and deleting tracers. A tracer can
be used across several threads where it is ensured that the execution of a trace function is
synchronized in that at most one thread executes any trace function at any given time.

12.5.2 Variable tracers for set variables

The types and classes for set variable tracers are as follows:

■ The variable trace recorder is of type SetTraceRecorder.

■ The trace delta information is of class SetTraceDelta which implements two mem-
ber functions glb() (for greatest lower bound) and lub() (for least upper bound)
which return range iterators. The function glb() returns a range iterator of class
SetTraceDelta::Glb which iterates over the values that have been included into a
set variable by a prune-event. The function lub() returns a range iterator of class
SetTraceDelta::Lub which iterates over the values that have been excluded from a
set variable by a prune-event.

■ The slack of a set variable is defined as the number of values where membership has
not been decided and is of type unsigned long long int.

12.5.3 Variable tracers for float variables

The types and classes for float variable tracers are as follows:

217

https://www.gecode.org/doc/6.2.0/reference/group__TaskIntTrace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BoolTraceDelta.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskSetTrace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetTraceDelta.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetTraceDelta_1_1Glb.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SetTraceDelta_1_1Lub.html

GENERAL TRACER ≡ [DOWNLOAD]

· · ·
class StdCoutTracer : public Tracer {

public:

virtual void post(const Space& home,

const PostTraceInfo& pti) {

std::cout << "trace::" << pti << std::endl;

}

virtual void propagate(const Space& home,

const PropagateTraceInfo& pti) {

std::cout << "trace::" << pti << std::endl;

}

virtual void commit(const Space& home,

const CommitTraceInfo& cti) {

std::cout << "trace::" << cti << std::endl

<< ’\t’;
cti.brancher().print(home, cti.choice(), cti.alternative(),

std::cout);

std::cout << std::endl;

}

};

Figure 12.4: A general tracer printing to std::cout

■ The variable trace recorder is of type FloatTraceRecorder.

■ The trace delta information is of class FloatTraceDelta which implements two mem-
ber functions min() and max() defining the interval of float values that have been
pruned.

■ The slack of a float variable is defined as its width and is of type FloatNum.

12.6 Programming general tracers

Programming general tracers is straightforward and is done by inheriting from the class
Tracer that implements one virtual member function for each trace event type. These virtual
member functions are called when an event of that type is being recorded and the event type
has been selected for tracing.

The example tracer we discuss is implemented by a class StdCoutTracer, prints trace
information to std::cout, and is shown in Figure 12.4.

The virtual member function commit() takes a space and an object cti of class
CommitTraceInfo as input. Information about the brancher, the choice, and the alternative

218

https://www.gecode.org/doc/6.2.0/MPG/general-tracer.cpp
https://www.gecode.org/doc/6.2.0/reference/group__TaskFloatTrace.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FloatTraceDelta.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskModelFloatVars.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Tracer.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1CommitTraceInfo.html

to commit to can be accessed through the member functions of cti.
The virtual member function post() takes a space and an object pti of class

PostTraceInfo as input. Information about propagator group, status, and the number of
posted propagators can be accessed through the member functions of pti.

The virtual member function propagate() takes a space and an object pti of class
PropagateTraceInfo as input. Information about the propagator and the status of prop-
agation can be accessed through the member functions of pti.

219

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PostTraceInfo.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PropagateTraceInfo.html

220

C

Case studies
Christian Schulte, Guido Tack, Mikael Z. Lagerkvist

This part presents a collection of modeling case studies. The case studies are ordered
(roughly) according to their complexity.

Basic models. The basic models use classic constraint programming problems in order to
demonstrate how typical modeling tasks are done with Gecode. The basic models are:

■ Chapter 13 (Golomb rulers) shows a simple problem with a single distinct constraint
and a few rel constraints. As the problem is so well known, it might serve as an initial
case study of how to model with Gecode.

■ Chapter 14 (Magic sequence) shows how to use counting constraints (count).

■ Chapter 15 (Photo alignment) shows how to use reified constraints for solving an over-
constrained problem.

■ Chapter 16 (Locating warehouses) shows how to use element, linear, and global
counting (count) constraints.

■ Chapter 17 (Nonogram) shows how to use regular expressions and extensional con-
straints.

■ Chapter 18 (Social golfers) presents a case study on modeling problems using set vari-
ables and constraints.

Advanced models. The following models are slightly more advanced:

■ Chapter 19 (Knight’s tour) demonstrates a problem-specific brancher inspired by a clas-
sic heuristic for a classic problem.

■ Chapter 20 (Bin packing) also demonstrates a problem-specific brancher including
techniques for breaking symmetries during branching.

■ Chapter 21 (Kakuro) presents a model that employs user-defined constraints imple-
mented as extensional constraints using tuple set specifications. Interestingly, the
tuple set specifications are computed by solving a simple constraint problem.

■ Chapter 22 (Crossword puzzle) presents a simple model using nothing but distinct
and element constraints. The simple model is shown to work quite well compared to a
dedicated problem-specific constraint solver. This underlines that an efficient general-
purpose constraint programming system actually can go a long way.

Note that the first two case studies require knowledge on programming branchers, see Part B.

Acknowledgments. We thank Pierre Flener and Håkan Kjellerstrand for numerous detailed
and helpful comments on the case studies. Their comments have considerably improved the
presentation of the case studies.

13 Golomb rulers

This chapter studies a simple problem that is commonly used as an example for constraint
programming. The model uses nothing but a single distinct constraint, a few rel con-
straints, and posts linear expressions. As the problem is so well known, it might serve as an
initial case study of how to model with Gecode.

13.1 Problem

The problem is to find an optimal Golomb ruler (see Problem 6 in CSPLib) of size n. A
Golomb ruler has n marks 0 = m0 < m1 < · · · < mn−1 such that the distances di, j = m j − mi for
0 ≤ i < j < n are pairwise distinct. An optimal Golomb ruler is of minimal length (that is,
mn−1 is minimal). Figure 13.1 shows an optimal Golomb ruler with 6 marks.

0 1 4 10 12 17

Figure 13.1: An optimal Golomb ruler with 6 marks

In the model for Golomb rulers, we are going to use the following construction for a
Golomb ruler (a non-optimal ruler, though) as it provides upper bounds on the values for the
marks of a ruler. The upper bounds improve the efficiency of our model, see below for more
details.

Assume that the distance between marks i and i + 1 is mi+1 − mi = 2i+1 (that is, for
example, m1 −m0 = 1, m2 −m1 = 2, m3 −m2 = 4, and so on). Then the marks are

mi =

i∑

k=1

2k−1 = 2i − 1.

Figure 13.2 shows a Golomb ruler with 6 marks following this construction.

0 1 3 7 15 31

Figure 13.2: A constructed Golomb ruler with 6 marks

223

http://www.csplib.org/

GOLOMB ≡ [DOWNLOAD]

· · ·
class GolombRuler : public IntMinimizeScript {

protected:

IntVarArray m;

public:

GolombRuler(const SizeOptions& opt)

: IntMinimizeScript(opt),

m(*this,opt.size(),0,

(opt.size() < 31)

? (1 << (opt.size()-1)) - 1

: Int::Limits::max) {

◮ CONSTRAINING MARKS

◮ NUMBER OF MARKS AND DISTANCES

◮ POSTING DISTANCE CONSTRAINTS

◮ IMPLIED CONSTRAINTS

◮ DISTANCES MUST BE DISTINCT

◮ SYMMETRY BREAKING

◮ BRANCHING

}

virtual IntVar cost(void) const {

return m[m.size()-1];

}

· · ·
};

· · ·

Figure 13.3: A script for computing Golomb rulers

Now consider the bit representation of mi: exactly the least i bits are one. For the dis-
tances

di, j = m j −mi =

j∑

k=1

2k−1 −
i∑

k=1

2k−1

we can easily see that in their bit representation the least i bits are zero, followed by j − i

ones. That means for 0≤ i < j < n the bit representations of the di, j are pairwise distinct. In
other words, we can always construct a Golomb ruler with n marks of length mn−1 = 2n−1−1.

224

https://www.gecode.org/doc/6.2.0/MPG/golomb.cpp

13.2 Model

Figure 13.3 shows the script for implementing the Golomb ruler model. The script stores a
variable array m for the marks. The largest possible value of a mark is set to 2n−1−1 according
to the construction of a Golomb ruler in the previous section, provided that this value does
not exceed the possible size limit of an integer (integers in Gecode are at least 32 bits, this
is checked when Gecode is configured for compilation). If n≥ 31 we just choose the largest
possible integer value for an integer variable (see Int::Limits).

Tip 13.1 (Small variable domains are still beautiful). As mentioned in Tip 4.2, initial-
izing variable domains to be small makes sense. For example, if we always chose
Int::Limits::max rather than the smaller upper bounds for Golomb rulers with n < 31,
the propagators for linear constraining the distances would have to resort to extended pre-
cision as the internal computations during propagation exceed the integer precision. That
would mean that scripts for n< 31 would run approximately 15% slower! ◭

The script does not store a variable array for the distances (unlike the array for the marks),
they are stored in an integer variable argument array. As the distances are only needed for
posting constraints but not for printing the solution, it is more efficient to store them in an
variable argument array but not in a variable array. More details on argument arrays and
their relation to variable arrays can be found in Section 4.2.

The cost() function as required by the class MinimizeScript (see Section 11.2) just
returns the largest mark on the ruler.

Marks. Assigning the first mark to zero and ordering the marks in increasing order is done
by posting rel constraints (see Section 4.4.3):

CONSTRAINING MARKS ≡
rel(*this, m[0], IRT_EQ, 0);

rel(*this, m, IRT_LE);

Distances. The number of marks n and number of distances n_d are initialized so that they
can be used for posting constraints:

NUMBER OF MARKS AND DISTANCES ≡
const int n = m.size();

const int n_d = (n*n-n)/2;

As mentioned, the distances are stored in an integer variable argument array d. The
fields of the array d are initialized by the variable returned by the expr() function for linear
expressions (see Section 7.1):

POSTING DISTANCE CONSTRAINTS ≡
IntVarArgs d(n_d);

for (int k=0, i=0; i<n-1; i++)

for (int j=i+1; j<n; j++, k++)

d[k] = expr(*this, m[j] - m[i]);

225

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Int_1_1Limits.html

One might be tempted to optimize the posting of distance constraints for d0, j for 0< j < n

as m0 = 0 and hence d0, j = m j for 0 < j < n. Optimizing avoids to create new variables (that
is, the variables m j are stored as d0, j for 0< j < n) and posting propagators to implement the
equality constraints d0, j = m j for 0< j < n.

However, the expr() function does this automatically. As m0 is already assigned by posting
a rel constraint, the expr() function simplifies the posted expressions accordingly.

Finally, all distances must be pairwise distinct (see Section 4.4.7) where bounds propa-
gation is requested (see Section 4.3.5):

DISTANCES MUST BE DISTINCT ≡
distinct(*this, d, IPL_BND);

Intuitively, bounds propagation is sufficient as also the propagation for the distances is using
bounds propagation.

Implied constraints. The following implied constraints are due to [61]. A distance di, j for
0≤ i < j < n satisfies the property that it is equal to the sum of all distances between marks
mi and m j. That is

di, j = di,i+1 + di+1,i+2 + · · ·+ d j−1, j

This can be verified as follows:

di, j = m j − mi

= (m j − m j−1) + (m j−1 − m j−2) + · · ·+ (mi+1 − mi)

= d j−1, j + d j−2, j−1 + · · ·+ di,i+1

= di,i+1 + di+1,i+2 + · · ·+ d j−1, j

As all distances di, j for 0≤ i < j < n must be pairwise distinct, also the j − i distances

di,i+1,di+1,i+2, . . . ,d j−1, j

must be pairwise distinct and hence must be j − i distinct integers. That means that

di, j = di,i+1 + di+1,i+2 + · · ·+ d j−1, j

must be at least the sum of the first j − i integers:

di, j ≥
j−i∑

l=1

l = (j − i)(j − i + 1)/2

The implied constraints can be posted as a lower bound with a rel constraint (see
Section 4.4.3) for the distances as follows:

IMPLIED CONSTRAINTS ≡
for (int k=0, i=0; i<n-1; i++)

for (int j=i+1; j<n; j++, k++)

rel(*this, d[k], IRT_GQ, (j-i)*(j-i+1)/2);

226

Note that one could also combine the posting of the distance constraints with constrain-
ing the lower bounds of the distances for efficiency. However, we separate both for clarity.
Anyway, the time spent on posting constraints is insignificant to the time spent on solving
the model!

Symmetry breaking. Provided that the ruler has a sufficient number of marks (that is,
n> 2) we can break (a few) symmetries by constraining the distance d0,1 (stored at the first
position in the array d) between the first and second mark to be smaller than the distance
dn−2,n−1 (stored at the last position in the array d) between the next to last and last mark as
follows:

SYMMETRY BREAKING ≡
if (n > 2)

rel(*this, d[0], IRT_LE, d[n_d-1]);

Branching. The branching chooses the marks from left to right on the ruler and assigns the
smallest possible value for a mark first:

BRANCHING ≡
branch(*this, m, INT_VAR_NONE(), INT_VAL_MIN());

13.3 More information

This case study is also available as an example, see Finding optimal Golomb rulers. For a
detailed discussion of how to model the Golomb ruler problem, see [61].

227

https://www.gecode.org/doc/6.2.0/reference/golomb-ruler_8cpp.html

228

14 Magic sequence

This chapter shows how to use counting constraints for solving magic sequence puzzles.

14.1 Problem

The Magic Sequence puzzle (Problem 19 in CSPLib, first introduced as a constraint problem
in [65]) requires finding a sequence of integers x0, . . . , xn−1 such that for all 0 ≤ i < n, the
number i occurs exactly x i times in the sequence. For example, a magic sequence of length
n= 8 is

〈4, 2, 1, 0, 1, 0, 0, 0〉

14.2 Model

The outline of the script for solving magic sequence puzzles is shown in Figure 14.1. It
contains the integer variable array x (see Section 4.2.1), which is initialized according to the
problem specification.

Counting constraints. The problem can be modeled directly using one counting constraint
(see Section 4.4.8) per variable. We will see later that there is a global constraint that com-
bines all these individual counting constraints.

COUNTING CONSTRAINTS ≡
for (int i=0; i<x.size(); i++)

count(*this, x, i, IRT_EQ, x[i]);

Implied linear constraints. The model as described so far completely captures the prob-
lem. Therefore, given enough time, Gecode will return all its solutions and only the solutions.
However, it is sometimes useful to post additional, implied constraints, which do not change
the meaning of the model (they do not change the set of solutions), but which provide addi-
tional constraint propagation that results in a smaller search tree.

229

http://www.csplib.org/

MAGIC SEQUENCE ≡ [DOWNLOAD]

· · ·
class MagicSequence : public Script {

IntVarArray x;

public:

MagicSequence(const SizeOptions& opt)

: Script(opt), x(*this,opt.size(),0,opt.size()-1) {

◮ COUNTING CONSTRAINTS

◮ IMPLIED CONSTRAINTS

◮ BRANCHING

}

· · ·
};

· · ·

Figure 14.1: A script for solving magic sequence puzzles

The two implied constraints that we will use for the magic sequence problem result from
the fact that any magic sequence of length n satisfies the following two equations:

n−1∑

i=0

xi = n

n−1∑

i=0

(i − 1) · xi = 0

The first equation is true because the sum of all occurrences, i.e. the overall number of
items in the sequence, must be equal to the length of the sequence.

The second equation can be rewritten as

n−1∑

i=0

i · xi =

n−1∑

i=0

xi ⇐⇒
n−1∑

i=0

i · xi = n

So it remains to be shown that
∑n−1

i=0
i · xi is also equal to the length of the sequence. This

follows from the fact that xi is the number of times i occurs in the sequence, so i · xi is the
number of positions occupied by the sequence elements that are equal to i, and the sum over
those must be equal to the length of the sequence.

The two equations translate easily into linear constraints (see Section 4.4.6), using integer
argument arrays of type IntArgs (see Section 4.2.2) to supply coefficients.

IMPLIED CONSTRAINTS ≡
linear(*this, x, IRT_EQ, x.size());

linear(*this, IntArgs::create(x.size(),-1,1), x, IRT_EQ, 0);

You can do your own experiments, comparing runtime and search tree size of the model
with and without implied constraints.

230

https://www.gecode.org/doc/6.2.0/MPG/magic-sequence.cpp

MAGIC SEQUENCE GCC ≡ [DOWNLOAD]

· · ·
class MagicSequence : public Script {

IntVarArray x;

public:

MagicSequence(const SizeOptions& opt)

: Script(opt), x(*this,opt.size(),0,opt.size()-1) {

// Global counting constraint

count(*this, x, x, opt.ipl());

// Implied constraint

linear(*this, IntArgs::create(x.size(),-1,1), x, IRT_EQ, 0);

// Branching

branch(*this, x, INT_VAR_NONE(), INT_VAL_MAX());

}

· · ·
};

· · ·

Figure 14.2: Magic sequence puzzles with a global counting constraint

Branching. For large sequences, many variables in the sequence will be 0 because the over-
all sum is only n (see previous paragraph on implied constraints). Therefore, x0 should take
a large value. We simply branch in the given order of the variables, starting with the largest
values.

BRANCHING ≡
branch(*this, x, INT_VAR_NONE(), INT_VAL_MAX());

Global counting constraints. The global counting constraint (also known as global cardi-
nality constraint, see Section 4.4.8) can express the combination of all the individual counting
constraints, and yields stronger propagation. It also includes the propagation of the first of
the two implied linear constraints. So, as an alternative to the n counting constraints above,
we can use the code in Figure 14.2.

14.3 More information

The magic sequence puzzle is also included as a Gecode example, see Magic sequence. The
example contains both the model using individual counting constraints and the one using a
single global counting constraint.

231

https://www.gecode.org/doc/6.2.0/MPG/magic-sequence-gcc.cpp
https://www.gecode.org/doc/6.2.0/reference/magic-sequence_8cpp.html

232

15 Photo alignment

This chapter shows how to use reified constraints for solving an overconstrained problem.

15.1 Problem

Betty, Chris, Donald, Fred, Gary, Mary, Paul, Peter, and Susan want to align in a row for taking
a photo. They have the following preferences:

1. Betty wants to stand next to Donald, Gary, and Peter.

2. Chris wants to stand next to Gary and Susan.

3. Donald wants to stand next to Fred and Gary.

4. Fred wants to stand next to Betty and Gary.

5. Gary wants to stand next to Mary and Betty.

6. Mary wants to stand next to Betty and Susan.

7. Paul wants to stand next to Donald and Peter.

8. Peter wants to stand next to Susan and Paul.

These preferences are obviously not satisfiable all at once (e.g., Betty cannot possibly
stand next to three people at once). The problem is overconstrained. To solve an overcon-
strained problem, we turn it into an optimization problem: The task is to find an alignment
that violates as few preferences as possible.

15.2 Model

We model the photo alignment as an array of integer variables pos such that pos[p] repre-
sents the position of person p in the final left-to-right order. The outline of a script for this
problem is shown in Figure 15.1.

The cost() function as required by the class MinimizeScript (see Section 11.2) just
returns the number of violations.

233

PHOTO ≡ [DOWNLOAD]

· · ·
enum {

Betty, Chris, Donald, Fred, Gary,

Mary, Paul, Peter, Susan

};

const int n = 9;

const int n_prefs = 17;

int spec[n_prefs][2] = {

{Betty,Donald}, {Betty,Gary}, {Betty,Peter},

{Chris,Gary}, {Chris,Susan},

{Donald,Fred}, {Donald,Gary},

{Fred,Betty}, {Fred,Gary},

{Gary,Mary}, {Gary,Betty},

{Mary,Betty}, {Mary,Susan},

{Paul,Donald}, {Paul,Peter},

{Peter,Susan}, {Peter,Paul}

};

class Photo : public IntMinimizeScript {

IntVarArray pos;

IntVar violations;

public:

Photo(const Options& opt)

: IntMinimizeScript(opt),

pos(*this,n,0,n-1), violations(*this,0,n_prefs) {

◮ CONSTRAIN POSITIONS

◮ COMPUTE VIOLATIONS

◮ SYMMETRY BREAKING

· · ·
}

virtual IntVar cost(void) const {

return violations;

}

· · ·
};

· · ·

Figure 15.1: A script for the photo alignment problem

234

https://www.gecode.org/doc/6.2.0/MPG/photo.cpp

There are only two hard constraints for this model: no person can be in more than one
place, and no two persons can stand in the same place. The first constraint is enforced
automatically by the choice of variables, as each pos variable represents the unique position
of a person (see also Tip 16.1). For the second constraint, the variables in the pos array must
be pairwise distinct (see Section 4.4.7):

CONSTRAIN POSITIONS ≡
distinct(*this, pos, IPL_BND);

We choose the bounds consistent variant of distinct (by giving the extra argument IPL_BND,
see Section 4.3.5) as also the other propagators perform only bounds reasoning.

The remaining constraints implement the preferences and turn them into a measure of
violation, which expresses how many preferences are not fulfilled in a solution. A preference
(i, j) is not fulfilled if the distance between the positions of person i and person j is greater
than one. This can be implemented using a linear constraint, an absolute value constraint,
and a reified constraint for each preference, as well as one linear constraint that constrains
the sum of the violations:

PHOTO WITHOUT MODELING SUPPORT ≡ [DOWNLOAD]

· · ·
BoolVarArgs viol(*this,n_prefs,0,1);

for (int i=0; i<n_prefs; i++) {

IntVar distance(*this,0,n), diff(*this,-n,n);

linear(*this, {1,-1},

IntVarArgs({pos[spec[i][0]],pos[spec[i][1]]}),

IRT_EQ, diff);

abs(*this, diff, distance);

rel(*this, distance, IRT_GR, 1, viol[i]);

}

linear(*this, viol, IRT_EQ, violations);

· · ·
Using the MiniModel library (see Figure 7.3 and Section 7.1) yields more compact and

readable code:

COMPUTE VIOLATIONS ≡
BoolVarArgs viol(n_prefs);

for (int i=0; i<n_prefs; i++) {

viol[i] = expr(*this, abs(pos[spec[i][0]]-pos[spec[i][1]]) > 1);

}

rel(*this, violations == sum(viol));

We can observe that this problem has a symmetry, as reversing a solution yields again a
solution. Symmetric solutions like this can be ruled out by arbitrarily picking two persons,
and always placing one somewhere to the left of the other. For example, let us always place
Betty somewhere to the left of Chris:

235

https://www.gecode.org/doc/6.2.0/MPG/photo-without-modeling-support.cpp

SYMMETRY BREAKING ≡
rel(*this, pos[Betty] < pos[Chris]);

15.3 More information

This case study is also available as a Gecode example, see Placing people on a photo.

236

https://www.gecode.org/doc/6.2.0/reference/examples_2photo_8cpp.html

16 Locating warehouses

This chapter demonstrates the warehouse location problem. It shows how to use element,
global counting (count), and linear constraints.

16.1 Problem

The problem is taken from [66, Chapter 10], see also Problem 34 in CSPLib. A company
needs to construct warehouses to supply stores with goods. Each candidate warehouse has
a certain capacity defining how many stores it can supply. Each store shall be supplied by
exactly one warehouse. Maintaining a warehouse incurs a fixed cost. Costs for transportation
from warehouses to stores depend on the locations of warehouses and stores.

We want to determine which warehouses should be opened (that is, supply to at least
one store) and which warehouse should supply which store such that the overall cost (trans-
portation costs plus fixed maintenance costs) is smallest.

In the following problem instance, the fixed maintenance cost c_fixed for a warehouse
is 30. There are five candidate warehouses w0, . . . , w4 and ten stores s0, . . . , s9. The candidate
warehouses have the following capacity:

w0 w1 w2 w3 w4

1 4 2 1 3

The costs to supply a store by a candidate warehouse are defined by a matrix c_supplyi, j

(0≤ i < 10, 0≤ j < 5) as follows:

w0 w1 w2 w3 w4

s0 20 24 11 25 30

s1 28 27 82 83 74

s2 74 97 71 96 70

s3 2 55 73 69 61

s4 46 96 59 83 4

s5 42 22 29 67 59

s6 1 5 73 59 56

s7 10 73 13 43 96

s8 93 35 63 85 46

s9 47 65 55 71 95

237

http://www.csplib.org/

16.2 Model

The outline for the script implementing our model is shown in Figure 16.1. The data defini-
tions are as described in the previous section.

As we need to minimize the total cost which is an integer variable, the script inherits
from the class IntMinimizeScript which is a driver-defined subclass (similar to Script and
Space) of IntMinimizeSpace (see Section 7.3), see Section 11.2. This in particular means
that the class must define a virtual cost() function returning an integer variable, see below.

Variables. The script declares the following variables:

VARIABLES ≡
IntVarArray supplier;

BoolVarArray open;

IntVarArray c_store;

IntVar c_total;

where:

■ for each store s, there is a variable suppliers such that suppliers = w if warehouse w

supplies store s;

■ for each warehouse w, there is a Boolean variable openw which equals one, if the ware-
house w supplies at least one store;

■ for each store s, there is a variable c_stores which defines the cost for s to be supplied
by warehouse suppliers;

■ a variable c_total which defines the total cost.

Tip 16.1 (Choose variables to avoid constraints). Just by the choice of supplier variables
where suppliers = w if warehouse w supplies store s, the problem constraint that each store
shall be supplied by exactly one warehouse is enforced. Hence, no explicit constraints must
be posted in our model. After all, no supplier variable can take on two different values!

This is good modeling practice: choosing variables such that some of the problem con-
straints are automatically enforced. ◭

The variables are initialized as follows:

VARIABLE INITIALIZATION ≡
: IntMinimizeScript(opt),

supplier(*this, n_stores, 0, n_warehouses-1),

open(*this, n_warehouses, 0, 1),

c_store(*this, n_stores)

We only declare but do not initialize the cost variables c_store and c_total, as we
will assign them by results obtained by posting expressions, see Section 7.1. The difference
between declaring variables and initializing them such that new variables are created is ex-
plained in detail in Section 4.1.1.

238

WAREHOUSES ≡ [DOWNLOAD]

· · ·
const int n_warehouses = 5;

const int n_stores = 10;

const int capacity[n_warehouses] = {

1, 4, 2, 1, 3

};

const int c_fixed = 30;

const int c_supply[n_stores][n_warehouses] = {

· · ·
};

class Warehouses : public IntMinimizeScript {

protected:

◮ VARIABLES

public:

Warehouses(const Options& opt)

◮ VARIABLE INITIALIZATION

{

{

◮ DO NOT EXCEED CAPACITY

}

◮OPEN WAREHOUSES

◮ COST FOR EACH WAREHOUSE

◮ TOTAL COST

◮ BRANCHING

}

◮ COST FUNCTION

· · ·
};

· · ·

Figure 16.1: A script for locating warehouses

239

https://www.gecode.org/doc/6.2.0/MPG/warehouses.cpp

Constraints. For a given warehouse w the following must hold: the number of stores s

supplied by w is not allowed to exceed the capacity of w. This can be expressed by a counting
constraint count (see Section 4.4.8) as follows:

DO NOT EXCEED CAPACITY ≡
IntSetArgs c(n_warehouses);

for (int w=0; w<n_warehouses; w++)

c[w] = IntSet(0,capacity[w]);

count(*this, supplier, c, IPL_DOM);

Here, the array of integer sets c defines how many stores can be supplied by a warehouse,
where cw contains every legal number of occurrences of w in supplier. To achieve strong
propagation for the count constraint, we choose domain propagation by providing the addi-
tional argument IPL_DOM (see Section 4.3.5).

For a given warehouse w the following must hold: if the number of stores s supplied by
w is at least one, then openw equals one. That is, opensuppliers

must be 1 for all stores s. This
is expressed by using element constraints (see Section 4.4.12) as follows:

OPEN WAREHOUSES ≡
for (int s=0; s<n_stores; s++)

element(*this, open, supplier[s], 1);

Cost computation. The cost c_stores for each store s is computed by an element constraint
(see Section 4.4.12), mapping the warehouse supplying s to the appropriate cost:

COST FOR EACH WAREHOUSE ≡
for (int s=0; s<n_stores; s++) {

IntArgs c(n_warehouses, c_supply[s]);

c_store[s] = expr(*this, element(c, supplier[s]));

}

The total cost c_total is defined by the cost of open warehouses (that is, the sum of
openw for all warehouses w multiplied with the fixed maintenance cost for a warehouse) and
the cost of stores (that is, the sum of the c_stores for all stores s):

TOTAL COST ≡
c_total = expr(*this, c_fixed*sum(open) + sum(c_store));

Note that the linear expression posted for defining the total cost mixes integer and Boolean
variables and is automatically decomposed into the appropriate linear constraints, see
Section 7.1.

Tip 16.2 (Small variable domains are still beautiful). As mentioned in Tip 4.2, initializing
variable domains to be small makes sense.

Here we choose to post expressions (see Section 7.1) via the expr() function that returns
an integer variable. The integer variable returned by expr() has automatically computed and
reasonable bounds.

240

A different choice would be to initialize the variables c_store and c_total in the con-
structor of the script and constrain them explicitly (for example, via the rel() function where
the expression for expr() is turned into an equality relation). But that would mean that we
either have to compute some estimates for the bounds used for initializing the variables or
resort — without real necessity — to the largest possible integer value. ◭

Branching. The branching proceeds in two steps, implemented by two different branch-
ings. The first branching assigns values to the variables c_stores and follows the strategy of
maximal regret: select the variable for which the difference between the smallest value and
the next larger value is maximal (see Section 8.2). The second branching makes sure that
all stores are being assigned a warehouse. This branching is necessary as supplying a store
could have the same cost for several different warehouses (depending on the data used for
the model). Hence, even though all variables in c_store are assigned, not all variables in
supplier must be assigned and hence the total cost is also not assigned. The branchings are
posted in the appropriate order as follows:

BRANCHING ≡
branch(*this, c_store, INT_VAR_REGRET_MIN_MAX(), INT_VAL_MIN());

branch(*this, supplier, INT_VAR_NONE(), INT_VAL_MIN());

Cost function. The cost function cost() to be used by the search engine is defined to return
the total cost c_total:

COST FUNCTION ≡
virtual IntVar cost(void) const {

return c_total;

}

16.3 More information

This problem is also available as a Gecode example, see Locating warehouses. The model
presented in [66, Chapter 10] proposes a better branching than the branching shown in the
previous section.

241

https://www.gecode.org/doc/6.2.0/reference/examples_2warehouses_8cpp.html

242

17 Nonogram

This chapter shows how to use regular expressions and extensional constraints for solving
nonogram puzzles.

17.1 Problem

Nonograms (Problem 12 in CSPLib) are popular puzzles in which the puzzler shades squares
in a matrix. Each instance of the puzzle has constraints on the rows and columns of the
matrix, specifying the number and length of the groups of consecutive marks in that row or
column. For example, a row that in the solution has the marks

��������������

has the hint 2 3 1, indicating that there are three separate groups of marks, with lengths 2,
3, and 1. Given two groups of marks, there must be at least one empty square in between.
An example nonogram is given in Figure 17.1 and its solution is shown in Figure 17.2. The
general nonogram problem is NP-complete, as shown in [63].

17.2 Model

The model follows naturally from the constraints of the problem. The variables needed are
a matrix x i j of 0-1 variables, representing the squares to shade. For the hint 2 3 1 on row i,
we post the following extensional constraint (see Section 4.4.13):

extensional(x i•, 0∗120+130+10∗)

The regular expression starts and ends with zero or more zeroes. Each group is represented
by as many ones as the group length. In between the groups, one or more zeroes are placed.
Using this construction, we get one constraint per row and column of the matrix. The outline
of the script is shown in Figure 17.3.

Puzzle specification. The puzzle is specified by an array of integers. The first two integers
specify the width and the height of the grid. These are followed first by the column and then
the row hints. Each hint specifies the number of groups and the length of each group. For
example, the hint used as an example above is specified as 3, 2, 3, 1. The puzzle from
Figure 17.1 is written as follows.

243

http://www.csplib.org/

2 2 2 2 2 2 2

3 3 2 2 2 2 2 3 3

2 2

4 4

1 3 1

2 1 2

1 1

2 2

2 2

3

1

Figure 17.1: Example nonogram puzzle

2 2 2 2 2 2 2

3 3 2 2 2 2 2 3 3

2 2 � � � �

4 4 � � � � � � � �

1 3 1 � � � � �

2 1 2 � � � � �

1 1 � �

2 2 � � � �

2 2 � � � �

3 � � �

1 �

Figure 17.2: Solution to the example puzzle

244

NONOGRAM ≡ [DOWNLOAD]

· · ·
◮ PUZZLE

class Nonogram : public Script {

int width, height;

BoolVarArray b;

DFA line(const int*& p) {

◮ LINE FUNCTION

}

public:

Nonogram(const Options& opt)

: Script(opt), width(spec[0]), height(spec[1]),

b(*this,width*height,0,1) {

Matrix<BoolVarArray> m(b, width, height);

◮ INTIALIZE HINT POINTER

◮ COLUMN CONSTRAINTS

◮ ROW CONSTRAINTS

◮ BRANCHING

}

· · ·
};

int main(int argc, char* argv[]) {

· · ·
}

Figure 17.3: A script for solving nonogram puzzles

245

https://www.gecode.org/doc/6.2.0/MPG/nonogram.cpp

PUZZLE ≡
const int spec[] =

{ 9, 9,

// Column hints

1, 3,

2, 2, 3,

· · ·
// Row hints

2, 2, 2,

· · ·
};

Line function. For the hint that starts at p (that is, p points to a position in the array of
integers spec[] where a hint starts), the following code constructs a regular expression (see
Section 7.4) that matches that hint.

LINE FUNCTION ≡
int nhints = *p++;

REG r0(0), r1(1);

REG border = *r0;

REG separator = +r0;

REG result = border;

if (nhints > 0) {

result += r1(*p,*p);

p++;

for (int i=nhints-1; i--; p++)

result += separator + r1(*p,*p);

}

return result + border;

The variables r0 and r1 represent the constants 0 and 1 (this is a slight optimization to
construct a regular expression for the constants 0 and 1 just once). The variables border and
separator represent sequences of zeroes at the borders and between marks. The loop adds
all hints (as repeated r1s) to the result expression with separators in between. Note that
if the hint is just 0 (representing an empty line with no mark), then the result will be just
the same as a border+border, which is 0∗0∗ = 0∗.

Constraints. Given the line() function, posting the appropriate constraints is as follows.
The pointer p is initialized to point to the first hint:

INTIALIZE HINT POINTER ≡
const int* p = spec+2;

Two loops go through all the hints, get the regular expression for the line, and post the
constraints for the appropriate variables. First, the column constraints are posted:

246

COLUMN CONSTRAINTS ≡
for (int w=0; w<width; w++)

extensional(*this, m.col(w), line(p));

followed by the row constraints:

ROW CONSTRAINTS ≡
for (int h=0; h<height; h++)

extensional(*this, m.row(h), line(p));

Branching. Choosing a branching for nonograms is not obvious. For many nonogram puz-
zles, using an AFC-based branching (see Section 8.2) is a good idea:

BRANCHING ≡
branch(*this, b, BOOL_VAR_AFC_MAX(), BOOL_VAL_MAX());

The choice to use INT_VAL_MAX() is because most puzzles will have fewer marks than
empty spaces. For the example puzzle from Figure 17.1, propagation alone solves the puzzle.
To solve really hard puzzles, a custom branching may be needed.

17.3 More information

The nonogram puzzle is also included as a Gecode example, see Nonogram. The example in
particular features several grids to try the model on.

Despite its simplicity, the program for solving nonograms works amazingly well. Extensive
information on nonogram puzzles and a comparison of different nonogram solvers (including
the model described in this chapter) is Survey of Paint-by-Number Puzzle Solvers.

247

https://www.gecode.org/doc/6.2.0/reference/nonogram_8cpp.html
http://webpbn.com/survey/

248

18 Social golfers

This chapter presents a case study on modeling problems using set variables and constraints.

18.1 Problem

The social golfers’ problem (Problem 10 in CSPLib) requires finding a schedule for a golf
tournament. There are g · s golfers who want to play a tournament in g groups of s golfers
each over w weeks, such that no two golfers play against each other more than once during
the tournament.

Here is a solution for the instance w = 4, g = 3, and s = 3, where the players are
numbered from 0 to 8:

Group 0 Group 1 Group 2

Week 0 0 1 2 3 4 5 6 7 8

Week 1 0 3 6 1 4 7 2 5 8

Week 2 0 4 8 1 5 6 2 3 7

Week 3 0 5 7 1 3 8 2 4 6

18.2 Model

The model for the social golfers’ problem closely follows the above problem description. Its
outline is shown in Figure 18.1. The script defines an array of set variables groups of size g·w,
where each group can contain the players 0 . . .g·s−1 and has cardinality s (see Section 5.1).

The script also defines a matrix schedule with g columns and w rows on top of the
variable array, such that schedule(i,j) is the set of members of group i in week j.

The constraints are straightforward. For each week, the union of all groups must be dis-
joint and contain all players. This can be expressed directly using a disjoint union constraint
(see Section 7.1) on the rows of the schedule:

GROUPS IN A WEEK ≡
SetVar allPlayers(*this, 0,g*s-1, 0,g*s-1);

for (int i=0; i<w; i++)

rel(*this, setdunion(schedule.row(i)) == allPlayers);

249

http://www.csplib.org/

GOLF ≡ [DOWNLOAD]

· · ·
class GolfOptions : public Options {

· · ·
};

class Golf : public Script {

int g, s, w;

SetVarArray groups;

public:

Golf(const GolfOptions& opt)

: Script(opt), g(opt.g()), s(opt.s()), w(opt.w()),

groups(*this,g*w,IntSet::empty,0,g*s-1,

static_cast<unsigned int>(s),

static_cast<unsigned int>(s)) {

Matrix<SetVarArray> schedule(groups,g,w);

◮ GROUPS IN A WEEK

◮OVERLAP BETWEEN GROUPS

◮ BREAK GROUP SYMMETRY

◮ BREAK WEEK SYMMETRY

◮ BREAK PLAYER SYMMETRY

branch(*this, groups, SET_VAR_MIN_MIN(), SET_VAL_MIN_INC());

}

· · ·
};

· · ·

Figure 18.1: A script for the social golfers’ problem

Each group can have at most one player in common with any other group. This can be
expressed by a constraint that states that the cardinality of the intersection between any two
groups must be at most 1:

OVERLAP BETWEEN GROUPS ≡
for (int i=0; i<groups.size()-1; i++)

for (int j=i+1; j<groups.size(); j++)

rel(*this, cardinality(groups[i] & groups[j]) <= 1);

Symmetry breaking. Using set variables to model the groups already avoids introducing
symmetry among the players in a group. For example, if we had modeled each group as s

integer variables, any permutation of these variables would produce an equivalent solution.

250

https://www.gecode.org/doc/6.2.0/MPG/golf.cpp

But there are more symmetries in this problem, and some of them can be avoided easily
by introducing additional symmetry breaking constraints.

Within a week, the order of the groups is irrelevant. Therefore, we can impose a
static order requiring that all minimal elements of each group are ordered increasingly (see
Section 5.2.5 for the minimal element constraint, Section 7.1 for the MiniModel support, and
Section 4.4.3 for ordering integer variables):

BREAK GROUP SYMMETRY ≡
for (int j=0; j<w; j++) {

IntVarArgs m(g);

for (int i=0; i<g; i++)

m[i] = expr(*this, min(schedule(i,j)));

rel(*this, m, IRT_LE);

}

Similarly to the group symmetry, the order of the weeks is irrelevant. Again, the symmetry
can be broken by imposing an order on the group elements. The previous constraint made
sure that player 0 will always be in schedule(0,j) for any week j. So imposing an order on
the second smallest element of schedule(0,j) will do the trick:

BREAK WEEK SYMMETRY ≡
IntVarArgs m(w);

for (int j=0; j<w; j++)

m[j] = expr(*this, min(schedule(0,j)-IntSet(0,0)));

rel(*this, m, IRT_LE);

Finally, the players can be permuted arbitrarily. For example, swapping the numbers 2
and 6 in the initial example produces a symmetric solution:

Group 0 Group 1 Group 2

Week 0 0 1 6 3 4 5 2 7 8

Week 1 0 3 2 1 4 7 6 5 8

Week 2 0 4 8 1 5 2 6 3 7

Week 3 0 5 7 1 3 8 6 4 2

This symmetry can be broken using the precede constraint (see Section 5.2.9):

BREAK PLAYER SYMMETRY ≡
precede(*this, groups, IntArgs::create(groups.size(),0));

It enforces for any pair of players s and t that t can only appear in a group without s if there
is an earlier group where s appears without t. This establishes an order that breaks the value
symmetry between the players. In the example above, the constraint rules out that 6 appears
in group 0, week 0, because that would require 2 to appear in an earlier group. The only
solution that remains after symmetry breaking is the one in the initial table in Section 18.1.

Note that these symmetry breaking constraints do not necessariyl break all symmetries of
the problem completely. We mainly discussed them as additional examples of modeling with
set variables and constraints.

251

18.3 More information

The case study is also available as a Gecode example, see Golf tournament. You can find a
discussion of the symmetry breaking constraints presented here and a number of additional
implied constraints in [3].

252

https://www.gecode.org/doc/6.2.0/reference/golf_8cpp.html

19 Knight’s tour

This chapter demonstrates a problem-specific brancher inspired by a classic heuristic for a
classic problem.

Important. This case study requires knowledge on programming branchers, see Part B.

19.1 Problem

The problem of a knight’s tour is to find a series of knight’s moves (a knight can move two
fields vertically and simultaneously one field horizontally, or vice versa) on an empty n× n

board starting from some initial field such that:

■ each field is visited exactly once, and

■ there is a further knight’s move from the last field of the tour to the initial field.

Figure 19.1 shows a knight’s tour for n= 8, where the tour starts at the lower left corner.

19.2 Model

The model for the knight’s tour uses a successor representation for the knight’s moves to
make posting the constraints straightforward. To further simplify posting the constraints,
the variables in the model use fields on the board as values. The field 0 has 〈x,y〉-coordinates
〈0, 0〉 on the board, the field 1 has coordinates 〈1, 0〉, the field n on an n × n board has
coordinates 〈0, 1〉, and so on. That is, fields on the board are counted first in x-direction and
then in y-direction.

The successor representation means that a variable in the model has the field numbers
as possible values that can be reached by a knight’s move. The model uses the circuit

constraint (see Section 4.4.17) to enforce that the tour is in fact a Hamiltonian circuit. The
only additional constraints needed are that fields must be reachable only by knight’s moves.

Figure 19.2 outlines the program to implement the knight’s tour model. An object of class
Knights stores the size of the board as its member n. The variables for the knight moves are
stored in the integer variable array (see Section 4.2.1) succ. The array succ has n2 elements
where the variable at position f stores the successor of the field f. The function f(x,y)

253

0

3

22

19

48

5

24

27

21

18

1

4

23

26

49

6

2

63

20

47

40

55

28

25

17

38

41

62

45

50

7

60

42

13

46

39

54

61

56

29

37

16

53

44

51

32

59

8

12

43

14

35

10

57

30

33

15

36

11

52

31

34

9

58

Figure 19.1: 8× 8-knight’s tour

254

KNIGHTS ≡ [DOWNLOAD]

#include <climits>

· · ·
◮ BRANCHER

class Knights : public Script {

protected:

const int n;

IntVarArray succ;

public:

int f(int x, int y) const { return x + y*n; }

· · ·
IntSet neighbors(int i) {

· · ·
}

Knights(const SizeOptions& opt)

: Script(opt), n(opt.size()), succ(*this,n*n,0,n*n-1) {

◮ KNIGHT’S MOVES

◮ FIX FIRST MOVE

◮HAMILTONIAN CIRCUIT

warnsdorff(*this, succ);

}

· · ·
};

· · ·

Figure 19.2: A script for the knight’s tour problem

255

https://www.gecode.org/doc/6.2.0/MPG/knights.cpp

computes the field number for coordinates 〈x,y〉. For example, f(0,0)=0, f(1,0)=1, and
f(0,1)=n.

Enforcing knight’s moves. Domain constraints dom (see Section 4.4.1) are used to con-
strain moves to knight’s moves:

KNIGHT’S MOVES ≡
for (int i=0; i<n*n; i++)

dom(*this, succ[i], neighbors(i));

The function neighbors(i) returns an integer set which contains the fields that are reach-
able from field i by a knight’s move. For example, for n = 8, neighbors(0) (the field 0 has
coordinates 〈0,0〉) returns the integer set {17,10} (that is, the fields with coordinates 〈2,1〉
and 〈1,2〉) and neighbors(27) (the field 27 has coordinates 〈3,3〉) returns the integer set
{17,33,10,42,12,44,21,37} (that is, the fields with coordinates 〈2,1〉, 〈4,1〉, 〈1,2〉, 〈5,2〉,
〈1,4〉, 〈5,4〉, 〈2,5〉, and 〈4,5〉).

Fixing the first move. Without loss of generality we fix that the knight’s first move goes to
field f(1,2):

FIX FIRST MOVE ≡
rel(*this, succ[0], IRT_EQ, f(1,2));

Fixing the first move can be seen as breaking a symmetry in the model and hence reduces
the amount of search needed for finding a knight’s tour.

Enforcing a Hamiltonian circuit. The circuit constraint (see Section 4.4.17) enforces
that the tour of knight’s moves forms a Hamiltonian circuit:

HAMILTONIAN CIRCUIT ≡
circuit(*this, succ, IPL_DOM);

We request domain propagation for the circuit constraint by providing IPL_DOM as argu-
ment (see Section 4.3.5).1 Intuitively, we want to have the strongest possible propagation
available for circuit as it is the only constraint.

19.3 Branching

The really interesting aspect of solving the knight’s tour puzzle is to find a branching that
works well. A classic approach is Warnsdorff’s heuristic [72]: move the knight to a field that
has the least number of further possible moves.

1Of course, domain propagation for circuit does not achieve domain consistency, as the problem of finding
Hamiltonian circuits is NP-complete [16, p. 199].

256

In terms of our model, Warnsdorff’s heuristic has of course no procedural notion of moving

the knight! Instead, our branching finds a yet unassigned field i on the board (a field whose
successor is not known yet). Then, it first tries a value for succi that moves the knight to a
field with the least number of further possible moves. That is, the branching first tries a value
n for succi such that the domain size of succn is smallest. If there are several such values, it
just tries the smallest first (as it is most natural to implement).

The brancher. Figure 19.3 shows an outline of a branching and a brancher implementing
Warnsdorff’s heuristic. The members of Warnsdorff are exactly the same as for the example
brancher in Section 32.2.2: the view array x stores the knight’s moves, the mutable integer
start points to the current unassigned view in x, and the PosVal choice stores the position
of the view and the value to be used for branching.

Status computation. The status() function tries to find a yet unassigned view for branch-
ing in the view array x. It starts inspecting the views from position start. If it finds an as-
signed view, it moves start to the position in the view array as defined by the assigned view’s
value. In other words, status() follows partially constructed knight’s tours. If status()
finds an unassigned view, it returns true:

STATUS FUNCTION ≡
virtual bool status(const Space&) const {

for (int n=0; n<x.size(); n++) {

if (!x[start].assigned())

return true;

start = x[start].val();

}

return false;

}

The number of attempts to find an unassigned view is limited by the number of views
in the view array x. If the limit is exceeded, all views are assigned and hence the status()

function returns false.

Choice computation. The choice() function implements the actual heuristic. It chooses
the value of x[start] for branching that has the smallest domain size as follows:

257

CHOICE FUNCTION ≡
virtual Choice* choice(Space&) {

int n=-1; unsigned int size=UINT_MAX;

for (Int::ViewValues<Int::IntView> i(x[start]); i(); ++i)

if (x[i.val()].size() < size) {

n=i.val(); size=x[n].size();

}

return new PosVal(*this,start,n);

}

As mentioned above, to keep the implementation simple, if there are several values that have
smallest domain size, the first is chosen (and hence the smallest).

Note that the value UINT_MAX is larger than the size of any view domain.2 Hence, it
is guaranteed that the for-loop will always choose a value from the domain of x[start].
The choice returned is the typical implementation to store position and value, similar to the
examples in Section 32.2.2.

19.4 More information

The model is also available as a Gecode example, see n-Knights tour (model using circuit).
The Gecode example also features a simple standard branching that can be compared
to Warnsdorff’s branching and a naive model using reification instead of circuit (see
n-Knight’s tour (simple model)).

2UINT_MAX (for the maximal value of an unsigned integer) is available as the program includes the <climits>
header file.

258

https://www.gecode.org/doc/6.2.0/reference/examples_2knights_8cpp.html
https://www.gecode.org/doc/6.2.0/reference/examples_2knights_8cpp.html

BRANCHER ≡
class Warnsdorff : public Brancher {

protected:

ViewArray<Int::IntView> x;

mutable int start;

class PosVal : public Choice {

· · ·
};

public:

· · ·
◮ STATUS FUNCTION

◮ CHOICE FUNCTION

· · ·
};

void warnsdorff(Home home, const IntVarArgs& x) {

· · ·
}

Figure 19.3: A brancher for Warnsdorff’s heuristic

259

260

20 Bin packing

This chapter studies the classic bin packing problem. Three models are presented: a first and
naive model (presented in Section 20.2) that suffers from poor propagation to be feasible.
This is followed by a model (Section 20.3) that uses the special binpacking constraint to
drastically improve constraint propagation. A final model improves the second model by a
problem-specific branching (Section 20.4) that also breaks many symmetries during search.

Important. This case study requires knowledge on programming branchers, see Part B.

20.1 Problem

The bin packing problem consists of packing n items of sizes sizei (0 ≤ i < n) into the
smallest number of bins such that the capacity c of each bin is not exceeded.

For example, the 11 items of sizes

6, 6, 6, 5, 3, 3, 2, 2, 2, 2, 2

require at least four bins of capacity 10 as shown in Figure 20.1 where the items are numbered
starting from zero.

0

4

1

6

7

2

8

9

3

5

10

Figure 20.1: An example optimal bin packing

261

INSTANCE DATA ≡
const int c = 100;

const int n = 50;

const int size[n] = {

99,98,95,95,95,94,94,91,88,87,86,85,76,74,73,71,68,60,55,54,51,

45,42,40,39,39,36,34,33,32,32,31,31,30,29,26,26,23,21,21,21,19,

18,18,16,15,5,5,4,1

};

Figure 20.2: Instance data for a bin packing problem

COMPUTE LOWER BOUND ≡
int lower(void) {

int s=0;

for (int i=0; i<n; i++)

s += size[i];

return (s + c - 1) / c;

}

Figure 20.3: Computing a lower bound for the number of bins

20.2 A naive model

Before turning our attention to a naive model for the bin packing problem, this section dis-
cusses instance data for the bin packing problem and how to compute lower and upper
bounds for the number of required bins.

Instance data. Figure 20.2 shows an example instance of a bin packing problem, where n

defines the number of items, c defines the capacity of each bin, and the array size defines
the size of each item. For simplicity, we assume that the item size are ordered in decreasing
order.

The data corresponds to the instance N1C1W1_N taken from [47]. More information on
other data instances can be found in Section 20.5.

Computing a lower bound. A simple lower bound L1 (following Martello and Toth [34])
for the number of bins required for a bin packing problem just considers the size of all items
and the bin capacity as follows:

L1 =

¢

1

c

n−1∑

i=0

sizei

¥

The computation of the lower bound L1 is as to be expected and is shown in Figure 20.3.

262

COMPUTE UPPER BOUND ≡
int upper(void) {

int* free = new int[n];

for (int i=0; i<n; i++)

free[i] = c;

int u=0;

◮ PACK ITEMS INTO FREE BINS

delete [] free;

return u+1;

}

Figure 20.4: Computing an upper bound for the number of bins

The ceiling operation is replaced by adding c − 1 followed by truncating integer division
with c.

Note that more accurate lower bounds are known, see Section 20.5 for more information.

Computing an upper bound. An obvious upper bound for the number of bins required
is the number of items: each item is packed into a separate bin (provided that no item
size exceeds the bin capacity c). A better upper bound can be computed by constructing a
solution by packing items into bins following a first-fit strategy: pack all items into the first
bin of sufficient free capacity.

Figure 20.4 shows the function upper() that returns an upper bound for the number of
bins. It initializes an array free of n integers with the bin capacity c. The integer u refers
to the index of the last used bin (that is, a bin into which an item has been packed). The
function returns the number of used bins (that is, the index u plus one).

Each item is packed into a bin with sufficient free capacity where j refers to the next free
bin:

PACK ITEMS INTO FREE BINS ≡
for (int i=0; i<n; i++) {

int j=0;

◮ FIND FREE BIN

u = std::max(u,j);

}

The next free bin j is searched for as follows:

FIND FREE BIN ≡
while (free[j] < size[i])

j++;

free[j] -= size[i];

263

0

4

1

5

2

6

7

3

8

9

10

Figure 20.5: An non-optimal bin packing found during upper bound computation

The loop always terminates as there is one bin for each item.
Note that upper() has O(n2) complexity in the worst case but could be made more effi-

cient by speeding up finding a fitting bin.
The solution constructed during computation of upper() is not necessarily optimal. As

an example, consider the packing computed by upper() for the example from Section 20.1
shown in Figure 20.5: it takes five rather than four bins because one of the items 4 and 5
should be packed together with item 3 rather than with one of the items 0, 1, and 2.

If both lower and upper bound coincide the solution constructed is of course optimal
and we are done solving the bin packing problem. For reasons of simplicity, our model just
forsakes this opportunity and re-computes an optimal solution by constraint programming.

Model proper. Figure 20.6 shows a script for the bin packing model. The script defines
integers l and u that store the lower and upper bound as discussed above. A load variable

loadi (taking values from [0 .. c]) defines the total size of all items packed into bin i. The
script uses u load variables as the upper bound guarantees that u bins are sufficient to find
an optimal solution. A bin variable bini (taking values from [0 .. u− 1] defines for each item
i into which bin it is packed. The variable bins defines the number of used bins. A bin is used

if at least one item is packed into it, otherwise it is an excess bin.
The integer s is initialized as the size of all items and sizes is initialized as an integer

argument array of all sizes.
The cost() function as required by the class MinimizeScript (see Section 11.2) returns

the number of bins.

Excess bins. If the script finds a solution that uses less than u bins, say k (the value of the
bins variable), then u − k of the load variables corresponding to excess bins are zero. To
remove many symmetrical solutions that only differ in which bins are excess bins, the script
constrains the excess bins to be the bins k, . . . ,u− 1:

EXCESS BINS ≡
for (int i=1; i<=u; i++)

rel(*this, (bins < i) == (load[i-1] == 0));

264

BIN PACKING NAIVE ≡ [DOWNLOAD]

· · ·
◮ INSTANCE DATA

◮ COMPUTE LOWER BOUND

◮ COMPUTE UPPER BOUND

class BinPacking : public IntMinimizeScript {

protected:

const int l;

const int u;

IntVarArray load;

IntVarArray bin;

IntVar bins;

public:

BinPacking(const Options& opt)

: IntMinimizeScript(opt),

l(lower()), u(upper()),

load(*this, u, 0, c),

bin(*this, n, 0, u-1), bins(*this, l, u) {

◮ EXCESS BINS

int s=0;

for (int i=0; i<n; i++)

s += size[i];

IntArgs sizes(n, size);

◮ LOADS ADD UP TO ITEM SIZES

◮ LOADS ARE EQUAL TO PACKED ITEMS

◮ SYMMETRY BREAKING

◮ PACK ITEMS THAT REQUIRE A BIN

◮ BRANCHING

}

virtual IntVar cost(void) const {

return bins;

}

· · ·
};

· · ·

Figure 20.6: A naive script for solving a bin packing problem

265

https://www.gecode.org/doc/6.2.0/MPG/bin-packing-naive.cpp

Constraining load and bin variables. The sum of all load variables must be equal to the
size of all items:

LOADS ADD UP TO ITEM SIZES ≡
linear(*this, load, IRT_EQ, s);

The load variable for a bin must be constrained according to which items are packed into
the bin. A standard formulation of this constraint uses Boolean variables xi, j which determine
whether item i has been packed into bin j. That is, for each item 0 ≤ i < n the following
constraint must hold:

xi, j = 1 ⇐⇒ bini = j (0≤ j < u)

A more efficient propagator for the very same constraint is available as a channel

constraint between an array of Boolean variables and a single integer variable, see
Section 4.4.11. That is, for each item 0≤ i < n the following constraint must hold:

channel(〈xi,0,xi,1, . . . ,xi,u−1〉,bini)

Note that 〈xi,0,xi,1, . . . ,xi,u−1〉 corresponds to x.col(i).

Furthermore, the size of all items packed into a bin must equal the corresponding load
variable. Both constraints are expressed as follows, using a matrix x (see Section 7.2) of
Boolean variables _x:

LOADS ARE EQUAL TO PACKED ITEMS ≡
BoolVarArgs _x(*this, n*u, 0, 1);

Matrix<BoolVarArgs> x(_x, n, u);

for (int i=0; i<n; i++)

channel(*this, x.col(i), bin[i]);

for (int j=0; j<u; j++)

linear(*this, sizes, x.row(j), IRT_EQ, load[j]);

Symmetry breaking. Items of the same size are equivalent as far as the model is concerned.
To break symmetries, the bins for items of the same size are ordered:

SYMMETRY BREAKING ≡
for (int i=1; i<n; i++)

if (size[i-1] == size[i])

rel(*this, bin[i-1] <= bin[i]);

The loop exploits that items are ordered according to size and hence items of the same size
are adjacent.

Pack items that require a bin. If the size s of an item exceeds ⌈ c2⌉ (or, equivalently, 2s > c),
the item cannot share a bin with any other item also exceeding half of the capacity. That is,
items exceeding half of the capacity can be directly assigned to different bins:

266

PACK ITEMS THAT REQUIRE A BIN ≡
for (int i=0; (i < n) && (i < u) && (size[i] * 2 > c); i++)

rel(*this, bin[i] == i);

The assignment of items to bins is compatible with the symmetry breaking constraints
discussed previously.

Branching. We choose a naive branching strategy that first branches on the number of
required bins, followed by trying to assign items to bins.

BRANCHING ≡
branch(*this, bins, INT_VAL_MIN());

branch(*this, bin, INT_VAR_NONE(), INT_VAL_MIN());

Note that by choosing the bin variables with order INT_VAR_NONE() assigns the largest
item to a bin first as items are sorted by decreasing size.

The script in Figure 20.6 does not show that the script uses branch-and-bound search to
find a best solution. Why depth-first search is not sufficient with parallel search is discussed
in Tip 9.4.

Running the model. When running the naive model1, it becomes apparent that the model
is indeed naive. Finding the best solution takes 29.5 seconds and 2 451 018 failures. Clearly,
that leaves ample room for improvement in the following sections!

20.3 Improving propagation

This section improves (and simplifies) the naive model from the previous section by using a
dedicated binpacking constraint.

Model. The improved model is shown in Figure 20.7. Instead of using Boolean variables
x, linear constraints, and channel constraints it uses the binpacking constraint (see also
Section 4.4.15). The constraint enforces that the packing of items as defined by the bin

variables corresponds to the load variables.

Running the model. Finding a best solution using the model with improved propagation
takes 1.5 seconds and 64 477 failures. That is, this model runs almost 20 times faster than
the naive model and reduces the number of failures by a factor of 38.

1All measurements in this chapter have been made on a laptop with an Intel i5 M430 processor (2.27 GHz,
two cores, hyper-threading), 4 GB of main memory, running Windows 7 x64, and using Gecode 3.4.3.

267

BIN PACKING PROPAGATION ≡ [DOWNLOAD]

· · ·
class BinPacking : public IntMinimizeScript {

· · ·
public:

BinPacking(const Options& opt)

: · · · {
· · ·
IntArgs sizes(n, size);

binpacking(*this, load, bin, sizes);

· · ·
}

· · ·
};

· · ·

Figure 20.7: A script with improved propagation for solving a bin packing problem

20.4 Improving branching

This section describes a problem specific branching to improve the model of the previous
section even further.

Complete decreasing best fit branching. The improved branching for bin packing is called
complete decreasing best-fit (CDBF) and is due to Gent and Walsh [18]. The branching uses
some additional improvements suggested by Shaw in [58].

The branching tries to assign items to bins during search where the items are tried in
order of decreasing size. The bin is selected according to a best fit strategy: try to put the
item into a bin with sufficient but least free space. The space of the bin after packing an item
is called the bin’s slack. If there is no bin with sufficient free space left, CDBF fails.

Suppose that CDBF selects item i and bin b. Then the following actions are taken during
branching:

■ If there is a perfect fit (that is, the slack is zero), branching assigns item i to bin b. This
corresponds to a branching with a single alternative.

■ If all possible bins have the same slack, branching assigns item i to bin b. Again, this
corresponds to a branching with a single alternative.

■ Otherwise, CDBF tries two alternatives in the following order:

– Assign item i to bin b.

268

https://www.gecode.org/doc/6.2.0/MPG/bin-packing-propagation.cpp

BIN PACKING BRANCHING ≡ [DOWNLOAD]

· · ·
◮CDBF

class BinPacking : public IntMinimizeScript {

· · ·
public:

BinPacking(const Options& opt)

: · · · {
· · ·
branch(*this, bins, INT_VAL_MIN());

cdbf(*this, load, bin, sizes);

}

· · ·
};

· · ·

Figure 20.8: A script with improved branching for solving a bin packing problem

– Not only prune bin b from the potential bins for item i but also prune all bins with
the same slack as b from the potential bins for all items with the same size as i.

Note that the second alternative of CDBF performs symmetry breaking during search as
it prunes also with respect to equivalent items and bins.

Model. The only change to the model compared to Section 20.3 is that it uses the branching
cdbf for assigning items to bins during search.

Brancher creation. The cdbf branching takes load variables (for computing the free space
of a bin), bin variables (to pack items into bins), and the item sizes (to compute how much
space an item requires) as input and posts the CDBF brancher as shown in Figure 20.9.

The branching post function cdbf() creates view arrays for the respective variables, cre-
ates a shared integer array of type IntSharedArray (see Tip 4.8) and posts a CDBF brancher.
The advantage of using a shared array is that the sizes are stored only once in memory
and branchers in different spaces have shared access to the same memory area (see also
Section 31.3).

The brancher CDBF stores the load variables, bin variables, and item sizes together with
an integer item. The integer item is used to find the next unassigned item. It is declared
mutable so that the const status() function (see below) can modify it. The brancher ex-
ploits that the items are sorted by decreasing size: by initializing item to zero the brancher
is trying to pack the largest item first.

269

https://www.gecode.org/doc/6.2.0/MPG/bin-packing-branching.cpp

CDBF ≡
class CDBF : public Brancher {

protected:

ViewArray<Int::IntView> load;

ViewArray<Int::IntView> bin;

IntSharedArray size;

mutable int item;

◮CDBF CHOICE

public:

CDBF(Home home, ViewArray<Int::IntView>& l,

ViewArray<Int::IntView>& b,

IntSharedArray& s)

: Brancher(home), load(l), bin(b), size(s), item(0) {

home.notice(*this,AP_DISPOSE);

}

static void post(Home home, ViewArray<Int::IntView>& l,

ViewArray<Int::IntView>& b,

IntSharedArray& s) {

(void) new (home) CDBF(home, l, b, s);

}

◮ STATUS FUNCTION

◮ CHOICE FUNCTION

◮ COMMIT FUNCTION

· · ·
virtual size_t dispose(Space& home) {

home.ignore(*this,AP_DISPOSE);

size.~IntSharedArray();

(void) Brancher::dispose(home);

return sizeof(*this);

}

};

void cdbf(Home home, const IntVarArgs& l, const IntVarArgs& b,

const IntArgs& s) {

if (b.size() != s.size())

throw Int::ArgumentSizeMismatch("cdbf");

ViewArray<Int::IntView> load(home, l);

ViewArray<Int::IntView> bin(home, b);

IntSharedArray size(s);

CDBF::post(home, load, bin, size);

}

Figure 20.9: CDBF brancher and branching

270

By default, the dispose() member function of a brancher is not called when the
brancher’s home space is deleted. However, the dispose() function of the CDBF brancher
must call the destructor of the shared integer array size. Hence, the constructor of CDBF
calls the notice() function of the home space so that the brancher’s dispose() function is
called when home is deleted (see also Section 23.9). Likewise, the dispose() function calls
the ignore() function before the brancher is disposed.

Status computation. The status() function tries to find a yet unassigned view for branch-
ing in the view array bin. It starts inspecting the views at position item and skips all already
assigned views. If there is a not yet assigned view left, item is updated to that unassigned
view and true is returned (that is, more branching is needed). Otherwise, the brancher
returns false as no more branching is needed:

STATUS FUNCTION ≡
virtual bool status(const Space&) const {

for (int i = item; i < bin.size(); i++)

if (!bin[i].assigned()) {

item = i; return true;

}

return false;

}

As the items are sorted by decreasing size, the integer item refers to the largest not-yet packed
item.

Choice computation: initialization. The choice() function implements the actual heuris-
tic. The function uses n for the number of items, m for the number of bins, and initializes a
region for managing temporary memory (see Section 31.1) as follows:

CHOICE FUNCTION ≡
virtual Gecode::Choice* choice(Space& home) {

int n = bin.size(), m = load.size();

Region region;

◮ INITIALIZE FREE SPACE IN BINS

◮ INITIALIZE BINS WITH SAME SLACK

◮ FIND BEST FIT

◮ CREATE CHOICE

}

The choice() function can rely on the fact that it is immediately executed after the status()
function has been executed. That entails that item refers to the largest not-yet packed item.

271

The function computes in free the free space of each bin. From the maximal load the size
of items that have already been packed (that is, the item’s bin variable is already assigned)
is subtracted:

INITIALIZE FREE SPACE IN BINS ≡
int* free = region.alloc<int>(m);

for (int j=0; j<m; j++)

free[j] = load[j].max();

for (int i=0; i<n; i++)

if (bin[i].assigned())

free[bin[i].val()] -= size[i];

The choice() function uses the integer slack to track the slack of the so-far best fit
(initialized with INT_MAX such that any fit will be better). The integer n_possible counts
the number of possible bins for the item whereas n_same counts the number of best fits. The
array same stores all bins with the same so-far smallest slack.

INITIALIZE BINS WITH SAME SLACK ≡
int slack = INT_MAX;

unsigned int n_possible = 0;

unsigned int n_same = 0;

int* same = region.alloc<int>(m+1);

same[n_same++] = -1;

The array same is initialized to contain the bin -1: if no bin has sufficient space for the current
item this will guarantee that the commit() function (see below) leads to failure.

Choice computation: create choice. In order to find all best fits, all bins are examined. If
the current item fits into a bin, the number of possible bins n_possible is incremented and
all best fits are remembered in the array same as follows:

FIND BEST FIT ≡
for (Int::ViewValues<Int::IntView> j(bin[item]); j(); ++j)

if (size[item] <= free[j.val()]) {

n_possible++;

if (free[j.val()] - size[item] < slack) {

slack = free[j.val()] - size[item];

n_same = 0;

same[n_same++] = j.val();

} else if (free[j.val()] - size[item] == slack) {

same[n_same++] = j.val();

}

}

Note that finding a better fit updates slack and resets the bins stored in same.

272

CDBF CHOICE ≡
class Choice : public Gecode::Choice {

public:

int item;

int* same;

int n_same;

Choice(const Brancher& b, unsigned int a, int i, int* s, int n_s)

: Gecode::Choice(b,a), item(i),

same(heap.alloc<int>(n_s)), n_same(n_s) {

for (int k=0; k<n_same; k++)

same[k] = s[k];

}

virtual ~Choice(void) {

heap.free<int>(same,n_same);

}

virtual void archive(Archive& e) const {

Gecode::Choice::archive(e);

e << alternatives() << item << n_same;

for (int i=n_same; i--;) e << same[i];

}

};

Figure 20.10: CDBF choice

Now, the choice() function determines whether a special case needs to be dealt with:

■ Is the best fit a perfect fit: that is, slack is zero?

■ Are all fits a best fit: that is, n_same is equal to n_possible?

■ Is there no fitting bin: that is, n_possible is zero?

In these cases a choice with a single alternative and otherwise a choice with two alternatives
is created:

CREATE CHOICE ≡
if ((slack == 0) ||

(n_same == n_possible) ||

(n_possible == 0))

return new Choice(*this, 1, item, same, 1);

else

return new Choice(*this, 2, item, same, n_same);

The definition of the choice class is shown in Figure 20.10. The choice stores the current
item and in the array same all bins with the same slack. The choice does not need to store any
information regarding items of same size as this information is available from the brancher.

273

Commit function. The commit() function takes a choice of type CDBF::Choice and the
alternative a (either 0 or 1) as input:

COMMIT FUNCTION ≡
virtual ExecStatus commit(Space& home, const Gecode::Choice& _c,

unsigned int a) {

const Choice& c = static_cast<const Choice&>(_c);

if (a == 0) {

◮ COMMIT TO FIRST ALTERNATIVE

} else {

◮ COMMIT TO SECOND ALTERNATIVE

}

return ES_OK;

}

Committing to the first alternative tries to pack item into the first bin stored in same as
follows:

COMMIT TO FIRST ALTERNATIVE ≡
GECODE_ME_CHECK(bin[c.item].eq(home, c.same[0]));

Committing to the second alternative removes all n_same bins stored in same from all
items that have the same size as item as follows:

COMMIT TO SECOND ALTERNATIVE ≡
int i = c.item;

do {

Iter::Values::Array same(c.same, c.n_same);

GECODE_ME_CHECK(bin[i++].minus_v(home, same));

} while ((i < bin.size()) &&

(size[i] == size[c.item]));

The iterator Iter::Values::Array iterates over all values stored in an array (they must be
in sorted order) and the operation minus_v() prunes all values as defined by an iterator from
a view, see Section 26.2.

Running the model. Finding a best solution using the model with improved propagation
and improved branching takes 84 milliseconds and 3 098 failures. That is, this model runs
352 times faster than the naive model and reduces the number of failures by a factor of 791.

20.5 More information

Bin packing featuring all models presented in this chapter is also available as a Gecode ex-
ample, see Bin packing. The example also makes use of a more accurate lower bound known
as L2 [34].

274

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Iter_1_1Values_1_1Array.html
https://www.gecode.org/doc/6.2.0/reference/examples_2bin-packing_8cpp.html

21 Kakuro

This chapter studies Kakuro puzzles, a variant of the well-known Sudoku puzzles. Two mod-
els are presented: a first and obvious model that suffers from too little propagation to be
feasible. This is followed by a model that employs user-defined constraints implemented as
extensional constraints using tuple set specifications. Interestingly, the tuple set specifica-
tions are computed by solving a simple constraint problem.

21.1 Problem

Solving a Kakuro puzzle (see Figure 21.1 for an example) amounts to finding digits between 1
and 9 for the non-hint fields on a board. A hint field can specify a vertical hint and/or a
horizontal hint:

■ A vertical hint contains a number s above the diagonal in the hint field. It requires that
all digits on the fields extending from the field left of the hint up to the next hint field
or to the end of the row are pairwise distinct and sum up to the value s.

■ A horizontal hint contains a number s below the diagonal in the hint field. The require-
ments are analogous.

The number contained in a hint is called its value and the number of fields constrained by a
hint is called its length.

The solution for the Kakuro puzzle from Figure 21.1 is shown in Figure 21.2. Kakuro
puzzles are always designed (at least meant to be) to have a unique solution.

21.2 A naive model

A script for the Kakuro model is shown in Figure 21.3. The script stores the width (w) and
height (h) of the board. The fields are stored in an integer variable array f which is initialized
to have w ·h elements. Note that none of the fields is initialized in the constructor of Kakuro;
their initialization is discussed below.

Board specification. The specification of the Kakuro board, as shown in Figure 21.3, stores
width and height of the board, followed by a specification of the hints. The hints are provided
in two groups: first vertical hints, then horizontal hints, separated by the integer -1. A hint

275

7 21 29 17 29 23

6 16 14

4 3

22

10

11 10 10 24 16

7 9 23

4

4 17 16

6 39

28 24

3 3 20

9 4

10 3 16

6 42

21 21

4 3 16

Figure 21.1: A Kakuro puzzle

7 21 29 17 29 23

6 16 14

4 3

22

10

11 10 10 24 16

7 9 23

4

4 17 16

6 39

28 24

3 3 20

9 4

10 3 16

6 42

21 21

4 3 16

1 3 8 9 7 9

3 2 1 9 7 8 4 5 6

3 1 4 6 2 7 5 7 9 8

1 2 2 1 9 1 2 8

4 5 3 1

2 1 4 3 1 2 7 9

2 1 3 4 3 9 5 6 8 7

4 5 2 3 1 6 4 8 9

1 3 1 2 7 9

Figure 21.2: Solution for Kakuro puzzle from Figure 21.1

276

KAKURO NAIVE ≡ [DOWNLOAD]

· · ·
◮ BOARD SPECIFICATION

class Kakuro : public Script {

protected:

const int w, h;

IntVarArray f;

public:

◮ INIT FUNCTION

◮ POSTING HINT CONSTRAINTS

Kakuro(const Options& opt)

: Script(opt), w(board[0]), h(board[1]), f(*this,w*h) {

◮ FIELD INITIALIZATION

◮ SETUP

◮ PROCESS VERTICAL HINTS

· · ·
◮ BRANCHING

}

· · ·
};

· · ·

BOARD SPECIFICATION ≡
const int board[] = {

// Dimension w x h

12, 10,

// Vertical hints

3, 0, 3, 7, 4, 0, 6,21, 7, 0, 4,29, 8, 0, 2,17,

· · ·
-1,

// Horizontal hints

2, 1, 2, 4, 6, 1, 2,17, 9, 1, 2,16, 1, 2, 3, 6,

· · ·
};

Figure 21.3: A naive script and board specification for solving Kakuro puzzles

277

https://www.gecode.org/doc/6.2.0/MPG/kakuro-naive.cpp

is described by its coordinates on the board, followed by its length and value. Note that the
specification assumes that the field with coordinate 〈0, 0〉 is in the left upper corner.

Initializing fields. All fields are initialized to a single shared integer variable black that is
assigned to zero:

FIELD INITIALIZATION ≡
IntVar black(*this,0,0);

for (int i=0; i<w*h; i++)

f[i] = black;

Only if a field is actually used by a hint, the field will be initialized to an integer variable
taking digit values by the following init() function:

INIT FUNCTION ≡
IntVar init(IntVar& x) {

if (x.min() == 0)

x = IntVar(*this,1,9);

return x;

}

The test whether the minimum of variable x equals zero is true, if and only if x still refers
to the variable black. In this case, a new variable is created with non-zero digits as variable
domain. As x is passed by reference, assigning x to the newly created variable also assigns
the corresponding field on the board to the newly created variable. This guarantees that a
new variable is created at most once for each field.

Posting hint constraints. Posting hint constraints is done best by using a matrix interface
b (see Section 7.2) to the fields in f. The specification of the hints will be accessed by the
variable k, where the dimension of the board has already been skipped:

SETUP ≡
Matrix<IntVarArray> b(f,w,h);

const int* k = &board[2];

Processing the vertical hints is straightforward. After retrieving the coordinates x and y,
the length n, and the value s for a hint from the board specification, the variables covered
by the hint are collected in the integer variable argument array (see Section 4.2.2) col. The
constraint for the hint on the collected variables is posted by the member function hint():

PROCESS VERTICAL HINTS ≡
while (*k >= 0) {

int x=*k++; int y=*k++; int n=*k++; int s=*k++;

IntVarArgs col(n);

for (int i=0; i<n; i++)

col[i]=init(b(x,y+i+1));

hint(col,s);

}

278

The hint() function must constrain that all variables are distinct (using a distinct con-
straint) and that they sum up to the value of the hint (using a linear constraint). To achieve
strong propagation, we want to use domain propagation for both distinct and linear.
However, the complexity of domain propagation for linear is exponential, hence it is a good
idea to avoid posting linear constraints as much a possible.

Consider a hint of length 9. Then obviously, the single possible value of the hint is
∑9

i=1
i =

9(9+1)/2 and hence no linear constraint needs to be posted. Now consider a hint of length
8 with value s. Then, the fields covered by the hint take on all but one digit. That is, all fields

must be different from
∑9

i=1
i−s = 9(9+1)/2−s. Taking these two observations into account,

the constraints for a hint can be posted as follows, where the value IPL_DOM requests domain
propagation (see Section 4.3.5):

POSTING HINT CONSTRAINTS ≡
void hint(const IntVarArgs& x, int s) {

if (x.size() < 8)

linear(*this, x, IRT_EQ, s, IPL_DOM);

else if (x.size() == 8)

rel(*this, x, IRT_NQ, 9*(9+1)/2 - s);

distinct(*this, x, IPL_DOM);

}

Note that there are other special cases where no linear constraint needs to be posted,
for example if for a hint of length n and value s it holds that

∑n

i=1
i = s (that is, only digits

from 1 to n are possible). See Section 21.4 for more information.

Vertical hints are of course analogous and are hence omitted.

Branching. We choose a branching that selects the variable where the quotient of AFC and
domain size is largest smallest (see Section 8.2). Values are tried by interval bisection:

BRANCHING ≡
branch(*this, f, INT_VAR_AFC_SIZE_MAX(), INT_VAL_SPLIT_MIN());

Why the model is poor. When running the script, solving even the tiny board of Figure 21.1
requires 19 search nodes. There exist commercially available boards with thousands of hints,
which are of course completely out of reach with the naive model. Figure 21.4 shows the
possible digits for each field after performing propagation for the Kakuro script but before any
search. Consider the two green fields for the hint of length 2 and value 4. The only possible
combination for the two fields is 〈3, 1〉. However, propagation does not prune the value 2 for
both fields. The reason is that a hint constraint is decomposed into a distinct constraint
and into a linear constraint and neither constraint by itself warrants more pruning than
shown.

279

7 21 29 17 29 23

6 16 14

4 3

22

10

11 10 10 24 16

7 9 23

4

4 17 16

6 39

28 24

3 3 20

9 4

10 3 16

6 42

21 21

4 3 16

1 2 3 1 2 3

8 9 8 9 7 8 9 7 8 9

1 2 3
4

1 2 3
4

1 2 3
4

7 8 9

2 3
4 5 6
7 8 9 8 9

1 2 3
4 5 6

2 3
4 5 6
7 8 9

5 6
7 8 9

2 3 1 2 3
4

1 2 3
4 5

1 2 3
4 5 6
7 8 9

1 2

7 8 9

2 3
4 5 6
7 8 9

6
7 8 9

6
7 8 9

6
7 8 9

1 2 1 2 1 2 1 2 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6

2 3
4 5 6
7 8 9

1 2 3
4 5 6
7

2 3
4 5 6
7 8

1 2 3 1 2 3

1 2 3
4 5 6
7

1 2 3
4 5 6
7

1 2 3
4 5 6
7

1 2 3
4 5 6
7

1 2 1 2

7 8 9 7 8 9

1 2 3
4

1 2 3
4

1 2 3
4

1 2 3
4 5 6
7

1 2 3
4 5 6
7 8 8 9

1 2 3
4 5 6
7 8 9

5 6
7 8 9

6
7 8 9 7 8 9

1 2 3
4 5

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7

2 3 1 2 3
4 5 6
7

1 2 3
4 5 6
7 8

3
4 5 6
7 8 9

5 6
7 8 9

6
7 8 9

1 2 3 1 2 3 1 2 1 2

7 8 9 7 8 9

Figure 21.4: Propagation for the Kakuro puzzle

21.3 A working model

The naive model from the previous section suffers from the fact that hint constraints are
decomposed into a distinct constraint and a linear constraint. One remedy would be to
implement a dedicated propagator for a distinctlinear constraint. This is impractical: too
complicated and too much effort for such a specialized constraint.

Model idea. This section implements distinctlinear constraints as extensional con-
straints using tuple sets as specification of the possible solutions of distinctlinear con-
straints. For example, for a hint of length 3 and value 8, the possible solutions for the corre-
sponding distinctlinear constraint are:

〈1, 2, 5〉 〈1, 3, 4〉 〈1, 4, 3〉 〈1, 5, 2〉
〈2, 1, 5〉 〈2, 5, 1〉 〈3, 1, 4〉 〈3, 4, 1〉
〈4, 1, 3〉 〈4, 3, 1〉 〈5, 1, 2〉 〈5, 2, 1〉

The model needs a method to compute all solutions of a distinctlinear constraint.
To simplify matters, we are going to compute all solutions of a distinctlinear con-
straint by computing all solutions of a trivial constraint problem: the decomposition of a
distinctlinear constraint into a distinct and linear constraint.

Figure 21.5 shows the outline for a working script for solving Kakuro puzzles. The class
DistinctLinear defines the script used for computing all solutions of a distinctlinear

constraint and the function distinctlinear() serves as constraint post function. Apart from
how hint constraints are posted, the Kakuro script is the same as in the previous section.

280

KAKURO ≡ [DOWNLOAD]

· · ·
class DistinctLinear : public Space {

protected:

IntVarArray x;

public:

◮ DISTINCT LINEAR SCRIPT

◮ RETURNING A SOLUTION

· · ·
};

void distinctlinear(Home home, const IntVarArgs& x, int c) {

◮ SET UP SEARCH ENGINE

◮ COMPUTE TUPLE SET

◮ POST EXTENSIONAL CONSTRAINT

}

class Kakuro : public Script {

· · ·
◮ POSTING HINT CONSTRAINTS

· · ·
};

· · ·

Figure 21.5: A working script for solving Kakuro puzzles

281

https://www.gecode.org/doc/6.2.0/MPG/kakuro.cpp

Computing distinct linear solutions. As mentioned, the script for DistinctLinear just
posts a linear and distinct constraint for n variables and value s. As the search space of
the problem is small anyway, we neither need strong propagation for distinct and linear

nor do we need a clever branching:

DISTINCT LINEAR SCRIPT ≡
DistinctLinear(int n, int s) : x(*this,n,1,9) {

distinct(*this, x);

linear(*this, x, IRT_EQ, s);

branch(*this, x, INT_VAR_NONE(), INT_VAL_SPLIT_MIN());

}

When solving the DistinctLinear script, we need its solutions as integer argument ar-
rays for computing a tuple set. The solution()member function of DistinctLinear returns
an integer argument array for a solution as follows:

RETURNING A SOLUTION ≡
IntArgs solution(void) const {

IntArgs s(x.size());

for (int i=0; i<x.size(); i++)

s[i]=x[i].val();

return s;

}

Posting distinctlinear constraints. The search engine (see Section 9.3) for computing
all solutions of a DistinctLinear script is initialized as follows:

SET UP SEARCH ENGINE ≡
DistinctLinear* e = new DistinctLinear(x.size(),c);

DFS<DistinctLinear> d(e);

delete e;

Computing a tuple set (see Section 4.4.13) for all solutions of a distinctlinear con-
straints is straightforward:

COMPUTE TUPLE SET ≡
TupleSet ts;

while (DistinctLinear* s = d.next()) {

ts.add(s->solution()); delete s;

}

ts.finalize();

Note that after all solutions have been added to the tuple set ts, it must be finalized before
it can be used by an extensional constraint (see Section 4.4.13).

Finally, posting the extensional constraint using the tuple set ts is as to be expected:

POST EXTENSIONAL CONSTRAINT ≡
extensional(home, x, ts);

282

Posting hint constraints. Posting a hint constraint follows a similar line of reasoning as
in the previous section. If the length of a hint is 0, no constraint needs to be posted (hints of
length 0 are black fields without hints). If the length is 1, the single variable is constrained
to s directly. For lengths 8 and 9, distinct is used as it achieves the same propagation
as distinctlinear. Note that the case for length 8 continues (as it does not have a break

statement) with the case for length 9 and hence also posts a distinct constraint. In all other
cases, distinctlinear is used:

POSTING HINT CONSTRAINTS ≡
void hint(const IntVarArgs& x, int s) {

switch (x.size()) {

case 0:

break;

case 1:

rel(*this, x[0], IRT_EQ, s); break;

case 8:

rel(*this, x, IRT_NQ, 9*(9+1)/2 - s);

case 9:

distinct(*this, x, IPL_DOM); break;

default:

distinctlinear(*this, x, s); break;

}

}

There is a further important optimization which we will not show (but see Section 21.4).
Each time distinctlinear is called, it computes a new tuple set, even though the tuple set
is exactly the same for all hints of equal length and value. To guarantee that the same tuple
set is computed at most once, one could cache tuple sets: if a tuple set for a certain length
and value has already been computed earlier, it is not computed again but taken from a cache
(where it had been stored when it was computed for the first time).

This model works. For the example puzzle, propagation alone is sufficient to solve the
puzzle. Even puzzles with thousands of hints are solved without search in a fraction of a
second (including computing the tuple sets, provided they are cached as sketched above).

21.4 More information

Kakuro puzzles with some more examples are available as a Gecode example, see Kakuro.
In particular, the model caches tuple sets such that for each type of hint its corresponding
tuple set is computed at most once as discussed in Section 21.3. Furthermore, the example
exploits further special cases where posting a distinct constraint rather than a complete
hint constraint is sufficient as discussed in Section 21.2.

More constraint-based techniques for solving Kakuro puzzles are discussed in [60].

283

https://www.gecode.org/doc/6.2.0/reference/kakuro_8cpp.html

284

22 Crossword puzzle

This chapter studies solving crossword puzzles and presents a simple model using nothing
but distinct and element constraints.

The simple model for this classical problem is shown to work quite well compared to a
constraint-based approach to solving crossword puzzles using a dedicated problem-specific
constraint solver [1]. This underlines that an efficient general-purpose constraint program-
ming system actually can go a long way.

22.1 Problem

To solve a crossword puzzle problem, a crossword grid (see Figure 22.1 for an example) must
be filled with words (from a predefined dictionary) extending both in horizontal and vertical
directions such that:

■ If words cross at a field of the grid, the words’ letters at the crossing field are the same.

■ No word is used twice.

Words use lowercase letters only and extend as far as they can. That is, the beginning
(and the end) of a word must either be adjacent to a black field on the grid or must be a field
on the grid’s border.

An example solution for the grid from Figure 22.1 is shown in Figure 22.2.

22.2 Model

The model uses two sets of variables:

■ The model uses for each word on the grid a word variable. A value for a word variable
is a dictionary index defining the index of the word chosen from the dictionary of all
words.

The script for the model uses the word variables only as temporary variables for posting
constraints. To simplify posting constraints, words are processed in groups of words of
the same length. In particular, dictionary indices are also defined with respect to words
of the same length in the dictionary.

285

Figure 22.1: A crossword puzzle grid

a l b s r a j a h s l i p

l i r e a m i g o h i d e

s e a l v e n o m a m o k

o u t f l a n k e d i b l e

l a g s f l a k

s c h e m e b i a t h l o n

c h a s e w a n n a e w e

r i d s h a d e d h a l e

a l e s i l l s d a r e d

m i s a p p l y f e i n t s

t u b a s e a r

f e d o r a k i e l b a s a

r a i l t e a e d a g o g

o v a l h a l v e n u d e

g e l s s t e e r d e a d

Figure 22.2: Solution for crossword puzzle grid from Figure 22.1

286

CROSSWORD ≡ [DOWNLOAD]

· · ·
◮ GRID SPECIFICATION

· · ·
◮WORDS SPECIFICATION

class Crossword : public Script {

protected:

const int w, h;

IntVarArray letters;

public:

Crossword(const Options& opt)

: Script(opt), w(grid[0]), h(grid[1]),

letters(*this,w*h,’a’,’z’) {

◮ SET UP

◮ INITIALIZE BLACK FIELDS

◮ PROCESS WORDS BY LENGTH

◮ BRANCHING

}

◮ PRINT FUNCTION

· · ·
};

· · ·

Figure 22.3: Crossword script

■ For each field on the grid, the model uses a letter variable. The values for a letter
variable are either 0 (for a black field on the grid) or a character code between ’a’ and
’z’ for lowercase letters.

Given the sets of variables, the constraints for the model are straightforward:

■ All word variables for words of the same length must be distinct. Only word variables
for words of the same length need to be constrained to be distinct, as words of different
length are distinct by definition.

■ Assume that w is a word variable for a word of length n on the grid and x0, . . . , xn−1

are the letter variables that correspond to the word on the grid. Assume further that
0 ≤ p < n and that an array w2l (for word to letter) maps the dictionary indices of
all words of length n to their p-th letter. Then, the letter variable xp can be linked
to the word variable w by posting the constraint that w2lw = xp (this is an element

constraint).

An outline for the script implementing the crossword puzzle is shown in Figure 22.3. The
script stores the width w and the height h of the grid and an integer variable array letters

287

https://www.gecode.org/doc/6.2.0/MPG/crossword.cpp

GRID SPECIFICATION ≡
const int grid[] = {

// Width and height of crossword grid

15, 15,

// Number of black fields

36,

// Black field coordinates

0,4, 0,10, 1,4, 1,10, 2,4, 2,10, 3,8, 4,0, 4,1,

· · ·
// Length and number of words of that length

8, 8,

// Coordinates where words start and direction (0 = horizontal)

0,3,0, 0,9,0, 3,0,1, 5,7,1, 7,5,0, 7,11,0, 9,0,1, 11,7,1,

· · ·
// End marker

0

};

WORDS SPECIFICATION ≡
const int n_words[] = {

1, 26, 66, 633, 2443, 4763, 7585, 10380, 10974

};

const char** words[] = {

· · ·
};

Figure 22.4: Grid and words specification

for the letter variables (including the black fields). The values for letters range from ’a’

to ’z’ (black fields are discussed below).

Grid and words specification. The specification for the grid used in this case study
(see Section 22.4 for more information) and the word dictionary are shown in Figure 22.4.
The grid specification contains information about the dimension of the grid (as used in
Figure 22.3), the number and coordinates of black fields on the grid, and the start coor-
dinates of words and their direction on the grid for each word length permitted by the grid.

For each word length l, the array n_wordsl defines how many words of length l exist
in the dictionary of words. That is, for a word length l, the set of dictionary indices is
{0, . . . ,n_wordsl − 1}. The array words provides access to the letters of a word of some
given length with a given dictionary index. That is, for a given word length l and for a po-
sition in the word p with 0 ≤ p < l, wordsl,i,p (or words[l][i][p] in C++) is the p-th letter of
the word with dictionary index i among all words of length l (where 0 ≤ i < n_wordsl) in

288

the dictionary. The dictionary of words just contains words of length at most eight as this is
sufficient for the example grid used in this case study.

The word list is based on SCOWL-55 (Spell Checking Oriented Word Lists) truncated to
words of length at most eight, see wordlist.sourceforge.net. Please check the source file
available from Figure 22.3 for copyright information.

Grid initialization. The grid specification is accessed by the pointer g (with the width and
height part already skipped). The matrix ml (see Section 7.2) supports access to the letters
as a matrix:

SET UP ≡
const int* g = &grid[2];

Matrix<IntVarArray> ml(letters, w, h);

The black fields of the grid are initialized by storing a variable black at the respective
coordinates:

INITIALIZE BLACK FIELDS ≡
IntVar black(*this,0,0);

for (int n = *g++; n--;) {

int x=*g++, y=*g++; ml(x,y)=black;

}

At first sight, the treatment of black fields in the grid appears to be inefficient. First, each
element in the integer variable array letters is initialized (in the initialization list of the
constructor Crossword()) to a new integer variable with values ranging from ’a’ to ’z’.
Then, some variables become redundant as their fields are overwritten by black. However,
this only matters initially when a space of class Crossword is created. As soon as a clone
of that space is created, the redundant variables are not copied and hence do not matter
any longer. Moreover, all black fields on the grid share a single variable black which saves
memory compared to a variable for each black field on the grid.

Processing words by length. As suggested by the grid specification, words are processed
in groups of the same length. The loop that processes all words of the same length l has the
following structure:

PROCESS WORDS BY LENGTH ≡
while (int l = *g++) {

int n = *g++;

◮ INITIALIZE ARRAY OF WORDS

◮ PROCESS WORD ON GRID

}

Here, n is initialized to the number of words with length l in the grid.

289

http://wordlist.sourceforge.net/

To enforce that all n words of the same length l are distinct, an integer argument array
wosl (for words of same length) is created (see Section 4.2.1), where each variable takes
the possible dictionary indices for words of length l as values. The word variables in wosl

are constrained to be distinct as follows:

INITIALIZE ARRAY OF WORDS ≡
IntVarArgs wosl(*this,n,0,n_words[l]-1);

distinct(*this, wosl);

Constraining letters by words. The remaining constraints link a word variable to the vari-
ables for its letters. All words of length l are processed as follows:

PROCESS WORD ON GRID ≡
IntArgs w2l(n_words[l]);

for (int i=0; i<n; i++) {

int x = *g++, y = *g++; bool h = (*g++ == 0);

◮ PROCESS EACH LETTER POSITION

}

The integer argument array w2l is used to map the dictionary indices of all words of length
l in the dictionary to their letters. The x-coordinate and the y-coordinate and whether the
word extends horizontally (h is true) or vertically (h is false) is retrieved from the grid
specification.

Linking a word variable to a single letter is done for all l letters in a word, where the
integer p refers to the position of a letter in a word:

PROCESS EACH LETTER POSITION ≡
for (int p=0; p<l; p++) {

◮ CONSTRAIN LETTERS

}

The integer argument array w2l is used to map all words in the dictionary of length l to
their p-th letters. Then, for each letter position an element constraint (see Section 4.4.12)
is posted that links the word variables to the respective letter variable:

CONSTRAIN LETTERS ≡
for (int j=0; j<n_words[l]; j++)

w2l[j] = words[l][j][p];

element(*this, w2l, wosl[i], h ? ml(x+p,y) : ml(x,y+p));

Branching. We choose a simple branching that selects a variable where the quotient of AFC
and domain size is largest (see Section 8.2). The first value for the selected variable to be
tried is the smallest:

BRANCHING ≡
branch(*this, letters, INT_VAR_AFC_SIZE_MAX(), INT_VAL_MIN(),

nullptr, &printletters);

290

Additionally we pass a variable value print function (see Section 8.12) so that additional
information about the branching is printed when, for example, using Gist:

PRINT FUNCTION ≡
static void printletters(const Space& home,

const Brancher& b,

unsigned int a,

IntVar, int i, const int& n,

std::ostream& o) {

const Crossword& c = static_cast<const Crossword&>(home);

int x = i % c.w, y = i / c.w;

o << "letters[" << x << "," << y << "] "

<< ((a == 0) ? "=" : "!=") << " "

<< static_cast<char>(n);

}

22.3 An optimized model

The model in the previous section wastes some memory: for all word variables for words of
length l, the array w2l is the same for a given position p. However, the very same array is
computed n times: for each word variable for words of length l.

The first optimization is to swap the loops that iterate over the dictionary index i and
the letter position p, as shown in Figure 22.5. However, one can go even further. By default,
each time an element constraint is posted, a new shared array for the integer argument array
is created (it will be still shared among all spaces). To just have a single copy of the array,
we can create a shared integer array of type IntSharedArray instead. Then, for each word
length l and each position p there will be a single shared array only. See Tip 4.8 for more on
shared arrays.

The shared integer array is initialized as follows:

INITIALIZE WORD TO LETTER ARRAY ≡
IntSharedArray w2l(n_words[l]);

for (int j=0; j<n_words[l]; j++)

w2l[j] = words[l][j][p];

The very same shared integer array is used for all words of the same length from the
dictionary as follows:

CONSTRAIN LETTERS ≡
for (int i=0; i<n; i++) {

int x = g[3*i+0], y = g[3*i+1];

bool h = (g[3*i+2] == 0);

element(*this, w2l, wosl[i], h ? ml(x+p,y) : ml(x,y+p));

}

291

CROSSWORD OPTIMIZED ≡ [DOWNLOAD]

· · ·
class Crossword : public Script {

· · ·
Crossword(const Options& opt)

: Script(opt), w(grid[0]), h(grid[1]),

letters(*this,w*h,’a’,’z’) {

· · ·
while (int l = *g++) {

int n = *g++;

· · ·
for (int p=0; p<l; p++) {

◮ INITIALIZE WORD TO LETTER ARRAY

◮ CONSTRAIN LETTERS

}

g += 3*n;

}

· · ·
}

· · ·
};

· · ·

Figure 22.5: An optimized crossword script

292

https://www.gecode.org/doc/6.2.0/MPG/crossword-optimized.cpp

In summary, the optimization does not offer a better model but a more memory-efficient
implementation of the same model.

22.4 More information

The script that is shown in this case study is also available as a Gecode example called
Crossword puzzle. The example features a number of different crossword grids and supports
branching on the word variables or on the letter variables. In addition, arbitrary dictionaries
can be used provided they are available as a list of words in a file.

Related work. Solving crossword puzzles is a classic example for search methods (see for
example [20]) and also for constraint programming (see for example [4] and [1]).

Anbulagan and Botea introduce COMBUS in [1]. COMBUS is a constraint-based solver
specialized at solving crossword puzzles. Its distinctive feature is that it uses nogood-learning
to speed up search.

In the following, we are going to compare COMBUS to the model presented in this chapter.
The purpose of the comparison is to shed light on the respective advantages of a problem-
specific solver such as COMBUS and a simple model using a modern off-the-shelf constraint
programming system such as Gecode.

Used hardware and software platform. All experiments have been run on a desktop with
two Intel Xeon CPU (2.8 GHz, 4 cores), 8 GB of main memory, running Windows 7 x64 and
using Gecode 4.4.0. The model has been run with a single thread only. The runtimes are
measured as wall-time and are the average of five runs. The coefficient of deviation is less
than 3% and typically less than 1%.

The hardware platform used in [1] is an Intel Core Duo 2.4 GHz.

Comparison with COMBUS. The purpose of the comparison is to understand better the
relative merits of the two different approaches. An exact comparison of runtimes is therefore
not really meaningful, in particular as different hardware platforms are used.

The comparison makes only approximate statements for runtime and number of nodes
explored during search. If the runtime for the Gecode model and COMBUS differ by at most
a factor of two in either direction, the two approaches are roughly the same, denoted by ≈.
If the runtime for the Gecode model is two to ten times faster, we use +; if it is ten to 100
times faster, we use ++; if it is more than 100 times faster, we use +++. Analogously, we use
−, −−, and −−− if the Gecode model is slower than COMBUS. We also use the same symbols for
comparing the number of nodes explored during search, where fewer nodes are of course
better.

Figure 22.6 shows the results for the Gecode model and their comparison to COMBUS for
the dictionaries words (containing 45 371 words) and uk (containing 225 349 words), where

293

https://www.gecode.org/doc/6.2.0/reference/crossword_8cpp.html

words dictionary

15× 15 19× 19 21× 21 23× 23
time nodes time nodes time nodes time nodes

01 1.7 ++ 8970
−− 0.5 +++ 1450 ≈ 103.7 ≈ 17 6050

−− 0.0 +++ 00 ≈
02 5.3 + 4 5090

−− 3.2 + 1 9160
−− 2.4 ++ 5950

− 3.8 ++ 1 3760
−

03 0.4 +++ 1430
− 9.8 + 3 2670

−− 1.3 ++ 3780
− 38.0 ++ 7 8690 ≈

04 78.9 − 53 6480
−−− 0.7 +++ 4580

− 36.9 ++ 9 9740 ≈ 18.9 + 4 2300
−

05 1.1 ++ 3820
− 0.3 ++ 1380 ≈ 7.3 + 3 6950

−− 2.5 ++ 1 2580
−

06 49.1 ≈ 14 8950
− 0.4 +++ 2380 ≈ 1.7 ++ 3050

− – ≈ –

07 40.4 + 8 5700
−− 0.7 ++ 2030 ≈ 2.3 ++ 6710

− 3.0 ++ 1 1040
−

08 0.3 +++ 1300 ≈ 0.6 +++ 2210 ≈ 1.2 ++ 1730 ≈ – −−− –

09 0.3 ++ 1120 ≈ 0.7 ++ 3000
− 1.6 ++ 1850 ≈ 382.9 ≈ 143 7150

−

10 – −−− – 0.3 ++ 1380 ≈ – ≈ – – ≈ –

uk dictionary

15× 15 19× 19 21× 21 23× 23
time nodes time nodes time nodes time nodes

01 0.7 +++ 1080 ≈ 1.6 +++ 2000 ≈ 3.1 +++ 1630 ≈ 3.1 ++ 2410 ≈
02 0.7 +++ 960 ≈ 1.5 +++ 3560

− 2.5 +++ 1960 ≈ 3.8 +++ 4200
−

03 0.7 +++ 1040 ≈ 1.9 +++ 3780
− 2.6 +++ 1940 ≈ 6.1 +++ 8860

−

04 0.5 +++ 950 ≈ 0.8 +++ 1830 ≈ 6.1 ++ 2820
− 29.0 ++ 2 3950

−−

05 0.4 +++ 850 ≈ 0.7 +++ 1450 ≈ 3.9 ++ 3040
− 3.4 +++ 2550 ≈

06 2.2 +++ 1100 ≈ 0.8 +++ 1710 ≈ 1.9 +++ 1680 ≈ 28.0 ++ 3 6960
−−

07 1.3 +++ 1140 ≈ 0.8 +++ 1660 ≈ 2.1 +++ 1830 ≈ 3.5 +++ 2180 ≈
08 0.5 +++ 1220 ≈ 1.0 +++ 1540 ≈ 1.7 +++ 1880 ≈ 5.8 +++ 3790

−

09 0.6 +++ 1170 ≈ – −−− – 2.5 +++ 1930 ≈ 3.8 ++ 2120 ≈
10 0.8 +++ 970 ≈ 0.9 +++ 1730 ≈ 8.1 +++ 3230

− 35.2 ++ 2 7880
−−

Figure 22.6: Comparison of Gecode model with COMBUS

294

both dictionaries are the same as in [1]. For each grid size 15 × 15, 19 × 19, 21 × 21, and
23× 23 ten different grids 01 to 10 are used. The runtime is in seconds.

For the Gecode model a timeout of 10 minutes is used, whereas a timeout of 20 min-
utes has been used for COMBUS. Giving the Gecode model only half the time is to cater for
the difference in the hardware platform used. Orange fields are instances where neither the
Gecode model nor COMBUS finds a solution (or proves that there is none) before their respec-
tive timeouts. Red fields are instances where COMBUS finds a solution but the Gecode model
fails to find a solution.

Just by judging how many instances can be solved by either approach (74 for the Gecode
model, 77 for COMBUS), it becomes clear that COMBUS is, as to be expected, the more robust
approach. Likewise, considering the number of nodes explored during search, COMBUS shows
the clear advantage of the approach taken.

On the other hand, in most cases the Gecode model can explore more than two orders of
magnitude more nodes and always at least one order of magnitude more nodes per second
than COMBUS. This difference in efficiency explains why the simple Gecode model can solve
that many instances at all.

Moreover, one needs to consider the modeling and programming effort. The Gecode
model is straightforward, does have considerably less than 100 lines of code (excluding grid
specifications and dictionary support), and can be programmed in a few hours. One can
expect that designing and programming a powerful problem-specific solver such as COMBUS

requires considerably more time and expertise.

Using restarts and no-goods. To improve the robustness of search, one can use restart-
based search and no-goods from restarts with Gecode, see Section 9.4 and Section 9.6. The
instances are run using a geometric cutoff sequence with base 1.5 and a scale-factor 250,
a decay-factor of 0.995 for AFC (see Section 8.5.2), and no-goods depth limit of 256. The
results are shown in Figure 22.7. The number raised to the number of nodes shows how
many restarts have been carried out during search. Note that the choice of parameters is
standard and in no way optimized for the problem at hand. The reason for using decay for
AFC is to gradually change the AFC information for restarts.

Now Gecode can solve exactly the same instances as COMBUS and for all but one with at
least the same efficiency. None of the instances that neither COMBUS nor Gecode could solve
were helped by restart-based search though, even when the timeout was increased to one
hour.

Solve the rest. Even the remaining three word instances can be solved within one
day of runtime, the results are shown in Figure 22.8. The runtime is in the format
hours:minutes:seconds (measured only by a single run).

A solution for words-21×21-10 is shown in Figure 22.9. A solution for words-23×23-06
is shown in Figure 22.10. Note that words-23×23-10 does in fact not have a solution.

295

words dictionary

15× 15 19× 19 21× 21 23× 23
time nodes time nodes time nodes time nodes

01 1.6 ++ 7411
− 0.6 ++ 1450 ≈ 58.1 ≈ 8 7855

−− 0.0 +++ 00 ≈
02 5.9 ≈ 1 6792

−− 2.7 + 7781
− 1.5 ++ 3140

− 2.9 ++ 4670
−

03 0.4 +++ 1390 ≈ 45.8 ≈ 12 9676
−− 1.3 ++ 3910

− 138.5 + 37 3888
−

04 12.8 ≈ 5 1264
−− 0.7 +++ 4010

− 23.7 ++ 4 9314
+ 174.9 ≈ 30 3888

−−

05 0.6 ++ 1860
− 0.3 ++ 1380 ≈ 20.4 + 6 2574

−− 2.3 ++ 3370 ≈
06 95.6 ≈ 19 4377

−− 0.4 +++ 2490 ≈ 1.2 ++ 3750
− – ≈ –

07 3.5 ++ 8361
− 0.7 ++ 2420

− 3.6 ++ 9011
− 3.1 ++ 9361

−

08 0.3 +++ 1300 ≈ 0.7 ++ 1530 ≈ 1.3 ++ 1730 ≈ 84.6 + 16 4696
−

09 0.3 ++ 1150 ≈ 1.2 ++ 7661
− 1.6 ++ 1880 ≈ 79.7 + 15 3256 ≈

10 61.3 ≈ 18 2187
−− 0.3 ++ 1380 ≈ – ≈ – – ≈ –

uk dictionary

15× 15 19× 19 21× 21 23× 23
time nodes time nodes time nodes time nodes

01 0.8 +++ 1030 ≈ 1.7 +++ 1980 ≈ 3.2 +++ 1620 ≈ 3.0 ++ 2330 ≈
02 0.7 +++ 960 ≈ 1.7 +++ 2900

− 2.7 +++ 1950 ≈ 3.5 +++ 3660
−

03 0.8 +++ 1040 ≈ 2.2 +++ 3660
− 2.8 +++ 1940 ≈ 3.4 +++ 2610 ≈

04 0.6 +++ 910 ≈ 0.9 +++ 1810 ≈ 4.9 +++ 5190
− 13.5 ++ 8481

−

05 0.5 +++ 850 ≈ 0.8 +++ 1450 ≈ 4.1 ++ 3950
− 3.7 +++ 2580 ≈

06 2.3 +++ 1160 ≈ 1.0 +++ 1710 ≈ 2.1 +++ 1680 ≈ 117.4 + 6 7104
−−

07 1.4 +++ 1150 ≈ 0.9 +++ 1660 ≈ 2.3 +++ 1760 ≈ 3.7 +++ 2280 ≈
08 0.6 +++ 1080 ≈ 1.1 +++ 1540 ≈ 1.9 +++ 1880 ≈ 6.0 +++ 3830

−

09 0.7 +++ 1160 ≈ 20.8 ++ 292 87314
−−− 2.8 +++ 1930 ≈ 3.7 ++ 2100 ≈

10 0.9 +++ 940 ≈ 1.0 +++ 1730 ≈ 8.1 +++ 3280
− 50.1 ++ 2 0612

−−

Figure 22.7: Comparison of Gecode model using restarts with COMBUS

instance time nodes restarts

words-nogoods-21×21-10 8 : 04 : 14.879 5 057 102 21

words-nogoods-23×23-06 10 : 15 : 46.767 4 253 481 20

words-nogoods-23×23-10 54 : 37 : 13.617 19 125 068 24

Figure 22.8: Results for some hard words dictionary instances

296

a b a s h e s m a u d e r e a l e s t

r a d i a n t o w n e r a r g o n n e

c l a r i t y r a d a r g u e s s e s

h a m r e l a t i o n s h i p s n a t

a n s i r e b a t e s a n t m a k e

i c o n s d a r e s d u g a i r e r

c e n t e r t e d d e n u l c e r s

e r a s e d b i t t e r e r

l a t r i n e s a r r a i g n o d d s

e l e v a t e a b a t i n g s p i r e

p i x e l s a b a s i n g h e r o i n

e v a n s d r e s s e s r e c o d e d

r e n t n e i t h e r c h a r g e r s

i s o l a t e s t o o l e r

m a r o o n n e d d i g s t a c k s

a m e n d a i d d e n e b s m a r t

l o s s a s s r e f i n e s s p u r

l e o i n s t r u m e n t a l s t e a

a b r i d g e a l i c e r e a l i g n

r a t t l e r n e s t s d e r i v e d

d e s s e r t d r e s s s p i d e r s

Figure 22.9: Solution for instance words-21×21-10

e c s t a s y l a i d l a w b a r b a r a

n o t a b l e i n d i a n a e l e a n o r

s u r r e a l s t a r i n g w i s d o m s

u r i d i l a t e t r a n s a c t m a e

r a n d n o v e l s s p e c i e m a n n

e g g e d w i d o w s o r a l c i l i a

d e s p i s e d p a n e l b e t r a y a l

o v i d d e m e r i t d o e s

f o s s i l d i s p e r s e s d e m a n d

a n t i d o t e s e r e m a c a d a m i a

s t a t e r a p e d d e p l o y s p e r

c a r s b a r e r a l l i s f o l k

i r k f e d e r a l d r a i n p a u s e

s i l l i n e s s o w e t e s t i c l e s

t o y i n g t e r r i f i e s i n t e n t

n e a r d e e p e n s r e n o

r e p e l l e d s n e a d f e d e r a l s

e m o r y p a r t s t i l e s d e v i l

w a r s m u t u a l s c o r c h d e m o

a n t m o l e s t e d a n n u a l r i p

r u i n o u s s i t u a t e e m a n a t e

d e c e a s e i n h a l e r r a v a g e r

s l o t t e d a g e l e s s s l a y e r s

Figure 22.10: Solution for instance words-23×23-06

297

Acknowledgments. We are grateful to Peter Van Beek for access to example grids and to
Adi Botea for providing us with the dictionaries words and uk from [1].

298

P
Programming propagators

Christian Schulte, Guido Tack

This part explains how to program propagators as implementations of constraints.

Basic material. Chapter 23 (Getting started) shows how to implement simple propagators
for simple constraints over integer variables. It introduces the basic concepts and techniques
that are necessary for any propagator.

Programming techniques. The bulk of this part describes a wide range of techniques for
programming efficient propagators:

■ Chapter 24 (Avoiding execution) discusses techniques for avoiding propagator execu-
tion. The examples used in this chapter introduce view arrays for propagators and
Boolean views.

■ Chapter 25 (Reification and rewriting) discusses how to implement propagators for rei-
fied constraints and how to optimize constraint propagation by propagator rewriting.

■ Chapter 26 (Domain propagation) explains various programming techniques for prop-
agators that perform domain propagation. The chapter also describes modification
event deltas as information available to propagators and staging as a technique for
speeding up domain propagation.

■ Chapter 27 (Advisors) is concerned with advisors for efficient incremental propagation.
Advisors can be used to provide information to a propagator which of its views have
changed and how they have changed.

■ Chapter 28 (Views) shows how to straightforwardly and efficiently reuse propagators
for implementing several different constraints by using views. As it comes to impor-
tance, this chapter ranks second after Chapter 23. However, it comes rather late to be
able to draw on the example propagators presented in the previous chapters.

Overview material. The following chapters summarize or provide an overview of topics
related to programming propagators:

■ Chapter 29 (Propagators for set constraints) summarizes how to implement propaga-
tors for constraints over set variables.

■ Chapter 30 (Propagators for float constraints) summarizes how to implement propa-
gators for constraints over float variables.

■ Chapter 31 (Managing memory) provides an overview of memory management for
propagators (and branchers, see Part B).

23 Getting started

This chapter shows how to implement simple propagators for simple constraints over inte-
ger variables. It introduces the basic concepts and techniques that are necessary for any
propagator.

Here, and in the following chapters, the focus is on propagators over integer and Boolean
variables. Part of the concepts introduced are specific to integer and Boolean propagators,
however the techniques how to program efficient propagators are largely orthogonal to the
type of variables. In Chapter 29 and Chapter 30, the corresponding concepts for set and float
variables are presented.

Important. This chapter introduces concepts and techniques step-by-step, starting with a
naive and inefficient first version of a propagator that then is stepwise refined. Even if you
feel compelled to start programming right after you have seen the first, naive variant, you
should very definitely read on until having read the entire chapter.

Overview. The first three sections set the stage for programming propagators. Section 23.1
sketches how propagators perform constraint propagation and is followed by an overview of
some useful background reading material (Section 23.2). Section 23.3 provides an overview
of what needs to be implemented for a constraint followed by the first naive implementation
of a simple constraint (Section 23.4). The naive implementation is improved in Section 23.5
by both taking advantage of some predefined abstractions in Gecode and straightforward
optimizations. This is followed by a discussion of propagation conditions as a further
optimization to avoid redundant propagator executions (Section 23.6). The next section
(Section 23.7) presents a first reasonable propagator that takes advantage of predefined pat-
terns to cut down on programming effort. The last two sections discuss the obligations a
propagator must meet (Section 23.8) and how some of these obligations can be waived by a
propagator (Section 23.9).

23.1 Constraint propagation in a nutshell

Constraints and variables are used for modeling constraint problems. However, the only
reason for actually modeling a problem is to be able to solve it with constraint propagation
by removing values from variables that are in conflict with a constraint. In order to implement

301

constraint propagation, a constraint (typically) requires a propagator (or several propagators)
as its implementation.

Views versus variables. The essence of a propagator is to remove values from variables
that are in conflict with the constraint the propagator implements. However, a propagator
does not use variables directly as they only offer operations for accessing but not removing
values. Instead, a propagator uses variable views (or just views) as they offer operations for
both value access and removal.

Views and variables have a simple relationship in that they both offer interfaces to variable
implementations. When a variable is created for modeling, also a variable implementation is
created. The variable serves as a read-only interface to the variable implementation. A view
can be initialized from a variable: the view becomes just another interface to the variable’s
variable implementation. For more information on the relationship between variables, views,
and variable implementations see Part V.

In the following we often refer to the variables of a propagator as the variable implemen-
tations that the propagator refers to through views. That is, we will often not distinguish
between variables, views, and variable implementations. There is little risk of confusion as
propagators always compute with views and variable implementations are never exposed for
programming propagators. Much more on the relationship between variables, views, and
variable implementations can be found in Part V.

By the domain of a variable (or a view, or a variable implementation) we refer to the set
of values the variable still can take. We will often use notation such as x ∈ {1, 2, 5} which
means that the domain of x is {1, 2, 5}.

Executing propagators. A propagator is implemented in Gecode as a subclass of the class
Propagator where the different tasks a propagator must be able to perform are implemented
as virtual member functions. Before we describe these functions and their purpose, we sketch
how a propagator actually performs constraint propagation.

As mentioned above, a propagator has several views on which it performs constraint prop-
agation according to the constraint it implements. Like variables in modeling, propagators
and views (more precisely, their variable implementations) belong to a home space (or just
home). When a propagator is created, it subscribes to some of its views: subscriptions control
the execution of a propagator. As soon as a view changes (the only way how a view can
change is that some of its values are removed), all propagators that are subscribed to the
view are scheduled for execution. Actually, subscriptions offer additional control in that only
certain types of value removals schedule a propagator, this is discussed in Section 23.6. A
propagator that is not scheduled, is called idle. Scheduling and execution are sketched in
Figure 23.1.

Eventually, the space chooses a scheduled propagator for execution and executes it by run-
ning the propagate() member function of the propagator, provided the propagator has not
been disabled (propagators can be disabled through propagator groups, see Section 12.1).
That is, disabled propagators are scheduled for execution but they are not executed. The

302

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Propagator.html

status()

select scheduled
propagator none left

make propagator
idle

disabled

execute propagate()

modify views

schedule subscribed
propagators

ES_FIX ES_SUBSUMED

ES_NOFIXmake propagator
idle

dispose
propagator

branching status
see Chapter 32

failed

ES_FAILED

Figure 23.1: Scheduling and executing propagators

303

propagate() member function possibly removes values and by this might schedule more
propagators for eventual execution (possibly re-scheduling the currently executing propaga-
tor itself). Besides removing values and scheduling propagators, the propagate() member
function reports about propagation. The details of what can be reported by a propagator
are detailed in the following sections, but a particularly important report is: the propagator
reports failure as it found out that the constraint it implements is unsatisfiable with the val-
ues left for the propagator’s views (this is described by returning the value ES_FAILED). The
remaining return values are discussed in Section 23.4 and Section 23.5.

To get the entire propagation process started, some but not necessary all propagators are
scheduled as soon as they are created. Which propagators are scheduled initially is discussed
in detail in Section 23.6.

Propagation is interleaved in that a space executes only one propagator at a time. The
process of choosing a scheduled propagator and executing it is repeated by the space until
no more propagators are available for execution. If no more propagation is possible, a space
is called stable. This process implements constraint propagation and must be explicitly trig-
gered by executing the status() member function of a space (please consult Tip 2.2). The
status() function is typically invoked by a search engine (see Part S for details).

Space and propagator fixpoints. We often refer to the fact that no more propagation is
possible for a space by saying that the space is at fixpoint. Likewise, we say that a propagator
that cannot remove any more values is at fixpoint. The term fixpoint is intuitive when one
looks at typical models for constraint propagation: propagators are modeled as functions that
take variables and their values as input and output, often referred to as stores or domains.
A domain that is a fixpoint means that input and output for a propagator are the same and
hence the propagator did not perform any propagation.

Disabling and re-enabling propagators. As mentioned above, propagators can be disabled
and re-enabled. When re-enabling a disabled propagator, the propagator might have to be
re-scheduled for execution. The re-scheduling is implemented by the reschedule() member
function of a propagator.

23.2 Background reading

This document does not present any formal or mathematical model of how propagation is
organized and which properties propagation has. There are numerous publications that do
that in more detail than is possible in this document:

■ A general overview of how a constraint programming system works can be found
in [50].

■ Realistic models that present many ideas that have been developed in the context of
Gecode can be found in [53], [51], and [62].

304

■ A truly general model for propagation that is used in Gecode is introduced in [55]. This
publication is rather specialized and the generality of the model will be only briefly
discussed later (see Section 23.8 and Section 42.2).

It is highly recommended to read about the general setup of constraint propagation in
one of these papers. For more advanced ideas, we often refer to certain sections in the
above publications or to further publications. Remember, one of the advantages of Gecode
is that many of its key ideas have been introduced by Gecode and are backed by academic
publications.

23.3 What to implement?

Our first propagator implements the less constraint x < y for two integer variables x and y .

Constraint post functions. Before discussing what a propagator must do in detail, we need
to discuss how to implement the function for our less constraint that can be used for mod-
eling. As known from Part M, the function should have a declaration such as

void less(Space& home, IntVar x0, IntVar x1);

We call a function implementing a constraint a constraint post function. The constraint post
function less() takes a space home where to post the constraint (actually, where to post
the propagator implementing the constraint) and variables x0 and x1.1 The responsibilities
of a constraint post function are straightforward: it checks whether its arguments are valid
(and throws an exception otherwise), checks whether the home space is failed, sets some
execution information, creates variable views for the variables passed to it, and then posts
an appropriate propagator. This is detailed below.

Tip 23.1 (Variables and views are passed by value). As discussed before, variables and views
are nothing but different interfaces to variable implementations. Their implementations are
hence strikingly simple: they just carry a pointer to a variable implementation and their
member functions just call the appropriate member functions of the variable implementation
(some views might store an additional integer as well). For that reason, it is sufficient to pass
variables and views simply by value rather than by reference. ◭

What a propagator must do. The previous section focused on the execution of a propaga-
tor that then prunes variables. While performing propagation is typically the most involved
part of a propagator, a propagator must also handle several other tasks: how to post and
initialize it, how to dispose it, how to copy it during cloning for search, how to re-schedule it,

1As we will discuss later (and as you might have noticed when modeling with Gecode, see Tip 2.1), a con-
straint post function takes a value of class Home instead of Space&. A value of type Home includes a refer-
ence to a space together with potentially additional information useful for posting. This aspect is discussed in
Section 23.5 in more detail.

305

propagators views variable
implementations

p

p

p

p

p

p

p

p

p x

x

x

v

v

v

subscriptions

priority queueidle low cost . . . high cost

Figure 23.2: Propagators, views, and variable implementations

and when to execute it. How propagation is organized in Gecode is sketched in Figure 23.2,
this paragraph will fill in the missing details.

posting A constraint post function typically initiates the posting of one or several propaga-
tors. Posting a propagator is organized into two steps. The first step is implemented
by a propagator post function, while the second is implemented by the propagator’s
constructor.

Typical tasks in a propagator post function are as follows:

■ Decide whether the propagator really needs to be posted.

■ Decide whether a related, simpler, and hence more efficient propagator should be
posted instead.

■ Enforce certain invariants the propagator might require (for example, restricting
the values of variables so that the propagator becomes simpler).

■ Perform some initial propagation such that variable domains become reasonably
small (for a discussion why small variable domains are useful, see Tip 4.2).

■ Last but definitely not least, create an instance of the propagator.

The reason why posting requires a constraint post function as well as a propagator post
function is to separate concerns. We will see later that the propagator post function is

306

typically being reused by several constraints and also for propagator rewriting, an im-
portant technique which is discussed in Chapter 25. The post function of a propagator
is conveniently implemented as a static member function post() of the propagator’s
class.

The propagator’s constructor initializes the propagator and performs another essential
task: it creates subscriptions to views for the propagator. Only if a propagator subscribes

to a view (together with a propagation condition which is ignored for the moment and
discussed later), the propagator is scheduled for execution whenever the domain of the
view changes. Subscribing also automatically schedules the propagator for execution
if needed (detailed in Section 23.6).

disposal Gecode does not automatically garbage collect propagators.2 Propagators must be
explicitly disposed. When a propagator is disposed it must also explicitly cancel its
subscriptions (the subscriptions the propagator created in the constructor).

The only exception to this rule is that subscriptions on assigned variables do not need
to be canceled. In fact, as an optimization, assigned variables do not maintain sub-
scriptions: subscribing to an assigned variable schedules the propagator and canceling
a subscription on an assigned variable does nothing. Disposal must also free other
resources currently used by the propagator.

Propagator disposal is implemented by a virtual member function dispose(). A prop-
agator has no destructor, the dispose function assumes this role instead. The reason
to have a dispose() function rather than a destructor is that disposal requires the
home space of a propagator which is passed as an argument to the dispose() function
(destructors cannot take arguments in C++).

Disposal might be triggered by the propagator itself (in fact, this is the most common
case) as we will see later. It is important to understand that when the space of a
propagator is deleted, its propagators are not being disposed by default. A propagator
can explicitly request to be disposed when its home is deleted (see Section 23.8). A
typical case where this is needed is when the propagator has allocated memory that
is not managed by the space being deleted. In Chapter 31, memory management is
discussed in detail.

copying Copying for propagators works exactly as does copying for spaces: a virtual copy()
member function returns a copy of a propagator during cloning and a copy constructor
is in charge of copying and updating the propagator’s data structures (in particular, its
views).

cost computation Scheduling a propagator guarantees that it is executed eventually but it
does not specify when. When a propagator is executed, is defined by its cost. The
cheaper it is to execute the propagator, the earlier the propagator should be executed.
This is based on the intuition that a cheaper propagator might either already fail a

2One of the key design principles of Gecode is: no magic! Whatever needs to be done must be done explicitly.

307

space and hence no expensive propagators must be executed, or that a cheaper prop-
agator might perform propagation from which a more expensive propagator can take
advantage.

As to be expected, every propagator must implement a virtual cost()member function.
This member function is called when the propagator is scheduled. In fact, the cost()

function might be called several times when certain information (so-called modification
event deltas) for a propagator changes. We postpone a discussion of the details to
Section 26.5.

The cost of executing a propagator is just an approximation that helps propagation in
Gecode to be fast and also to prevent pathological behavior. Propagators of same cost
are executed according to a first scheduled, first executed policy (basically, scheduling
is organized fairly into queues of propagators with similar cost). However, Gecode does
not give hard guarantees on the order of propagator execution: the cost of a propagator
should be understood as a suggestion and not a requirement.

The only exception is a cost level called record that is reserved for propagators that
only record information (such as for propagators that record information about ac-
tion Section 8.5 or for tracing Section 12.5.1): they will always be executed after all
propagators of lower cost (these propagators are also executed on a failed space).

For the interested reader, the design of cost-based scheduling for Gecode together with
its evaluation can be found in [53, Section 6].

propagation The core of a propagator is how it performs propagation by removing values
from its views that are in conflict with the constraint it implements. This is implemented
by a virtual member function propagate() that returns an execution status.

The execution status returned by the propagate() function must capture several im-
portant aspects:

■ As mentioned before, a propagator must report whether failure occurred by re-
turning an appropriate value for the execution status. The propagator can either
find out by some propagation rules that failure must be reported. Or, when it
attempts to modify view domains, the modification operation reports that it failed
(a so-called domain wipe-out occurred, as all values would have been removed).
Modification operations are also called tell operations.

■ A propagator must report when the propagator has become subsumed (also known
as entailed): that is, when the propagator can never ever again perform any prop-
agation and should be disposed.

The requirement to report subsumption is rather weak in that a propagator must
at the very latest report subsumption if all of its views are assigned (of course,
it might report subsumption earlier, as will be discussed in Section 23.5). With
other words, a propagator must always report subsumption but can wait until all
its views are assigned (unless it reports failure, of course).

308

LESS ≡ [DOWNLOAD]

#include <gecode/int.hh>

using namespace Gecode;

class Less : public Propagator {

protected:

Int::IntView x0, x1;

public:

◮ POSTING

◮ DISPOSAL

◮ COPYING

◮ COST COMPUTATION

◮ RE-SCHEDULING

◮ PROPAGATION

};

void less(Space& home, IntVar x0, IntVar x1) {

◮ CONSTRAINT POST FUNCTION

}

Figure 23.3: A constraint and propagator for less

■ A propagator can characterize what it actually has computed: either a fixpoint
for itself or not. We ignore this aspect for the time being and return to it in
Section 23.5 and continue this discussion in Section 24.1.

re-scheduling The propagator’s virtual member function reschedule() re-schedules a
propagator when it is re-enabled. Typically, the member function follows how the prop-
agator creates subscriptions and is straightforward. The reschedule() function might
be more involved for propagators using advisors, this is discussed in Chapter 27.

Obligations of a propagator. What becomes quite clear is that a propagator has to meet
certain obligations (disposing subscriptions, detecting failure, detecting subsumption, and
so on). Some obligations must be met in order to comply with Gecode’s requirements of
a well-behaved propagator, other obligations must be met so that a propagator becomes a
faithful implementation of a constraint. Section 23.8 provides an overview of all obligations
a propagator must meet.

309

https://www.gecode.org/doc/6.2.0/MPG/less.cpp

23.4 Implementing the less constraint

Figure 23.3 shows the class definition Less for our less propagator and the definition of the
constraint post function. Unsurprisingly, the propagator Less uses two views for integer
variables of type Int::IntView and propagates that the values for x0 must be less than the
values for x1.

The Less propagator inherits from the class Propagator defined by the Gecode kernel
(as any propagator must do) and stores two integer views which are defined by Gecode’s
integer module. Hence, we need to include <gecode/int.hh>. Note that only the constraint
post functions of the integer module are available in the Gecode namespace. All other func-
tionality, including Int::IntView, is defined in the namespace Gecode::Int.

Constraint post function. The constraint post function is implemented as follows:

CONSTRAINT POST FUNCTION ≡
Int::IntView y0(x0), y1(x1);

if (Less::post(home,y0,y1) != ES_OK)

home.fail();

The constraint post function creates two integer variable views y0 and y1 for its inte-
ger variable arguments and calls the static propagator post function as defined by the Less

class. A propagator post function also returns an execution status of type ExecStatus (see
Status of constraint propagation and branching commit) where the only two values that can
be returned by a propagator post function are ES_OK (posting was successful) and ES_FAILED

(the post function determined even without actually posting the propagator that the con-
straint Less is unsatisfiable). In case ES_FAILED is returned, the constraint post function
must mark the current space home as failed (by using home.fail()).

Propagator posting. The posting of the Less propagator is defined by a constructor de-
signed for initialization and a static post function returning an execution status as follows:

POSTING ≡
Less(Space& home, Int::IntView y0, Int::IntView y1)

: Propagator(home), x0(y0), x1(y1) {

x0.subscribe(home,*this,Int::PC_INT_DOM);

x1.subscribe(home,*this,Int::PC_INT_DOM);

}

static ExecStatus post(Space& home,

Int::IntView x0, Int::IntView x1) {

(void) new (home) Less(home,x0,x1);

return ES_OK;

}

310

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1IntView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Propagator.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1IntView.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Int.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskActorStatus.html

The constructor initializes its integer views and creates subscriptions to both x0 and x1.
Subscribing to an integer view takes the home space, the propagator as subscriber (as a
reference), and a propagation condition of type PropCond. We do not look any further
into propagation conditions right here (Section 23.6 does this in detail) but give two hints.
First, the values for propagation conditions depend on the variable view as witnessed by the
fact that the value Int::PC_INT_DOM is declared in the namespace Gecode::Int. Second,
Int::PC_INT_DOM creates a subscription such that the propagator is executed whenever the
domain of x0 (respectively x1) changes.

The propagator post function is entirely naive in that it always creates a Less propagator
and always succeeds (and hence returns ES_OK). Note that propagators can only be created
in a space. Hence, the new operator is used in a placement version with placement argument
(home) which allocates memory for the Less propagator from home.

Disposal. The virtual dispose() function for the Less propagator takes a home space as
argument and returns the size of the just disposed propagator (as type size_t).3 Other-
wise, the dispose() function does exactly what has been described above: it cancels the
subscriptions created by the constructor used for posting:

DISPOSAL ≡
virtual size_t dispose(Space& home) {

x0.cancel(home,*this,Int::PC_INT_DOM);

x1.cancel(home,*this,Int::PC_INT_DOM);

(void) Propagator::dispose(home);

return sizeof(*this);

}

Note that the arguments for canceling a subscription are (and must be) exactly the same
as the arguments for creating a subscription.

Copying. The virtual copy() function and the corresponding copy constructor are unsur-
prising in that they follow exactly the same structure as the corresponding function and
constructor for spaces used for modeling:

COPYING ≡
Less(Space& home, Less& p)

: Propagator(home,p) {

x0.update(home,p.x0);

x1.update(home,p.x1);

}

virtual Propagator* copy(Space& home) {

return new (home) Less(home,*this);

}

3Following the discussion from above, the size of a disposed propagator must be returned explicitly, as
propagators do not use destructors that implicitly handle size.

311

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Int.html

static cost functions

unary propagator with single variable view
binary propagator with two variable views
ternary propagator with three variable view

dynamic cost functions

linear propagator with ≈ linear complexity (or O(n log n))
quadratic propagator with ≈ quadratic complexity
cubic propagator with ≈ cubic complexity
crazy propagator with ≈ exponential (or large polynomial) complexity

Figure 23.4: Summary of propagation cost functions

The only aspect that deserves some attention is that a propagator must be created in a
home space and hence a placement new operator is used (analogous to propagator posting).

Cost computation. Cost values for propagators are defined by the class PropCost. The
class PropCost defines several static member functions with which cost values can be created.
For Less, the cost() function returns a cost value for a binary propagator with low cost (as
we will see below, the propagate() function is really cheap to execute):

COST COMPUTATION ≡
virtual PropCost cost(const Space&, const ModEventDelta&) const {

return PropCost::binary(PropCost::LO);

}

Please ignore the additional argument of type ModEventDelta to cost() for now, see
Section 26.4.

The static member functions provided by PropCost are summarized in Figure 23.4. Each
function takes either the value PropCost::LO (for low cost) or PropCost::HI (for high cost).
The dynamic cost functions take an additional integer (or unsigned integer) value defining
how many views the propagator is computing with.

For example, a propagator with n variables and complexity O(n logn) might return a cost
value constructed by

PropCost::linear(PropCost::HI,n);

As mentioned before, propagation cost is nothing but an approximation of the real cost
of the next execution of the propagate() function of the propagator. The only hard fact
you can rely on is that a propagator with a cost value using PropCost::HI is never given
preference over a propagator with a cost value using PropCost::LO.

312

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PropCost.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PropCost.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PropCost.html

Re-scheduling. Re-scheduling the propagator after it has been enabled again, is done by
the virtual reschedule() member function as follows:

RE-SCHEDULING ≡
virtual void reschedule(Space& home) {

x0.reschedule(home,*this,Int::PC_INT_DOM);

x1.reschedule(home,*this,Int::PC_INT_DOM);

}

Re-scheduling depends, like creating and cancelling subscriptions, on the views of
the propagator and the propagation conditions and follows exactly the pattern of the
subscribe() and cancel() functions.

Propagation proper. Before starting with the code for propagation, we have to work out
how the propagator should prune. This can be rather involved, leading to specialized pruning

or filtering algorithms. For our Less propagator, the filtering rules are simple:

■ All values for x0 must be less than the largest possible value of x1.

■ All values for x1 must be larger than the smallest possible value of x0.

These two rules can be directly implemented as follows (again, please ignore the addi-
tional argument of type ModEventDelta to propagate() for now):

PROPAGATION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (x0.le(home,x1.max()) == Int::ME_INT_FAILED)

return ES_FAILED;

if (x1.gr(home,x0.min()) == Int::ME_INT_FAILED)

return ES_FAILED;

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else

return ES_NOFIX;

}

The le() (for less) modification operation applied to an integer view x takes a home space
and an integer value n and keeps only those values from the domain of x that are smaller
than n (gr() for greater is analogous). A view modification operation returns a modification
event of type ModEvent (see Generic modification events and propagation conditions and
Integer modification events and propagation conditions). A modification event describes
how the domain of a view has changed, in particular the value Int::ME_INT_FAILED is re-
turned if a domain wipe-out has occurred. In that case, the propagator has found out (just
by attempting to perform a view modification operation) that the constraint it implements
is unsatisfiable. In this case, a propagator immediately returns with the execution status

313

https://www.gecode.org/doc/6.2.0/reference/group__TaskVarMEPC.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskActorIntMEPC.html

eq(home,n) assign to value n

nq(home,n) remove value n

le(home,n) restrict values to be less than n

lq(home,n) restrict values to be less or equal than n

gr(home,n) restrict values to be greater than n

gq(home,n) restrict values to be greater or equal than n

Figure 23.5: Value-based modification functions for integer variable views

ES_FAILED. Naturally, the member functions min() and max() of an integer view x just re-
turn the smallest and largest possible value of the domain of x.

If the propagator had not reported failure by returning ES_FAILED it would be faulty: it
would incorrectly claim that values for the views are solutions of the constraint it implements.
Being correct with respect to the constraint a propagator implements is one of the obligations
of a propagator we will discuss in Section 23.8.

The modification operations for integer variable views taking a single integer value n as
argument are listed in Figure 23.5. Integer variable views also support modification opera-
tions that simultaneously can operate on sets of values. These operations are discussed in
Chapter 26.

The second part of the propagator is concerned with deciding subsumption: if both x0

and x1 are assigned, the propagator executes the function ES_SUBSUMED(). The function
ES_SUBSUMED() disposes the propagator by calling its dispose() member function and re-
turns a value for ExecStatus that signals that the propagator is subsumed. After returning,
the memory for the propagator will be reused. It is important to understand that subsump-
tion is not an optimization but a requirement: at the very latest when all of its views are
assigned, a propagator must report subsumption! The propagator is of course free to report
subsumption earlier as is exploited in Section 23.5.

In case the propagator is neither failed nor subsumed, it reports an execution status
ES_NOFIX. Returning the value ES_NOFIX means that the propagator will be scheduled if
one of its views (x0 and x1 in our example) have been modified. If none of its views have
been modified, the propagator is not scheduled. This rather naive statement of what the
propagator has computed is improved in Section 23.5.

Tip 23.2 (Immediately return after subsumption). As mentioned above, the function
ES_SUBSUMED() disposes a propagator. To not crash Gecode, you must immediately return af-
ter calling ES_SUBSUMED(). In particular, executing view modification operations or creating
subscriptions by a disposed propagator will surely crash Gecode! ◭

23.5 Improving the Less propagator

Figure 23.6 shows an improved implementation of the Less propagator together with the
corresponding constraint post function less(). The propagator features improved posting,

314

LESS BETTER ≡ [DOWNLOAD]

· · ·
class Less : public Propagator {

· · ·
public:

Less(Home home, Int::IntView y0, Int::IntView y1)

· · ·
}

◮ POSTING

· · ·
◮ PROPAGATION

};

◮ CONSTRAINT POST FUNCTION

Figure 23.6: A better constraint and propagator for less

improved propagation, and improved readability.
A recurring theme in improving propagators in this and in the next section is not about

sophisticated propagation rules (admittedly, Less does not have much scope for cleverness).
In contrast, all improvements will try to achieve the best of all optimizations: avoid executing
the propagator in the first place!

Improving posting. As mentioned above, all functions related to posting (constructor,
propagator post function, and constraint post function) should take a value of type Home

rather than Space&. The improved propagator honors this without any further changes (a
Space is automatically casted to a Home if needed, and vice-versa). An example of how pass-
ing a Home value is actually useful can be found in Section 25.2.

The improved constraint post function is as follows:

CONSTRAINT POST FUNCTION ≡
void less(Home home, IntVar x0, IntVar x1) {

if (home.failed()) return;

PostInfo pi(home);

GECODE_ES_FAIL(Less::post(home,x0,x1));

}

The constraint post function features three improvements:

■ The most obvious improvement: if the home space is already failed, no propagator is
posted.

■ The post function creates an object of class PostInfo. When the object is created,
it provides information that a post function is currently being executed and to which

315

https://www.gecode.org/doc/6.2.0/MPG/less-better.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Home.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1PostInfo.html

propagator group the post function is associated (this information is available from
home, another reason why one should always use the type Home rather than Space&).
This information is useful for tracing, see Chapter 12. When the object goes out of
scope, it is also recorded that the post function is done.

■ The variable views are initialized implicitly. Note that the propagator post function
Less::post() is called with integer variables x0 and x1 which are automatically co-
erced to integer views (as Int::IntView has a non-explicit constructor with argument
type IntVar).

■ Instead of testing whether Less::post() returns ES_FAILED, the constraint post func-
tion uses the macro GECODE_ES_FAIL for convenience (doing exactly the same as shown
before). Macros for checking and failing are summarized below.

The improved post function is a little bit more sophisticated:

POSTING ≡
static ExecStatus post(Home home,

Int::IntView x0, Int::IntView x1) {

if (x0 == x1)

return ES_FAILED;

GECODE_ME_CHECK(x0.le(home,x1.max()));

GECODE_ME_CHECK(x1.gr(home,x0.min()));

if (x0.max() >= x1.min())

(void) new (home) Less(home,x0,x1);

return ES_OK;

}

It includes the following improvements:

■ The propagator is not posted if x0 and x1 happen to refer to the very same variable
implementation. In that case, of course, x0 can never be less than x1 and post() can
immediately report failure.

■ The propagator performs one initial round of propagation already during posting. This
yields small variable domains for other propagators to be posted (see Tip 4.2).

■ If all values of x0 are already less than all values of x1 (that is, x0.max() < x1.min()),
then the constraint that x0 is less than x1 already holds (it is subsumed). Hence, no
propagator needs to be posted.

316

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Home.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1IntView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntVar.html

Improving propagation. The propagate() function is improved as follows:

PROPAGATION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

GECODE_ME_CHECK(x0.le(home,x1.max()));

GECODE_ME_CHECK(x1.gr(home,x0.min()));

if (x0.max() < x1.min())

return home.ES_SUBSUMED(*this);

else

return ES_FIX;

}

with the following improvements:

■ The checking macro GECODE_ME_CHECK checks whether a modification operation re-
turns failure and then returns ES_FAILED.

■ The propagator tries to detect subsumption early, it does not wait until both x0 and x1

are assigned. It uses exactly the same criterion that is used for avoiding posting of the
propagator in the first place.

This is entirely legal: a propagator can report subsumption as soon as the propagator
will never propagate again (or, with other words, the propagator will always be at fix-
point). The obligation is: it must report subsumption (or failure) at the very latest when
all of its views are assigned. Early subsumption means fewer propagator executions.

■ If the propagator is not yet subsumed it returns ES_FIX instead of ES_NOFIX. This means
that the propagator tells the Gecode kernel that what it has computed happens to be a
fixpoint for itself.

This is easy enough to see for Less: executing the propagate() function twice does
not perform any propagation in the second call to propagate(). After all, only after
x0.min() or x1.max() change, the propagator can prune again. As neither x0.min()
nor x1.max() change (the propagator might change x1.min() or x0.max() instead),
the propagator should report that it has computed a fixpoint.

The situation where returning ES_FIX instead of ES_NOFIX differs, is when the propa-
gator actually prunes the values for x0 or x1. If the propagator returns ES_NOFIX it will
be scheduled in this situation. If it returns ES_FIX it will not be scheduled. The differ-
ence between ES_FIX and ES_NOFIX is sketched in Figure 23.1. Again, not scheduling
a propagator means fewer propagator executions. Chapter 24 takes a second look at
fixpoint reasoning for propagators.

Check and fail macros. Check and fail macros available in Gecode are summarized in
Figure 23.7. Note that a check macro can be used in a propagator post function or in a
propagate() function, whereas a fail macro can only be used in a constraint post function.

317

check macros

GECODE_ME_CHECK(me) Checks whether me signals failure and
returns ES_FAILED.

GECODE_ES_CHECK(es) Checks whether es signals failure or
subsumption and returns es.

fail macros

GECODE_ME_FAIL(me) Checks whether me signals failure, fails home, and returns.
GECODE_ES_FAIL(es) Checks whether es signals failure, fails home, and returns.

Figure 23.7: Check and fail macros

Note also that both fail macros assume that the identifier home refers to the current home
space. For an example of how to use GECODE_ES_CHECK, see Section 24.3. For an example of
how to use GECODE_ME_FAIL, see Section 24.2.

In fact, explicitly testing whether a modification event returned by a view modifi-
cation operation is equal to Int::ME_INT_FAILED is highly discouraged. If not using
GECODE_ME_CHECK, the proper way to test for failure is as in:

if (me_failed(x0.le(home,x1.max())))

return ES_FAILED;

Note that both GECODE_ME_CHECK as well as me_failed work for all variable views and not
only for integer variable views.

23.6 Propagation conditions

This section discusses modification events and propagation conditions in more detail. A mod-
ification event describes how a modification operation has changed a view. A propagation
condition describes when a propagator is scheduled depending on how the views it is sub-
scribed to are modified.

Modification events. Modification operations on integer views might return the following
values for ModEvent (we assume that the view x has the domain {0,2,3}):

■ Int::ME_INT_NONE: the view has not been changed. For example, both x.le(home,5)

and x.nq(home,1) return Int::ME_INT_NONE.

■ Int::ME_INT_FAILED: the values of a view have been wiped out. For example, both
x.le(home,0) and x.eq(home,1) return Int::ME_INT_FAILED.

Note that when a modification operation signals failure, the values of a view might
change unpredictably, see also Section 4.1.7. For example, the values might entirely

318

LESS EVEN BETTER ≡ [DOWNLOAD]

· · ·
class Less : public Propagator {

· · ·
public:

Less(Home home, Int::IntView y0, Int::IntView y1)

: Propagator(home), x0(y0), x1(y1) {

x0.subscribe(home,*this,Int::PC_INT_BND);

x1.subscribe(home,*this,Int::PC_INT_BND);

}

· · ·
virtual size_t dispose(Space& home) {

x0.cancel(home,*this,Int::PC_INT_BND);

x1.cancel(home,*this,Int::PC_INT_BND);

(void) Propagator::dispose(home);

return sizeof(*this);

}

virtual void reschedule(Space& home) {

x0.reschedule(home,*this,Int::PC_INT_BND);

x1.reschedule(home,*this,Int::PC_INT_BND);

}

· · ·
};

· · ·

Figure 23.8: An even better constraint and propagator for less

remain or only part of the values are removed. This also clarifies that a view (or its
variable implementation) does not maintain the information that a modification oper-
ation on it failed. This also stresses that it is essential to check the modification event
returned by a modification operation for failure.

■ Int::ME_INT_DOM: an inner value (that is neither the smallest nor the largest value)
has been removed. For example, x.nq(home,2) (x ∈ {0,3}) returns Int::ME_INT_DOM.

■ Int::ME_INT_BND: the smallest or largest value of a view has changed but the view has
not been assigned. For example, both x.nq(home,0) (x ∈ {2,3}) and x.lq(home,2)

(x ∈ {0,2}) return Int::ME_INT_BND.

■ Int::ME_INT_VAL: the view has been assigned to a single value. For example, both
x.le(home,2) (x= 0) and x.gq(home,3) (x= 3) return Int::ME_INT_VAL.

319

https://www.gecode.org/doc/6.2.0/MPG/less-even-better.cpp

Propagation conditions. The propagation condition used in subscriptions determine,
based on modification events, when a propagator is scheduled. Assume that a propagator p
subscribes to the integer view x with one of the following propagation conditions:

■ Int::PC_INT_DOM: whenever the view x is modified (that is, for modification events
Int::ME_INT_DOM, Int::ME_INT_BND, and ME_INT_VAL on x), schedule p.

■ Int::PC_INT_BND: whenever the bounds of x are modified (that is, for modification
events Int::ME_INT_BND and Int::ME_INT_VAL on x), schedule p.

■ Int::PC_INT_VAL: whenever x becomes assigned (that is, for modification event
Int::ME_INT_VAL on x), schedule p.

For our Less propagator, the right propagation condition for both views x0 and x1 is of
course Int::PC_INT_BND: the propagator can only propagate if either the lower bound of
x0 or the upper bound of x1 changes. Otherwise, the propagator is at fixpoint. Again, the
very point of propagation conditions is to avoid executing a propagator that is known to be
at fixpoint. An even better propagator for less using the proper propagation conditions is
shown in Figure 23.8.

The idea to avoid execution depending on how variables change is well known and typi-
cally realized through so-called events. For an evaluation, see [53, Section 5]. Distinguishing
between modification events and propagation conditions has been introduced by Gecode, for
a discussion see [62, Chapter 5].

The Less propagator subscribes to both of its views (that is, x0 and x1). For some propa-
gators it is actually sufficient to only subscribe to some but not all of its views. Section 24.3
discusses partial and dynamically changing subscriptions for propagators.

Scheduling when posting. As mentioned earlier, a propagator also needs to be scheduled
when it is created to get the process of constraint propagation started. More precisely, a
propagator p might be scheduled when it subscribes to a view x. If x is assigned, p is always
scheduled regardless of the propagation condition used for subscribing. If x is not assigned, p
is only scheduled if the propagation condition is different from Int::PC_INT_VAL. The same
holds for the schedule() function discussed in the previous section.

With other words: propagation conditions provide a guarantee a propagator can rely
on. In particular, for the propagator condition Int::PC_INT_VAL, the guarantee is that the
propagator is only executed if a view is assigned.

Consider, for example, the implementation of the propagate() method for a disequality
propagator shown in Figure 23.9. The propagator waits until at least x0 or x1 are assigned
(due to the propagation condition PC_INT_VAL). When its propagate() method is executed,
the propagator can exploit that at least one of the views x0 and x1 is assigned by testing only
x0 for assignment.

Scheduling when creating subscriptions can be avoided by giving false as an optional
last argument to subscribe(). This is typically used when subscriptions are created during
propagation, and the propagator does not need to be scheduled.

320

DISEQUALITY ≡ [DOWNLOAD]

· · ·
class Disequal : public Propagator {

· · ·
public:

Disequal(Home home, Int::IntView y0, Int::IntView y1)

: Propagator(home), x0(y0), x1(y1) {

x0.subscribe(home,*this,Int::PC_INT_VAL);

x1.subscribe(home,*this,Int::PC_INT_VAL);

}

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (x0.assigned())

GECODE_ME_CHECK(x1.nq(home,x0.val()));

else

GECODE_ME_CHECK(x0.nq(home,x1.val()));

return home.ES_SUBSUMED(*this);

}

};

· · ·

Figure 23.9: A propagator for disequality

321

https://www.gecode.org/doc/6.2.0/MPG/disequality.cpp

single view patterns

UnaryPropagator unary propagator with view x0

BinaryPropagator binary propagator with views x0 and x1

TernaryPropagator ternary propagator with views x0, x1, and x2

NaryPropagator n-ary propagator with view array x

NaryOnePropagator n-ary propagator with view array x and view y

mixed view patterns

MixBinaryPropagator binary propagator with views x0 and x1

MixTernaryPropagator ternary propagator with views x0, x1, and x2

MixNaryOnePropagator n-ary propagator with view array x and view y

Figure 23.10: Propagator patterns

23.7 Using propagator patterns

Gecode’s kernel defines common propagator patterns (see Propagator patterns) which are
summarized in Figure 23.10. The single view patterns are templates that require a view as
first argument and a propagation condition as second argument. The mixed view patterns
require for each view or view array a view argument and a propagation condition. The
mixed view patterns are useful when different types of views and/or different propagation
conditions for the views are needed (see Section 28.1.2 for an example).

The propagator patterns accept also a value Int::PC_INT_NONE for the propagation con-
ditions that avoid creating subscriptions at all. This comes in handy when the propagator pat-
terns are used in situations where no subscriptions are needed, see for example Section 27.3.

The patterns define a constructor for creation (that also creates subscriptions to their
views with the defined propagation conditions), a constructor for cloning, a dispose()

member function, a cost() member function where the cost value is always the
PropCost::LO variant of the corresponding cost function (that is, PropCost::unary()

for UnaryPropagator, PropCost::linear() for NaryPropagator and NaryOnePropagator,
and so on), and a reschedule() function. The integer module additionally defines patterns
for reified propagators which are discussed in Section 25.2.4

Figure 23.11 shows how to use the BinaryPropagator pattern for the less constraint.
To give an impression of what needs to be implemented, the code for implementing the less

constraint is shown in full. Note that one must define a propagator post function and the
virtual member functions copy() and propagate(). Of course, one could also choose to
overwrite the virtual member functions dispose() and cost() if needed.

4As reified propagators require Boolean views, reified patterns are provided by the integer module and not
by the kernel. The kernel knows nothing about the different views programmed on top of it.

322

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1UnaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1BinaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1TernaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1NaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1NaryOnePropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MixBinaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MixTernaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MixNaryOnePropagator.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskPropPat.html

LESS CONCISE ≡ [DOWNLOAD]

· · ·
class Less : public BinaryPropagator<Int::IntView,Int::PC_INT_BND> {

public:

Less(Home home, Int::IntView x0, Int::IntView x1)

: BinaryPropagator<Int::IntView,Int::PC_INT_BND>(home,x0,x1) {}

static ExecStatus post(Home home,

Int::IntView x0, Int::IntView x1) {

if (x0 == x1)

return ES_FAILED;

GECODE_ME_CHECK(x0.le(home,x1.max()));

GECODE_ME_CHECK(x1.gr(home,x0.min()));

if (x0.max() >= x1.min())

(void) new (home) Less(home,x0,x1);

return ES_OK;

}

Less(Space& home, Less& p)

: BinaryPropagator<Int::IntView,Int::PC_INT_BND>(home,p) {}

virtual Propagator* copy(Space& home) {

return new (home) Less(home,*this);

}

virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

GECODE_ME_CHECK(x0.le(home,x1.max()));

GECODE_ME_CHECK(x1.gr(home,x0.min()));

if (x0.max() < x1.min())

return home.ES_SUBSUMED(*this);

else

return ES_FIX;

}

};

void less(Home home, IntVar x0, IntVar x1) {

GECODE_POST;

GECODE_ES_FAIL(Less::post(home,x0,x1));

}

Figure 23.11: A concise constraint and propagator for less

323

https://www.gecode.org/doc/6.2.0/MPG/less-concise.cpp

Post macro. Please note that the constraint post function in Figure 23.11 use the macro
GECODE_POST to replace the check whether home is failed and the creation of an object of
type PostInfo as discussed in Section 23.5.

23.8 Propagator obligations

A propagator has to meet three different kinds of obligations: obligations towards the con-
straint it implements, obligations towards the amount of propagation it performs, and obli-
gations that are Gecode specific. Some obligations can be waived by notifying the Gecode
kernel that a propagator does not comply (see Section 23.9).

Constraint implementation. A propagator must be

correct A propagator must be correct in that it never prunes values that can appear in a
solution of the constraint it implements.

checking A propagator must be checking: at the very latest when all views are assigned, the
propagator must decide whether the assignment is a solution of the constraint or not
(in which case the propagator must report failure).

Amount of propagation. A propagator must be

contracting A propagator is only allowed to remove values. The modification operations we
have been discussing so-far naturally satisfy this property. For some operations that are
discussed in Section 26.2 extra carefulness is required.

monotonic By default, a propagator must be monotonic: a propagator is not allowed to
perform more pruning when executed for views with more values than when executed
for views with less values.

Propagators are typically monotonic unless they use randomization, approximation, or
something similar. For more details see below. This obligation can be waived.

subscription complete A propagator must create sufficient subscriptions such that it is
scheduled for execution when it is not at fixpoint.

fixpoint and subsumption honest A propagator is not allowed to claim that it has com-
puted a fixpoint or is subsumed if it is not (that is, it could still propagate).

Implementation specific obligations. A propagator must be

subsumption complete At the very latest, a propagator must report subsumption if all views
it has subscribed to are assigned.

324

external resource free By default, a propagator cannot allocate memory from any other
source (or any other resource) but its home space as the dispose() member function is
not automatically called when the propagator’s home space is deleted. This obligation
can be waived.

update complete All views a propagator subscribes to must be updated during cloning (that
is, a propagator can only subscribe to views it actually stores).

The reason for this obligation is that a space does not know its views (and variable
implementations). It only gets to know them during cloning when they are explicitly
updated. Having subscription information maintained by Gecode’s kernel without up-
dating the corresponding variable implementations will leave a space after cloning in
an inconsistent state (crashes are guaranteed).

cloning conservative When a propagator is copied during cloning, it is not allowed to per-
form any variable modification operations nor is it allowed to change its subscriptions.

subscription correct Any subscription to a view must eventually be canceled (typically in
the dispose() member function), unless the view is assigned.

23.9 Waiving obligations

A propagator can notify its home space about some of its properties (as defined by
ActorProperty, see Programming actors) that relate to some of the obligations mentioned
in the previous section.

Weakly monotonic propagators. If a propagator p intends to be non-monotonic, it can
notify its home space home by

home.notice(p,AP_WEAKLY);

It can revoke this notice later (it must revoke this at latest in its dispose() function) by

home.ignore(p,AP_WEAKLY);

This is typically done in the constructor of the propagator and means that the propagator
intends to be only weakly monotonic: it is sufficient for the propagator to be checking and
correct. For a discussion of weak monotonicity together with an example, see [55].

Currently, the information about a propagator being weakly monotonic is ignored.

Calling dispose() during space deletion. If a propagator p needs to use external re-
sources or non-space allocated memory, it must inform its home space during posting about
this fact by:

home.notice(p,AP_DISPOSE);

325

https://www.gecode.org/doc/6.2.0/reference/group__TaskActor.html

This will ensure that the dispose() function of the propagator p will be called when its home
space is deleted.

In its dispose function the propagator p must revoke this notice by

home.ignore(p,AP_DISPOSE);

For examples, see Section 27.2 and Section 20.4. In Chapter 31, memory management is
discussed in detail.

326

24 Avoiding execution

This chapter serves two purposes. First, it discusses techniques for avoiding propagator exe-
cution. Second, the examples used in this chapter introduce view arrays for propagators and
Boolean views.

Overview. Fixpoint reasoning as an important technique for avoiding propagator execu-
tion is discussed in detail in Section 24.1 (we already briefly touched on this subject in
Section 23.5). The following section (Section 24.2) presents an example propagator for
Boolean disjunction introducing Boolean variable views and view arrays for propagators with
arbitrarily many views. The Boolean disjunction propagator is used in Section 24.3 as an ex-
ample for dynamic subscriptions (a propagator only subscribes to a subset of its views and
the subscriptions change while the propagator is being executed) as another technique to
avoid propagator execution.

24.1 Fixpoint reasoning reconsidered

In this section, we develop a propagator for equality x = y that performs bounds reasoning
to further discuss how a propagator can do fixpoint reasoning. A stronger domain propagator
for equality is discussed in Chapter 26. Background information on fixpoint reasoning can
be found in [53, Section 4].

A naive propagator. The propagate() member function of an equality propagator Equal
is shown in Figure 24.1. The remaining functions are as to be expected.

The propagation rules implemented by Equal is that the values of both x0 and x1

must be greater or equal than std::max(x0.min(),x1.min()) and less or equal than
std::min(x0.max(),x1.max()). The above implementation follows these rules even
though it avoids the computation of std::min and std::max. Let us look to the adjustment
of the lower bounds of x0 and x1 (the upper bounds are analogous):

■ If x0.min()==x1.min(), nothing is pruned.

■ If x0.min()<x1.min(), then x0 is pruned.

■ If x0.min()>x1.min(), then x1 is pruned.

327

EQUAL NAIVE ≡ [DOWNLOAD]

· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_BND> {

public:

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

GECODE_ME_CHECK(x0.gq(home,x1.min()));

GECODE_ME_CHECK(x1.gq(home,x0.min()));

GECODE_ME_CHECK(x0.lq(home,x1.max()));

GECODE_ME_CHECK(x1.lq(home,x0.max()));

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else

return ES_NOFIX;

}

};

· · ·

Figure 24.1: A naive equality bounds propagator

As can be seen, the propagator does not perform any fixpoint reasoning, it always returns
ES_NOFIX (unless it is subsumed or failed).

The propagator might actually sometimes compute a fixpoint and sometimes not. Con-
sider x0 ∈ {1, 2, 3, 4} and x1 ∈ {0, 1, 2, 5}. Then Equal propagates that x0 ∈ {1, 2, 3, 4} and
x1 ∈ {1, 2} which happens to be not a fixpoint. The reason (which is common when perform-
ing bounds propagation) is that a bounds modification (here x1.lq(home,4)) has resulted
in an even smaller upper bound (or an even larger lower bound when the lower bound is
modified). In a way, the modification operation updating the bound fell into a hole in the
variable domain.

Reporting fixpoints. The above example shows that the equality propagator computes a
fixpoint if and only if, after propagation, x0.min()==x1.min() and x0.max()==x1.max().
Figure 24.2 shows the propagate() member function of an improved Equal propagator that
takes advantage of fixpoint reasoning.

An idempotent propagator. The previous propagator reports when it computes a fixpoint.
However, we can change any propagator so that it always computes a fixpoint. Propagators
which always compute a fixpoint (unless they are subsumed) are known as idempotent prop-
agators. The idea to turn an arbitrary propagator into an idempotent propagator is simple:
repeat propagation until it has computed a fixpoint. Figure 24.3 shows the propagate()

member function of an idempotent equality propagator.

328

https://www.gecode.org/doc/6.2.0/MPG/equal-naive.cpp

EQUAL ≡ [DOWNLOAD]

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

GECODE_ME_CHECK(x0.gq(home,x1.min()));

GECODE_ME_CHECK(x1.gq(home,x0.min()));

GECODE_ME_CHECK(x0.lq(home,x1.max()));

GECODE_ME_CHECK(x1.lq(home,x0.max()));

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else if ((x0.min() == x1.min()) &&

(x0.max() == x1.max()))

return ES_FIX;

else

return ES_NOFIX;

}

· · ·

Figure 24.2: An equality bounds propagator with fixpoint reasoning

EQUAL IDEMPOTENT ≡ [DOWNLOAD]

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

do {

GECODE_ME_CHECK(x0.gq(home,x1.min()));

GECODE_ME_CHECK(x1.gq(home,x0.min()));

} while (x0.min() != x1.min());

do {

GECODE_ME_CHECK(x0.lq(home,x1.max()));

GECODE_ME_CHECK(x1.lq(home,x0.max()));

} while (x0.max() != x1.max());

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else

return ES_FIX;

}

· · ·

Figure 24.3: An idempotent equality bounds propagator

329

https://www.gecode.org/doc/6.2.0/MPG/equal.cpp
https://www.gecode.org/doc/6.2.0/MPG/equal-idempotent.cpp

EQUAL IDEMPOTENT USING MODIFICATION EVENTS ≡ [DOWNLOAD]

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

bool nafp = true;

while (nafp) {

nafp = false;

ModEvent me = x0.gq(home,x1.min());

if (me_failed(me))

return ES_FAILED;

else if (me_modified(me))

nafp = true;

· · ·
}

· · ·
}

· · ·

Figure 24.4: An idempotent equality bounds propagator using modification events

The idempotent propagator always computes a fixpoint. That means that it does not
need to use the generic mechanisms provided by the Gecode kernel for scheduling and ex-
ecuting propagators in order to compute a fixpoint. Instead, a tight inner loop inside the
propagate() function computes the fixpoint. If the propagator is cheap (which it is in our
example) it might be better to make the propagator idempotent and hence avoid the over-
head of the Gecode kernel (even though the Gecode kernel is very efficient as it comes to
scheduling and executing propagators).

An idempotent propagator using modification events. The idempotent propagator
shown above tests a propagator-specific criterion to determine whether a fixpoint has been
computed. With the help of modification events there is a generic approach to computing a
fixpoint within the propagate() member function of a propagator. Figure 24.4 shows the
propagate() member function where the Boolean variable nafp (for: not at fixpoint) tracks
whether the propagator has computed a fixpoint. The function me_modified(me) checks
whether the modification event me does not signal failure or that the view did change (that
is, for integer views, me is different from Int::ME_INT_FAILED and Int::ME_INT_NONE).
Whenever a view is modified, nafp is accordingly set to true. The remaining modification
operations are omitted as they are analogous.

Tip 24.1 (Understanding ES_NOFIX). The above technique for making a propagator idem-
potent is based on the idea of repeating propagation until no more views are modified.

Unfortunately, we have seen (more than once) a similar but not very good idea in prop-
agators for finding out whether a propagator is at fixpoint. The idea can be sketched as

330

https://www.gecode.org/doc/6.2.0/MPG/equal-idempotent-using-modification-events.cpp

follows: record in a Boolean flag modified whether a modification operation actually modi-
fied a view during propagation. For our bounds equality propagator the idea can be sketched
as follows:

virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

bool modified = false;

ModEvent me = x0.gq(home,x1.min());

if (me_failed(me))

return ES_FAILED;

else if (me_modified(me))

modified = true;

· · ·
if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else

return modified ? ES_NOFIX : ES_FIX;

}

That means, if modified is true the propagator might not be at fixpoint and hence
ES_NOFIX is returned. This makes not much sense: ES_NOFIX means that a propagator is

not considered to be at fixpoint if it has modified a view! If no view has been modified the
propagator must be at fixpoint and just returning ES_NOFIX does the trick.

This not-so-hot idea can be summarized as: achieving nothing with quite some effort! ◭

For the equality constraint, checking the propagator-specific fixpoint condition is simple
enough. For more involved propagators, the generic approach using modification events
always works and is to be preferred. As the generic approach is so useful, a macro
GECODE_ME_CHECK_MODIFIED is available. With this macro, the loop insided the propagate()
function can be expressed as:

while (nafp) {

nafp = false;

GECODE_ME_CHECK_MODIFIED(nafp,x0.gq(home,x1.min()));

GECODE_ME_CHECK_MODIFIED(nafp,x1.gq(home,x0.min()));

GECODE_ME_CHECK_MODIFIED(nafp,x0.lq(home,x1.max()));

GECODE_ME_CHECK_MODIFIED(nafp,x1.lq(home,x0.max()));

}

24.2 A Boolean disjunction propagator

Before we demonstrate dynamic subscriptions in the next section, we discuss a propagator
for Boolean disjunction. The propagator is rather simple, but we use it as an example for
Boolean views, arrays of views, and several other aspects.

331

OR TRUE ≡ [DOWNLOAD]

· · ·
class OrTrue : public Propagator {

protected:

ViewArray<Int::BoolView> x;

public:

OrTrue(Home home, ViewArray<Int::BoolView>& y)

: Propagator(home), x(y) {

x.subscribe(home,*this,Int::PC_BOOL_VAL);

}

· · ·
◮ PROPAGATION

};

void dis(Home home, const BoolVarArgs& x, int n) {

if ((n != 0) && (n != 1))

throw Int::NotZeroOne("dis");

GECODE_POST;

if (n == 0) {

for (int i=x.size(); i--;)

GECODE_ME_FAIL(Int::BoolView(x[i]).zero(home));

} else {

ViewArray<Int::BoolView> y(home,x);

GECODE_ES_FAIL(OrTrue::post(home,y));

}

}

Figure 24.5: Naive Boolean disjunction

332

https://www.gecode.org/doc/6.2.0/MPG/or-true.cpp

Figure 24.5 shows the OrTrue propagator that propagates that an array of Boolean views
x is 1 (that is, the Boolean disjunction on x is true). That is, at least one of the views in
x must be 1. The propagator uses an array ViewArray of Boolean views (a ViewArray is
generic with respect to the views it stores). Similar to views, view arrays have subscribe()

and cancel() functions for subscriptions, where the operations are applied to all views in
the view array.

Tip 24.2 (View arrays also provide STL-style iterators). View arrays also support STL-style
(Standard Template Library) iterators, similar to other arrays provided by Gecode, see
Section 4.2.3. ◭

Constraint post function. The constraint post function dis() constrains the disjunction of
the Boolean variables in x to be equal to the integer n:

|x|−1∨

i=0

xi = n

The constraint post function checks that the value for n is legal. If n is neither 0 nor 1, the
constraint post function throws an exception. Here, we use an appropriate Gecode-defined
exception, but any exception of course works.

If n is 0, all variables in x must be 0 as well: rather than posting a propagator to do that,
we assign the views immediately in the constraint post function. Note that we have to get an
integer view to be able to assign x[i] to zero as only views provide modification operations.

Otherwise, a view array y is created (newly allocated in the space home) and its fields are
initialized to views that correspond to the respective integer variables in x. Then, posting the
OrTrue propagator is as expected.

A more general case of Boolean disjunction, where n is an integer variable instead of an
integer value is discussed in Section 27.3.

Propagation. Propagation for Boolean disjunction is straightforward: first, all views are
inspected whether they are assigned to 1 (in which case the propagator is subsumed) or to 0

(in which case the assigned view is eliminated from the view array). If no views remain, the
propagator is failed. If a single (by elimination, an unassigned view) remains, it is assigned
to 1. This can be implemented as shown in Figure 24.6.

The operation x.move_lst(i) of a view array x moves the last element of x to position
i and shrinks the array by one element. Shrinking from the end is in particular simple if
the array elements are iterated backwards as in our example. The class ViewArray provides
several operations to shrink view arrays. Note that x.move_lst(i) requires that the view
at position i is actually assigned or has no subscription, otherwise the subscription for x[i]
needs to be canceled before x[i] is overwritten. View arrays also provide operations for
simultaneously moving elements and canceling subscriptions.

Tip 24.3 (View arrays have non-copying copy constructors). The constructor for posting in
Figure 24.5 uses the copy constructor of ViewArray to initialize the member x. The copy

333

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewArray.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewArray.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewArray.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewArray.html

PROPAGATION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

for (int i=x.size(); i--;)

if (x[i].one())

return home.ES_SUBSUMED(*this);

else if (x[i].zero())

x.move_lst(i);

if (x.size() == 0)

return ES_FAILED;

if (x.size() == 1) {

GECODE_ME_CHECK(x[0].one(home));

return home.ES_SUBSUMED(*this);

}

return ES_FIX;

}

Figure 24.6: Propagation for naive Boolean disjunction

constructor does not copy a view array. Instead, after its execution both original and copy
have shared access to the same views. ◭

Using propagator patterns. How to use a propagator pattern with an array of views is
shown in Figure 24.7 for Boolean disjunction.

Boolean views. A Boolean view Int::BoolView provides operations for testing whether it
is assigned to 1 (one()) or 0 (zero()), or whether it is not assigned yet (none()). As mod-
ification operations Boolean views offer one(home) and zero(home). Also, Boolean views
only support PC_BOOL_NONE and PC_BOOL_VAL as propagation conditions and ME_BOOL_NONE,
ME_BOOL_FAILED, and ME_BOOL_VAL as modification events.

Boolean views (variables and variable implementations likewise) are not related to inte-
ger views by design: the very point is that Boolean variable implementations have a specially
optimized implementation that is in fact not related to the implementation of integer vari-
ables.

Boolean views also implement all operations that integer views implement and integer
propagation conditions can also be used with Boolean views. PC_INT_DOM, PC_INT_BND, and
PC_INT_VAL are mapped to the single Boolean propagation condition PC_BOOL_VAL. Having
the same interface for integer and Boolean views is essential: Section 28.3 shows how integer
propagators can be reused as Boolean propagators without requiring any modification.

334

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1BoolView.html

OR TRUE CONCISE ≡ [DOWNLOAD]

· · ·
class OrTrue :

public NaryPropagator<Int::BoolView,Int::PC_BOOL_VAL> {

public:

OrTrue(Home home, ViewArray<Int::BoolView>& x)

: NaryPropagator<Int::BoolView,Int::PC_BOOL_VAL>(home,x) {}

· · ·
OrTrue(Space& home, OrTrue& p)

: NaryPropagator<Int::BoolView,Int::PC_BOOL_VAL>(home,p) {}

· · ·
};

· · ·

Figure 24.7: Naive Boolean disjunction using a propagator pattern

24.3 Dynamic subscriptions

The previous section has been nothing but a warm-up to the presentation of dynamic sub-
scriptions as another technique to avoid propagator execution.

Watched literals. The naive propagator presented above is disastrous: every time the prop-
agator is executed, it checks all of its views to determine whether a view has been assigned
to 0 or 1. Worse yet, pretty much all of the propagator executions are entirely pointless for
propagation (but not for determining subsumption as is discussed below).

One idea would be to only check until two unassigned views have been encountered. In
this case, it is clear that the propagator cannot perform any propagation. Of course, this
might prevent the propagator from detecting subsumption as early as possible: as it does not
scan all views but stops scanning after two unassigned views, it might miss out on a view
already assigned to 1.

The idea to stop scanning after two unassigned views have been encountered can be
taken even further. A well-known technique for the efficient implementation of Boolean SAT
(satisfiability) solvers are watched literals [40]: it is sufficient to subscribe to two Boolean
views for propagating a Boolean disjunction to be satisfied. Subscribing to a single Boolean
view is not enough: if all views but the subscription view are assigned to 0 the subscription
view must be assigned to 1 to perform propagation, however the propagator will not be
scheduled as the single subscription view is not assigned. More than two subscriptions are
not needed for propagation, as the propagator can only propagate if a single unassigned
view remains. It might be the case that a view to which the propagator has not subscribed is
assigned to 1. That means that the propagator is not subsumed as early as possible but that
does not affect propagation.

335

https://www.gecode.org/doc/6.2.0/MPG/or-true-concise.cpp

OR TRUE WITH DYNAMIC SUBSCRIPTIONS ≡ [DOWNLOAD]

· · ·
class OrTrue :

public BinaryPropagator<Int::BoolView,Int::PC_BOOL_VAL> {

protected:

ViewArray<Int::BoolView> x;

public:

OrTrue(Home home, ViewArray<Int::BoolView>& y)

: BinaryPropagator<Int::BoolView,Int::PC_BOOL_VAL>

(home,y[0],y[1]), x(y) {

x.drop_fst(2);

}

· · ·
virtual size_t dispose(Space& home) {

(void) BinaryPropagator<Int::BoolView,Int::PC_BOOL_VAL>

::dispose(home);

return sizeof(*this);

}

· · ·
◮ COPY

◮ RESUBSCRIBE

◮ PROPAGATION

};

· · ·

Figure 24.8: Boolean disjunction with dynamic subscriptions

336

https://www.gecode.org/doc/6.2.0/MPG/or-true-with-dynamic-subscriptions.cpp

The propagator. The propagator using dynamic subscriptions maintains exactly two sub-
scriptions to its Boolean views. Figure 24.8 shows the OrTrue propagator with dynamic
subscriptions. It inherits from the BinaryPropagator pattern and the views x0 and x1 of the
pattern are exactly the two views with subscriptions. All remaining views without subscrip-
tions are stored in the view array x. The operation drop_fst(n) for an integer n drops the
first n elements of a view array and shortens the array by n elements accordingly (that is,
drop_fst() is dual to drop_lst() as used in the previous section). Note that the propaga-
tor must define a dispose() member function: this is needed not because dispose() must
cancel additional subscriptions (the very point is that x has no subscriptions) but that it must
return the correct size of OrTrue.

Tip 24.4 (drop_fst() and drop_lst() are efficient). Due to the very special memory allo-
cation policy used for view arrays (their memory is allocated in a space and is never freed
as they only can shrink, see Chapter 31), both drop_fst() and drop_lst() have constant
time complexity. ◭

Propagation. The idea of how to perform propagation is fairly simple: if one of the views
with subscriptions is assigned to 1, the propagator is subsumed. If one of the subscription
views is assigned to 0, say x0, a function resubscribe() tries to find a yet unassigned view
to subscribe to it and store it as x0. If there is no such view but there is a view assigned to 1,
the propagator is subsumed. If there is no such view, then the propagator tries to assign 1 to
x1, and, if successful, the propagator is also subsumed. The implementation is as follows:

PROPAGATION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (x0.one() || x1.one())

return home.ES_SUBSUMED(*this);

if (x0.zero())

GECODE_ES_CHECK(resubscribe(home,x0,x1));

if (x1.zero())

GECODE_ES_CHECK(resubscribe(home,x1,x0));

return ES_FIX;

}

Resubscribing. The function resubscribe() implements the search for a yet unassigned
view for subscription and is shown in Figure 24.9.

Copying. The assigned views in x do not really matter much: all views assigned to 0 can be
discarded. If there is a view assigned to 1 all other views can be discarded (of course, a single
view assigned to 1 must be kept for correctness). Hence a good idea for copying is: copy only
those views that still matter. This leads to a smaller view array requiring less memory. We
decide to discard assigned views as much as we can in the copy() function rather than in
the constructor used for copying. By this, also the original and not only the copy profits

337

RESUBSCRIBE ≡
ExecStatus resubscribe(Space& home,

Int::BoolView& y, Int::BoolView z) {

for (int i=x.size(); i--;)

if (x[i].one()) {

return home.ES_SUBSUMED(*this);

} else if (x[i].zero()) {

x.move_lst(i);

} else {

y=x[i]; x.move_lst(i);

y.subscribe(home,*this,Int::PC_BOOL_VAL);

return ES_FIX;

}

GECODE_ME_CHECK(z.one(home));

return home.ES_SUBSUMED(*this);

}

Figure 24.9: Resubscribing for Boolean disjunction with dynamic subscriptions

from fewer views. While the copy benefits because there are less views to be stored, the
original propagator benefits because resubscribe() does not have to scan assigned views
as they already have been eliminated. Following this discussion, the copy() function can be
implemented as:

COPY ≡
virtual Propagator* copy(Space& home) {

for (int i=x.size(); i--;)

if (x[i].one()) {

x[0]=x[i]; x.size(1); break;

} else if (x[i].zero()) {

x.move_lst(i);

}

return new (home) OrTrue(home,*this);

}

There is another optimization during copying that looks promising. If all views in x are
eliminated, a propagator without the view array x is sufficient as a copy. If there is a view as-
signed to 1, then a propagator should be created that is subsumed. How this can be achieved
is discussed in Section 25.5.

338

25 Reification and
rewriting

This chapter discusses how to implement propagators for reified constraints and how to op-
timize constraint propagation by propagator rewriting. Gecode does not offer any special
support for reification but uses propagator rewriting as a more general technique.

Overview. Reified constraints and how they can be propagated is reviewed in Section 25.1.
The following section (Section 25.2) presents a reified less or equal propagator as an exam-
ple. How to implement both half and full reification is discussed in the following section.
General propagator rewriting during constraint propagation is discussed in Section 25.4,
whereas Section 25.5 presents how to rewrite propagators during cloning.

25.1 Reification

Before reading this section, please read about reification in Section 4.3.3 and about half
reification in Section 4.3.4.

A propagator for the reified constraint b = 1⇔ c for a Boolean control variable b propa-
gates as follows:

1. If b is 1, propagate c (reification modes: RM_EQV⇔, RM_IMP⇒).

2. If b is 0, propagate ¬c (reification modes: RM_EQV⇔, RM_PMI ⇐). Not that it is not
always easy to propagate the negation of a constraint c effectively and efficiently.

3. If c is subsumed, propagate that b is 1 (reification modes: RM_EQV⇔, RM_PMI⇐).

4. If ¬c is subsumed, propagate that b is 0 (reification modes: RM_EQV⇔, RM_IMP⇒).

The idea how to implement reification in Gecode is quite simple: if the first (or second)
case is true, the reified propagator implementing the reified constraint rewrites itself into
a propagator for c (or ¬c). The remaining two cases are nothing but testing criteria for
subsumption.

The advantage of rewriting a reified propagator for b = 1⇔ c into a non-reified propa-
gator for c or ¬c is that the propagators created by rewriting are typically available anyway,
and that after rewriting no more overhead for reification is incurred.

339

25.2 A fully reified less or equal propagator

We will discuss a fully reified less or equal propagator b= 1⇔ x≤ y for integer variables x
and y using full reification (that is, reification mode RM_EQV⇔) as an example. Taking the
above propagation rules for a reified constraint, we obtain:

1. If b is 1, propagate x≤ y.

2. If b is 0, propagate x> y (actually, we choose to propagate y< x instead).

3. If x≤ y is subsumed, propagate that b is 1.

4. If x> y is subsumed, propagate that b is 0.

5. If none of the above rules apply, the propagator is at fixpoint.

The propagator ReLeEq for reified less or equal relies on propagators Less for less and
LeEq for less or equal (the propagators are not shown, see Section 23.7 instead). The
propagate() function as shown in Figure 25.1 follows the propagation rules sketched above.

Propagator rewriting. The GECODE_REWRITE macro takes the propagator (here, *this) to
be rewritten and an expression that posts the new propagator as arguments. It relies on
the fact that the identifier home refers to the current home space (like the fail macros in
Section 23.5). The macro expands to something along the following lines:

size_t s = this->dispose(home);

GECODE_ES_CHECK(LeEq::post(home(*this),x0,x1));

return home.ES_SUBSUMED_DISPOSED(*this,s);

That is, the ReLeEq propagator is disposed, the new LeEq propagator is posted, and sub-
sumption is reported. The order is essential for performance: by first disposing ReLeEq, the
data structures that store the subscriptions for x0 and x1 will have at least one free slot for
the subscriptions that are created by posting LeEq and hence avoid (rather inefficient and
memory consuming) resizing. Note that it is important to understand that the old propaga-
tor is disposed before the new propagator is posted. In case that some data structures that
are deleted during disposal are needed for posting, one either has to make sure that the data
structures outlive the call to dispose() or that one does not use the GECODE_REWRITE macro
but first posts the new propagator and only then reports subsumption.

Another essential part is that after calling ES_SUBSUMED(), a propagator is not allowed to
do anything that can schedule propagators (such as performing modification operations or
creating subscriptions). That is the reason that first dispose() is called and later the special
variant ES_SUBSUMED_DISPOSED() is used for actually reporting subsumption. Do not use
ES_SUBSUMED_DISPOSED() unless you really, really have to!

340

LESS OR EQUAL REIFIED FULL ≡ [DOWNLOAD]

· · ·
class Less

· · ·
};

class LeEq

· · ·
};

class ReLeEq

: public Int::ReBinaryPropagator<Int::IntView,Int::PC_INT_BND,

Int::BoolView> {

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (b.one())

GECODE_REWRITE(*this,LeEq::post(home(*this),x0,x1));

if (b.zero())

GECODE_REWRITE(*this,Less::post(home(*this),x1,x0));

switch (Int::rtest_lq(x0,x1)) {

case Int::RT_TRUE:

GECODE_ME_CHECK(b.one(home)); break;

case Int::RT_FALSE:

GECODE_ME_CHECK(b.zero(home)); break;

case Int::RT_MAYBE:

return ES_FIX;

}

return home.ES_SUBSUMED(*this);

}

};

· · ·

Figure 25.1: A constraint and propagator for fully reified less or equal

341

https://www.gecode.org/doc/6.2.0/MPG/less-or-equal-reified-full.cpp

Adding information to Home. As has been discussed in Tip 2.1 and Section 23.5, post-
ing uses a value of class Home instead of a reference to a Space. In the expansion of
GECODE_REWRITE as shown above, the call operator () as in

home(*this)

returns a new value of type Home with the additional information added that the propagator
to be posted is in fact a rewrite of the propagator *this. This information is important, for
example, for inheriting the AFC (accumulated failure count, see Section 8.5.2): the newly
created propagator will inherit the number of accumulated failures from the propagator being
rewritten. There will be other applications of Home in future versions of Gecode.

Testing relations between views. Rather than testing whether x0 ≤ x1 or x0 > x1

hold individually, we use the function Int::rtest_lq() that tests whether two views
are less or equal and returns whether the relation holds (Int::RT_TRUE), does not hold
(Int::RT_FALSE), or might hold or not (Int::RT_MAYBE).

Relation tests are available for two views (integer or Boolean) or for a view (again, integer
or Boolean) and an integer. Relation tests exist for all inequality relations: Int::rtest_le()
(for <), Int::rtest_lq() (for ≤), Int::rtest_gr() (for >), and Int::rtest_gq()

(for ≥). For equality, a bounds test (Int::rtest_eq_bnd()) as well as a domain test ex-
ists (Int::rtest_eq_dom()).

While Int::rtest_eq_bnd() only uses the bounds for testing the relation (with constant
time complexity), Int::rtest_eq_dom() uses the full set of values in the domain of the views
to determine the relation (having linear time complexity in the length of the range represen-
tation of the views’ domains, see Section 26.2 for more information on range representations
of view domains). The same holds true for disequality: Int::rtest_nq_bnd() performs the
bounds-only test, whereas Int::rtest_nq_dom() performs the full domain test. For exam-
ple, Int::rtest_eq_bnd(x,y) for x ∈ {0, 2} and y ∈ {1, 3} returns Int::RT_MAYBE, whereas
Int::rtest_eq_dom() returns Int::RT_FALSE.

Reified propagator patterns. The integer module (as these patterns require Boolean views
they are part of the integer module) provides reified propagator patterns for unary propaga-
tors (Int::ReUnaryPropagator) and binary propagators (Int::ReBinaryPropagator and
Int::ReMixBinaryPropagator). In addition to views x0 (and x1 for the binary variants),
they define a Boolean control variable b. Please note that in Figure 25.1 a reified propaga-
tor pattern requires an additional template argument for the Boolean control view used (the
mystery why this is useful is lifted in Chapter 28).

25.3 Supporting both full and half reification

There are two different options for implementing all different reification modes: either im-
plement a single propagator that stores its reification mode, or implement three different

342

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Home.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ReUnaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ReBinaryPropagator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ReMixBinaryPropagator.html

LESS OR EQUAL REIFIED HALF ≡ [DOWNLOAD]

· · ·
template<ReifyMode rm>

class ReLeEq

: public Int::ReBinaryPropagator<Int::IntView,Int::PC_INT_BND,

Int::BoolView> {

· · ·
◮ PROPAGATE FUNCTION

};

void leeq(Home home, IntVar x0, IntVar x1, Reify r) {

GECODE_POST;

switch (r.mode()) {

case RM_EQV:

GECODE_ES_FAIL(ReLeEq<RM_EQV>::post(home,x0,x1,r.var()));

break;

case RM_IMP:

GECODE_ES_FAIL(ReLeEq<RM_IMP>::post(home,x0,x1,r.var()));

break;

case RM_PMI:

GECODE_ES_FAIL(ReLeEq<RM_PMI>::post(home,x0,x1,r.var()));

break;

default:

throw Int::UnknownReifyMode("leeq");

}

}

Figure 25.2: A constraint and propagator for full and half reified less or equal

propagators, one for each reification mode. Due to performance reasons we choose the lat-
ter variant here. That is, one needs one propagator for each reification mode: RM_EQV for
equivalence (⇔), RM_IMP for implication (⇒), and RM_PMI for reverse implication (⇐). In-
stead of three different implementations it is better to have a single implementation that is
parametric with respect to the reification mode.

Figure 25.2 shows the constraint post function leeq() for the reified less or equal propa-
gator supporting all three reification modes. The class ReLeEq now is parametric with respect
to the reification mode the propagator implements. The constraint post function now posts
the propagator that corresponds to the reification mode (available via r.mode()) passed as
argument r of type Reify. The Boolean control variable can be returned by r.var().

The idea for the reified propagator is straightforward, its propagate() function is shown
in Figure 25.3: the four different parts of the propagator are employed depending on the
reification mode rm. Note that this is entirely schematic and any reified propagator can be

343

https://www.gecode.org/doc/6.2.0/MPG/less-or-equal-reified-half.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Reify.html

PROPAGATE FUNCTION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (b.one()) {

if (rm != RM_PMI)

GECODE_REWRITE(*this,LeEq::post(home(*this),x0,x1));

} else if (b.zero()) {

if (rm != RM_IMP)

GECODE_REWRITE(*this,Less::post(home(*this),x1,x0));

} else {

switch (Int::rtest_lq(x0,x1)) {

case Int::RT_TRUE:

if (rm != RM_IMP)

GECODE_ME_CHECK(b.one(home));

break;

case Int::RT_FALSE:

if (rm != RM_PMI)

GECODE_ME_CHECK(b.zero(home));

break;

case Int::RT_MAYBE:

return ES_FIX;

}

}

return home.ES_SUBSUMED(*this);

}

Figure 25.3: Propagate function for full and half reified less or equal

344

programmed supporting all reification modes in that way.

25.4 Rewriting during propagation

Rewriting during propagation is a useful technique that is not limited to implementing reifi-
cation. We consider a Max propagator that propagates max(x0,x1) = x2. The propagation
rules (we are giving bounds propagation rules that achieve bounds(Z) consistency, see [11])
for Max are easy to understand when looking at an equivalent formulation of max [52]:

max(x0,x1) = x2 ⇐⇒ (x0 ≤ x2)∧ (x1 ≤ x2)∧ ((x0 = x2)∨ (x1 = x2))

⇐⇒ (x0 ≤ x2)∧ (x1 ≤ x2)∧ ((x0 ≥ x2)∨ (x1 ≥ x2))

Then, the propagation rules can be turned into the following C++-code to be executed by
the propagate() member function of Max:

GECODE_ME_CHECK(x2.lq(home,std::max(x0.max(),x1.max())));

GECODE_ME_CHECK(x2.gq(home,std::max(x0.min(),x1.min())));

GECODE_ME_CHECK(x0.lq(home,x2.max()));

GECODE_ME_CHECK(x1.lq(home,x2.max()));

if ((x1.max() <= x0.min()) ||

(x1.max() < x2.min()))

GECODE_ME_CHECK(x0.gq(home,x2.min()));

if ((x0.max() <= x1.min()) ||

(x0.max() < x2.min()))

GECODE_ME_CHECK(x1.gq(home,x2.min()));

Please take a second look: the condition of the first if-statement tests whether x1 is less
or equal than x0, or whether x1 is less than x2. In both cases, max(x0,x1) = x2 simplifies to
x0 = x2. Exactly this simplification can be implemented by propagator rewriting, please check
Figure 25.4. Note that the propagator is naive in that it does not implement the propagator
to be idempotent (however, this can be done exactly as demonstrated in Section 24.1).

Another idea would be to perform rewriting during cloning: the copy() function could
return an Equal propagator rather than a Max propagator in the cases where rewriting is
possible. However, this is illegal: it would create a propagator with only two views, hence
one view would not be updated even though there is a subscription for it (violating obliga-
tion “update complete” from Section 23.8). Also, canceling a subscription is illegal during
cloning (violating obligation “cloning conservative” from Section 23.8). The next section
shows an example with opposite properties: rewriting during propagation makes no sense
(even though it would be legal) whereas rewriting during cloning is legal and useful.

345

MAX USING REWRITING ≡ [DOWNLOAD]

· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_BND> {

· · ·
};

class Max : public TernaryPropagator<Int::IntView,Int::PC_INT_BND> {

public:

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

GECODE_ME_CHECK(x2.lq(home,std::max(x0.max(),x1.max())));

GECODE_ME_CHECK(x2.gq(home,std::max(x0.min(),x1.min())));

GECODE_ME_CHECK(x0.lq(home,x2.max()));

GECODE_ME_CHECK(x1.lq(home,x2.max()));

if ((x1.max() <= x0.min()) || (x1.max() < x2.min()))

GECODE_REWRITE(*this,Equal::post(home(*this),x0,x2));

if ((x0.max() <= x1.min()) || (x0.max() < x2.min()))

GECODE_REWRITE(*this,Equal::post(home(*this),x1,x2));

if (x0.assigned() && x1.assigned() && x2.assigned())

return home.ES_SUBSUMED(*this);

else

return ES_NOFIX;

}

};

· · ·

Figure 25.4: A maximum propagator using rewriting

346

https://www.gecode.org/doc/6.2.0/MPG/max-using-rewriting.cpp

25.5 Rewriting during cloning

In Section 24.3, the propagator OrTrue is simplified during copying by eliminating assigned
views. Here we show that the propagator created as a copy during cloning can be optimized
further by rewriting it during copying.

Copying. The modified copy() function is as follows:

COPY ≡
virtual Propagator* copy(Space& home) {

for (int i=x.size(); i--;)

if (x[i].one()) {

x[0]=x[i]; x.size(1);

return new (home) SubsumedOrTrue(home,*this);

} else if (x[i].zero()) {

x.move_lst(i);

}

if (x.size() == 0)

return new (home) BinaryOrTrue(home,*this);

else

return new (home) OrTrue(home,*this);

}

The copy() function takes advantage of two cases:

1. If there is a view that is assigned to 1, the propagator is subsumed. However, during
cloning a propagator cannot be deleted by subsumption. Reporting subsumption is
only possible during propagation. The copy() function does the next best thing: it
creates a propagator SubsumedOrTrue that next time it is executed will in fact report
subsumption.

Note that in this situation rewriting during cloning is preferable to rewriting during
propagation. An important aspect of the OrTrue propagator is that it does not in-
spect all of its views during finding a view for resubscribing (as implemented by the
resubscribe() member function). Instead, inspection stops as soon as the first unas-
signed view is found. That entails that a view that is assigned to 1 might be missed
during propagation. In other words, rewriting during cloning also optimizes subsump-
tion detection.

2. If all views in the view array x are assigned to 0, the view array is actually not longer
needed (it has no elements). In this case, the copy() function creates a propagator
BinaryOrTrue that is a special variant of OrTrue limited to just two views. Note that the
two views x0 and x1 are known to be not yet assigned: otherwise, the propagator would
not be at fixpoint. This is impossible as only spaces that are at fixpoint (and hence all

347

OR TRUE USING REWRITING ≡ [DOWNLOAD]

· · ·
class BinaryOrTrue :

· · ·
BinaryOrTrue(Space& home,

BinaryPropagator<Int::BoolView,Int::PC_BOOL_VAL>& p)

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (x0.zero())

GECODE_ME_CHECK(x1.one(home));

if (x1.zero())

GECODE_ME_CHECK(x0.one(home));

return home.ES_SUBSUMED(*this);

}

};

class SubsumedOrTrue :

· · ·
SubsumedOrTrue(Space& home,

BinaryPropagator<Int::BoolView,Int::PC_BOOL_VAL>& p)

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

return home.ES_SUBSUMED(*this);

}

};

class OrTrue :

· · ·
◮ COPY

· · ·
};

· · ·

Figure 25.5: A Boolean disjunction propagator using rewriting

348

https://www.gecode.org/doc/6.2.0/MPG/or-true-using-rewriting.cpp

of its propagators must be at fixpoint) can be cloned (this invariant is discussed in
Section 41.1).

Rewriting during propagation would be entirely pointless in this situation: the propa-
gator (be it OrTrue or BinaryOrTrue) will be executed at most one more time and will
become subsumed then (or, due to failure, it is not executed at all). As rewriting incurs
the cost of creating and disposing propagators and subscriptions, rewriting in this case
would actually slow down execution.

Constructors for copying. The relevant parts of the two special propagators for rewriting
SubsumedOrTrue and BinaryOrTrue are shown in Figure 25.5. Their propagate() func-
tions are exactly as sketched above. The only other non-obvious aspect are the construc-
tors used for copying during cloning: they are now called for a propagator of class OrTrue.
In this example, it is sufficient to have a single constructor for copying as all the propaga-
tors OrTrue, SubsumedOrTrue, and BinaryOrTrue inherit from BinaryPropagator. In other
cases, it might be necessary to have more than a single constructor for copying defined by a
propagator class C: one for copying a propagator of class C and one for creating propagators
as rewrites of other propagators.

349

350

26 Domain propagation

The propagators in previous chapters use simple modification operations on variable views
in that only a single integer defines how a view’s domain is changed. When programming
propagators that perform more elaborate domain reasoning, these modification operations
are typically insufficient as they easily lead to incorrect and inefficient propagators.

To conveniently program efficient propagators that perform domain reasoning, Gecode
offers modification operations that take entire sets of integers as arguments. To be efficient,
these sets are not implemented as a typical set data structure but as iterators: the integers
(or entire ranges of integers) can be iterated in increasing order (smallest first).

Overview. This chapters motivates why special domain operations on variable views are
needed (Section 26.1) and demonstrates how iterators are used for domain propagation
(Section 26.2 and Section 26.3). Section 26.4 and Section 26.5 describe modification event
deltas and staging for efficiently combining bounds with domain propagation.

26.1 Why domain operations are needed

Let us consider an attempt to implement domain propagation for an equality constraint on
views x0 and x1. The idea for pruning is simple: only keep those values of x0 and x1 that
are common to the domains of both x0 and x1. This leads to a first version of a domain
equality propagator as shown in Figure 26.1. Beware, the “propagator” is not only naive but
also incorrect: it will crash Gecode!

The propagator uses iterators of type Int::ViewValues to iterate over the values of an
integer view in increasing order (the template argument defines the type of the view to iterate
on). The increment operator ++ moves the iterator to the next value, the application operator
() tests whether the iterator has more values to iterate, and the function val() returns the
iterator’s current value. The reason why the propagator will crash is simple: it uses the
iterator i for iterating over the values of x0 and modifies the domain of x0 while iterating!
This is illegal: when using an iterator for a view, the view cannot be modified (or, in C++

lingua: modifying the variable invalidates the iterator).

One idea how to fix this problem is to use a temporary data structure in which the newly
computed intersection domain is stored. That is not very tempting: allocating and initializing
an intermediate data structure is costly.

351

INCORRECT DOMAIN EQUAL ≡
· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_DOM> {

public:

Equal(Home home, Int::IntView x0, Int::IntView x1)

: BinaryPropagator<Int::IntView,Int::PC_INT_DOM>(home,x0,x1) {}

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

Int::ViewValues<Int::IntView> i(x0), j(x1);

while (i() && j())

if (i.val() < j.val()) {

GECODE_ME_CHECK(x1.nq(home,i.val())); ++i;

} else if (j.val() < i.val()) {

GECODE_ME_CHECK(x0.nq(home,j.val())); ++j;

} else {

++i; ++j;

}

while (i()) {

GECODE_ME_CHECK(x1.nq(home,i.val())); ++i;

}

while (j()) {

GECODE_ME_CHECK(x0.nq(home,j.val())); ++j;

}

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else

return ES_FIX;

}

};

· · ·

Figure 26.1: An incorrect propagator for domain equal

352

NAIVE DOMAIN EQUAL ≡ [DOWNLOAD]

· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_DOM> {

· · ·
virtual PropCost cost(const Space&, const ModEventDelta&) const {

return PropCost::binary(PropCost::HI);

}

virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

Int::ViewRanges<Int::IntView> r0(x0);

GECODE_ME_CHECK(x1.inter_r(home,r0));

Int::ViewRanges<Int::IntView> r1(x1);

GECODE_ME_CHECK(x0.narrow_r(home,r1));

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

else

return ES_FIX;

}

};

· · ·

Figure 26.2: A naive propagator for domain equal

But even then, the approach is flawed from the beginning: a single nq() operation on a
view has linear runtime in the size of the view’s domain (actually, in the length of its range
sequence, see below). As potentially a linear number of nq() operations are executed, the
propagator will have quadratic complexity even though it should have linear (as the values
of the domains are available in strictly increasing order).

26.2 Iterator-based modification operations

Figure 26.2 shows a working, yet still naive, implementation of an equality propagator per-
forming domain reasoning. Note that the cost() function is overridden: even though the
propagator is binary, it now incurs a higher cost due to the domain operations to be per-
formed. The propagate() function uses two range iterators for iterating over the range se-
quence of the domains of x0 and x1. For the definition of a range sequence, see Section 4.1.6.

A range iterator for a range sequence s = 〈[ni .. mi]〉ki=0
is an object that provides iteration

over s: each of the [mi .. ni] can be obtained in sequential order but only one at a time. A
range iterator provides the following operations: the application operator () tests whether
there are more ranges to iterate, the increment operator ++ moves to the next range, the
function min() (max()) returns the smallest (largest) value of the current range, and the
function width() returns the width of the current range (that is, its number of elements) as

353

https://www.gecode.org/doc/6.2.0/MPG/naive-domain-equal.cpp

an unsigned integer.

The motivation to iterate over range sequences rather than individual values is efficiency:
as there are typically less ranges than indvidual values, iteration over ranges can be more
efficient. Moreover, many operations are sufficiently easy to express in terms of ranges rather
than values (see Section 26.3 for an example).

Iterator-based modification operations. The propagator uses two modification opera-
tions for range iterators: x1.inter_r() intersects the current domain of x1 with the set
defined by the range iterator r0 for x0. After this operation (provided no failure occurred),
the view x1 has the correct domain: the intersection of the domains of x0 and x1. The op-
eration x0.narrow_r() replaces the current domain of x0 by the set defined by the range
iterator r1 (which iterates the intersection of the domains of x0 and x1).

A third operation available for range iterators is minus_r() which removes the values as
described by the range iterator passed as argument.

Instead of using range iterators for modification operations, one can also use value itera-
tors instead. Similarly, a view provides operations inter_v(), narrow_v(), and minus_v()

for intersecting, replacing, and removing values.

Tip 26.1 (Narrow is dangerous). The narrow_r() operation used in the above example is
dangerous (as is the narrow_v() operation). As discussed in Section 23.8, a propagator must
be contracting: the domain of a view is only allowed to get smaller. If narrow_r() is used
incorrectly, then one could actually replace the view’s domain by a larger domain.

In the above example, the propagator is contracting: r1 refers to the intersection of x0
and x1, which of course has no more values than x0. ◭

Tip 26.2 (Iterators must be increasing). The range sequence iterated by a range iterator must

be sorted in increasing order and must not overlap as described above. Otherwise, domain
operations using range iterators become incorrect.

For value iterators, the values must be increasing in value with iteration. But it is okay
if the same value is iterated over multiply. That is, the values must be increasing but not
necessarily strictly increasing. ◭

Avoiding shared iterators. The problem that made our attempt to implement propaga-
tion for equality in Section 26.1 incorrect is to use iterators for iterating over views that are
simultaneously modified.

Iterator-based modification operations automatically take care of potential sharing be-
tween the iterator they use and the view domain they update. By default, an iterator-based
modification operation assumes that iterator and domain are shared. The operation first
constructs a new domain and iterates to the end of the iterator. Only then the old domain
is replaced by the newly constructed domain. In many cases, however, there is no shar-
ing between iterator and domain and the operations could be performed more efficiently by
in-place update operations on the domain.

354

NON-SHARED DOMAIN EQUAL ≡ [DOWNLOAD]

· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_DOM> {

· · ·
static ExecStatus post(Home home,

Int::IntView x0, Int::IntView x1) {

if (x0 != x1)

(void) new (home) Equal(home,x0,x1);

return ES_OK;

}

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

Int::ViewRanges<Int::IntView> r0(x0);

GECODE_ME_CHECK(x1.inter_r(home,r0,false));

Int::ViewRanges<Int::IntView> r1(x1);

GECODE_ME_CHECK(x0.narrow_r(home,r1,false));

· · ·
}

};

· · ·

Figure 26.3: A propagator for domain equal without sharing

355

https://www.gecode.org/doc/6.2.0/MPG/non-shared-domain-equal.cpp

In our example, there is no sharing if the views x0 and x1 do not refer to the very same
variable implementation. If they do, the propagator should not even be posted as it is sub-
sumed anyway (views of the same type referring to the same variable implementation are
trivially equal). Figure 26.3 shows the propagator post function of an improved propagator
for equality: the propagator is posted only if x0 and x1 do not refer to the same variable
implementation. The propagate() function is improved by giving an additional false ar-
gument to both inter_r() and narrow_r(). Hence, the two operations use more efficient
operations performing in-place updates on domains.

26.3 Taking advantage of iterators

This section shows how the combination of simple iterators can help in implementing domain
propagation.

Suppose that we want to implement a close variant of the equality constraint, namely
x = y + c for integer variables x and y and some integer value c. It is easy to see that the
new domain for x must be all values of x intersected with the values {n+c | n ∈ y}. Likewise,
the new domain for y must be all values of y intersected with the values {n− c | n ∈ x}. But
how can we implement these simple propagation rules?

Mapping range sequences. Assume a range sequence 〈[mi .. ni]〉ki=0
for the values in the

domain of y . Then, what we want to compute is a range sequence

〈[mi + c .. ni + c]〉k
i=0

.

With other words, we want to map the first into the second range sequence. Luckily, this
is easy. Suppose that r is a range iterator for the view y. A range iterator for our desired
range sequence can be constructed using the Iter::Range::Map iterator and an object that
describes how to map the ranges of r to the desired ranges.

For this, we define the following class:

OFFSET MAP ≡
class OffsetMap {

protected:

int o;

public:

OffsetMap(int o0) : o(o0) {}

int min(int m) const {

return m+o;

}

int max(int m) const {

return m+o;

}

};

356

DOMAIN EQUAL WITH OFFSET ≡ [DOWNLOAD]

· · ·
◮OFFSET MAP

class EqualOffset :

public BinaryPropagator<Int::IntView,Int::PC_INT_DOM> {

protected:

int c;

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

Int::ViewRanges<Int::IntView> r0(x0);

OffsetMap om0(-c);

Iter::Ranges::Map<Int::ViewRanges<Int::IntView>,OffsetMap>

mr0(r0,om0);

GECODE_ME_CHECK(x1.inter_r(home,mr0,false));

Int::ViewRanges<Int::IntView> r1(x1);

OffsetMap om1(c);

Iter::Ranges::Map<Int::ViewRanges<Int::IntView>,OffsetMap>

mr1(r1,om1);

GECODE_ME_CHECK(x0.narrow_r(home,mr1,false));

· · ·
}

};

· · ·

Figure 26.4: A propagator for domain equal with offset

OffsetMap defines to which values the minimum (min()) and the maximum (max()) of
each input range must be mapped. Using OffsetMap, we can construct a range iterator m for
our desired sequence by

OffsetMap om(c);

Iter::Ranges::Map<Int::ViewRanges<Int::IntView>,

OffsetMap> m(r,om);

With the help of the map range iterator, propagation for OffsetEqual as shown in
Figure 26.4 is straightforward. Note that several functions need to be modified to deal with
the additional integer constant c used by the propagator (the details can be inspected by
downloading the full program code). Further note that the constraint post function is slightly
to liberal in that it does not check whether the values with the integer constant c added ex-
ceed the limits for legal integer values.

While the propagator is reasonably easy to construct using map iterators, Section 28.1.2
shows how to obtain exactly the same propagator without any programming effort but the
implementation of an additional constraint post function.

357

https://www.gecode.org/doc/6.2.0/MPG/domain-equal-with-offset.cpp

Using and defining iterators. Gecode comes with a multitude of range and value iterators
to transform range and value sequences of other iterators. These iterators are defined in the
namespace Iter. Range iterators are defined in the namespace Iter::Ranges and value
iterators in the namespace Iter::Values. Example iterators include: iterators to convert
value into range iterators and vice versa, iterators to compute the union and intersection,
iterators to iterate over arrays and bitsets, just to name a few.

But even if the predefined iterators are not sufficient, it is straightforward to implement
new iterators: the only requirement is that they implement the appropriate interface men-
tioned above for range or value iterators. The namespace Iter contains a multitude of simple
and advanced examples.

Benefits of iterators. The true benefit of using iterators for performing value or range
transformations is that the iterator-based domain modification operation with which an it-
erator is used is automatically specialized at compile time. Typically, no intermediate data
structures are created and the modification operations are optimized at compile time for each
individual iterator.1

A scenario where this in particular matters is when iterators are used as adaptors of a
propagator-specific data structure. Assume that a propagator uses a specific (typically, quite
involved) data structure to perform propagation. Most often this data structure encodes in
some form which views should take which values. Then, one can implement simple iterators
that inspect the propagator-specific data structure and provide the information about values
for views so that they can be used directly with iterator-based modification operations. Again,
intermediate data structures are avoided by this approach.

26.4 Modification event deltas

There is a rather obvious approach to improving the efficiency of domain operations per-
formed by propagators: make the domains as small as possible! One typical approach to
reduce the size of the domains is to perform bounds propagation first. After bounds propa-
gation, the domains are likely to be smaller and hence the domain operations are likely to be
more efficient.

For propagating equality, the simplest idea is to first perform bounds propagation for
equality as discussed in Section 24.1, directly followed by domain propagation. However,
we can improve further by exploiting an additional token of information about the views of
a propagator that is supplied to both the cost() and propagate() function of a propagator.

The cost() and propagate() functions of a propagator take an additional modification

event delta value of type ModEventDelta (see Programming actors) as argument. Every prop-
agator maintains a modification event delta that describes how its views have changed since

1Some predefined iterators actually have to resort to intermediate data structures. For example, iterators
that need to revert the order of its values or ranges (think of a value iterator for values that are the negation of
values of some other value iterator).

358

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Iter.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Iter_1_1Ranges.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Iter_1_1Values.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Iter.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskActor.html

DOMAIN EQUAL USING BOUNDS PROPAGATION ≡ [DOWNLOAD]

· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_DOM> {

· · ·
virtual ExecStatus propagate(Space& home,

const ModEventDelta& med) {

if (Int::IntView::me(med) != Int::ME_INT_DOM) {

do {

GECODE_ME_CHECK(x0.gq(home,x1.min()));

GECODE_ME_CHECK(x1.gq(home,x0.min()));

} while (x0.min() != x1.min());

do {

GECODE_ME_CHECK(x0.lq(home,x1.max()));

GECODE_ME_CHECK(x1.lq(home,x0.max()));

} while (x0.max() != x1.max());

if (x0.assigned() && x1.assigned())

return home.ES_SUBSUMED(*this);

if (x0.range() && x1.range())

return ES_FIX;

}

· · ·
}

};

· · ·

Figure 26.5: A propagator for domain equal using bounds propagation

the last time the propagator has been executed. For each view type (that is, integer, Boolean,
set, . . .) a modification event delta stores a modification event that can be extracted from the
modification event delta: If med is a modification event delta, then Int::IntView::me(med)

returns the modification event for integer views.

The extracted modification event describes how all views of a certain view type have
changed. For example, for integer views, the modification event Int::ME_INT_VAL signals
that there is at least one integer view that has been assigned since the propagator has been
executed last (analogous for Int::ME_INT_BND and Int::ME_INT_DOM). Even the modifica-
tion event Int::ME_INT_NONE carries some information: none of the propagator’s integer
views have been modified (which, of course, can only happen if the propagator also uses
views of some other type).

Figure 26.5 shows a propagator that combines both bounds and domain propagation for
propagating equality. It first extracts the modification event for integer views from the mod-
ification event delta med. Only if the bounds (that is, modification events Int::ME_INT_VAL
or Int::ME_INT_BND, hence different from Int::ME_INT_DOM) have changed for at least one

359

https://www.gecode.org/doc/6.2.0/MPG/domain-equal-using-bounds-propagation.cpp

of the views x0 and x1, the propagator performs bounds propagation.
After performing bounds propagation, the propagator checks whether it is subsumed.

Then it does some more fixpoint reasoning: if the domains of x0 and x1 are ranges (that
is, they do not have holes), the propagator is at fixpoint. Otherwise, domain propagation is
done as shown before.

26.5 Staging

Taking the perspective of a single propagator, first performing bounds propagation directly
followed by domain propagation seems to be appropriate. However, when taking into ac-
count that some other cheap propagators (at least cheaper than performing domain propa-
gation by this propagator) might already be able to take advantage of the results of bounds
propagation, it might actually be better to postpone domain propagation and give cheaper
propagators the opportunity to execute. This idea is known as staging and has been intro-
duced in Gecode [53, Section 7]. Note that staging is not limited to bounds and domain
propagation but captures any stages in propagation that differ in cost.

Here, we focus on staging for first performing bounds propagation (stage “bounds”) and
then domain propagation (stage “domain”) for equality. Additionally, a propagator can be
idle (stage “idle”). The stage of a propagator is controlled by how its modification event delta
changes:

■ Initially, the propagator is idle, its modification event delta is empty, and the propagator
is in stage “idle”.

■ When the modification event delta for integer views changes to Int::ME_INT_DOM and
the propagator is in stage “idle”, the propagator is put into stage “domain” with high
propagation cost.

■ When the modification event delta for integer views changes to Int::ME_INT_VAL or
Int::ME_INT_BND, the propagator is put into stage “bounds” with low propagation
cost.

Note that this in particular includes the case where the modification event delta for in-
teger views has been Int::ME_INT_DOM and where the propagator had already been in
stage “domain”. As soon as the modification event delta changes to Int::ME_INT_BND

or Int::ME_INT_VAL the propagator is put into stage “bounds”.

By the very construction of modification event deltas, the modification event delta for
integer views can neither change from Int::ME_INT_VAL to Int::ME_INT_BND nor from
Int::ME_INT_BND (or Int::ME_INT_VAL) to Int::ME_INT_DOM. That is, if the equality prop-
agator using staging is in stage “bounds” it stays in that stage until it is executed.

When the propagator is executed, it can be either in stage “bounds” or stage “domain”.
If it is executed in stage “bounds”, it performs bounds propagation and then returns that it
wants to be put into stage “domain”. The essential point is that the propagator does not

360

idle domain bounds
DOM BND, VAL

BND, VAL

propagate()propagate()

Figure 26.6: Stage transitions for the equality propagator

continue with domain propagation but gives other propagators the opportunity to execute
first. If the propagator is executed in stage “domain”, it performs domain propagation and
returns that it is at fixpoint (and hence the propagator is put into stage “idle”). Figure 26.6
summarizes the stage transitions, where a blue transition is triggered by a change in the
modification event delta (Int::ME_INT_DOM is abbreviated by DOM and so on) and a green
transition is performed be executing the propagator.

Re-scheduling propagators. The cost of a propagator depends on its modification event
delta. This connection goes even further: only if the modification event delta of a propaga-
tor changes, a propagator is re-scheduled according to its cost by recomputing the cost()

function.
Not recomputing cost each time a propagator might be scheduled is done for two reasons.

First, the number of possibly expensive cost computations is reduced. Second, always re-
scheduling would also violate the fairness among all propagators already scheduled with
same cost. If a propagator is scheduled often, it would be penalized as its execution would
be deferred.

Section 27.4 discusses a technique to force re-scheduling of a propagator, irrespective of
its modification event delta.

Controlling staging by modification event deltas. The cost() function and the essential
parts of the propagate() function of a propagator that uses staging to combine bounds and
domain propagation for equality are shown in Figure 26.7.

The cost() function returns the cost based on the modification event delta med: if med
only includes Int::ME_INT_DOM, then the propagator returns that next time it executes, it ex-
ecutes at high-binary cost (according to stage “domain”). Otherwise, the propagator returns
that next time it executes, it executes at low-binary cost (according to stage “bounds”).

The propagate() function is almost identical to the function shown in the previous
section. The only difference is that propagate() returns after having performed bounds
propagation. The call to ES_FIX_PARTIAL() specifies that the current propagator *this has
computed a partial fixpoint for all modification events but Int::ME_INT_DOM. The function
Int::IntView::med creates a modification event delta from a modification event for integer
views. As an effect, the modification event delta of the current propagator is set to include

361

DOMAIN EQUAL USING STAGING ≡ [DOWNLOAD]

· · ·
class Equal : public BinaryPropagator<Int::IntView,Int::PC_INT_DOM> {

· · ·
virtual PropCost cost(const Space&,

const ModEventDelta& med) const {

if (Int::IntView::me(med) != Int::ME_INT_DOM)

return PropCost::binary(PropCost::LO);

else

return PropCost::binary(PropCost::HI);

}

virtual ExecStatus propagate(Space& home,

const ModEventDelta& med) {

if (Int::IntView::me(med) != Int::ME_INT_DOM) {

· · ·
return home.ES_FIX_PARTIAL

(*this,Int::IntView::med(Int::ME_INT_DOM));

}

· · ·
}

};

· · ·

Figure 26.7: A propagator for domain equal using staging

362

https://www.gecode.org/doc/6.2.0/MPG/domain-equal-using-staging.cpp

nothing but Int::ME_INT_DOM and the propagator is scheduled: as defined by the cost()

function, the propagator is scheduled for high binary cost. That means that other propagators
of lower cost might be executed first.

Constructing modification event deltas. Every view type provides a static med() func-
tion that translates a modification event of that view type into a modification event delta.
Modification event deltas for different view types can be combined with the | operator. For
example, the following expression combines the modification event ME_INT_BND for integer
views with the modification event ME_BOOL_VAL for Boolean views:

Int::IntView::med(ME_INT_BND) | Int::BoolView::med(ME_BOOL_VAL)

Note that only modification event deltas for different view types can be combined using |.

363

364

27 Advisors

This chapter is concerned with advisors for efficient incremental propagation. Advisors can
be used to provide information to a propagator which of its views have changed and how
they have changed.

Overview. In Section 27.1, a motivation and a model for advisors is presented. The fol-
lowing two sections demonstrate advisors. Section 27.2 shows an example propagator that
exploits the information provided by an advisor about which view has changed. Section 27.3
shows an example propagator that exploits information on how the domain of its views have
changed. Section 27.4 sketches how advisors can be used for forcing propagators to be re-
scheduled.

27.1 Advisors for incremental propagation

Consider the following, rather simple, example constraint. The constraint samedom for an
array of integer variables x and an integer set d holds, if and only if:

■ either all variables in x take values from d (that is, xi ∈ d for 0≤ i < |x|),

■ or none of the x take values in d (that is, xi 6∈ d for 0≤ i < |x|).

More knowledge is needed. Obviously, there are two different approaches to realize
samedom:

decomposition We decompose the samedom constraint as follows. We create a Boolean vari-
able b and post reified dom constraints (see Domain constraints) such that b= 1⇔ xi ∈
d (for 0 ≤ i < |x|). As the single Boolean variable b is the same for all reified dom con-
straints, samedom is automatically enforced.

implementation A different approach is to implement a dedicated propagator for samedom.
Propagation is quite simple: whenever the propagator is executed, try to find a view
among the xi such that either xi ∈ d or xi 6∈ d. If there is no such xi, the propagator is
at fixpoint. Otherwise, the propagator constrains all xi accordingly.

365

https://www.gecode.org/doc/6.2.0/reference/group__TaskModelIntDomain.html

Let us compare the individual merits of the two approaches (note that both achieve do-
main consistency). Decomposition requires O(|x|) propagators consuming quite some mem-
ory. Implementation requires a single propagator only and hence has a lower overhead both
for runtime (only a single propagator needs to be scheduled) and memory consumption.

However, the implementation approach is dreadful and is in fact less efficient than de-
composition! The problem is the “try to find a view” approach: each time the propagator is
executed, it only knows that some of its views have changed since last time the propagator
has been executed. It just does not know which views changed! That is, each time the prop-
agator is executed, it needs to scan all its views. For samedom, the propagator takes O(|x| · |d|)
runtime as scanning needs to inspect the entire domain of each view. This is considerably
worse than decomposition: when the domain of a xi changes, only a single reified propagator
for dom is executed with cost O(|d|).

The problem is the little amount of information available to a propagator when it is ex-
ecuted. The propagator only knows that some of its views changed but not which views.
Hence, just finding out which views have changed always incurs linear cost in the number of
views.

For a simple constraint such as samedom, the linear overhead is prohibitive. For more
involved constraints, decomposition might be infeasible as it would compromise propagation
(think of domain consistent distinct as an example).

Advisors. Gecode provides advisors to inform propagators about view changes. An advisor
belongs to a propagator and can be defined (by inheriting from Advisor) to store information
as needed by its propagator. The sole purpose of an advisor is to subscribe to a view of its
propagator: each time the view changes, an advise() function of the advisor’s propagator
is executed with the advisor as argument (sometimes we will be a little sloppy by saying that
the advisor is executed itself).

In more detail:

■ An advisor must inherit from the class Advisor.

■ When an advisor is created, it is created with respect to its propagator and a council

of advisors. Each advisor belongs to a council and a propagator can have at most one
council. The sole purpose of a council is to manage its advisors for cloning and disposal.
In particular, when the propagator is disposed, the council must be disposed as well.

A council also provides access to all of its advisors (we will exploit this in the following
sections).

■ An advisor can subscribe to views (and, hence, an advisor subscription like any other
subscription must eventually be canceled). Unlike subscriptions of propagators to
views, subscriptions of advisors do not use propagation conditions: an advisor is al-
ways executed when its subscription view changes.

Also, an advisor is never executed when the subscription is created, only when the
subscription view changes. This also means that when using advisors, one also needs

366

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Advisor.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Advisor.html

to think about how the reschedule() member function of the propagator should look
like, after all, this function has the responsibility to re-schedule a propagator when
needed.

■ An advisor is executed as follows: the advise() function of its propagator is executed.
The function takes the advisor as argument and an additional argument of type Delta.
The delta describes how the domain of the view has changed. Clearly, which kind of
information a delta provides depends on the type of the view. Deltas, in particular,
provide access to the modification event of the operation that triggered the advisor’s
execution.

For integer and Boolean views, deltas provide some approximate information about
which values have been removed. For an example, see Section 27.3.

■ The advise() function is not allowed to perform propagation by executing modifica-
tion operations on views. It can change the state of the propagator and must return
an execution status: ES_FAILED means that the propagator is failed; ES_FIX means
that the propagator is at fixpoint (hence, it is not scheduled); ES_NOFIX means that
the propagator is not any longer at fixpoint (hence, it is scheduled). That is, an advi-
sor does exactly what its name suggests as it provides advice to its propagator: when
should the propagator be executed and the advisor can also provide information for
the next propagator execution.

The advise() function can also return after calling the functions ES_FIX_DISPOSE()
or ES_NOFIX_DISPOSE() which are analogous to ES_FIX and ES_NOFIX but also dispose
the advisor.

There are two more functions that force the advisor’s propagator to be re-scheduled.
They are discussed in Section 27.4.

■ Advisors have a rather subtle interaction with disabling a propagator: as discussed in
Section 23.1, a disabled propagator is scheduled as usual but is not allowed to perform
any propagation. While advisors are not allowed to prune variable domains, they can
report failure by returning ES_FAILED.

If a propagator is disabled (this can be checked by the member function disabled() of
a propagator), the advisor is not allowed to report failure! Instead, the reschedule()

function must make sure that when the propagator is re-enabled and is re-scheduled
that its propagate() function reports failure instead.

Note, however, that typically advisors of a disabled propagator execute normally and
maintain the information necessary for the next execution of the propagator, which just
happens to be if the propagator is enabled again and possibly re-scheduled.

Note that a propagator using advisors must make sure that its advisors schedule the prop-
agator when it is not at fixpoint, this applies to when the propagator is posted and when the

367

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Delta.html

advise() or reschedule() functions are executed. Otherwise, it would not meet its “sub-
scription complete” obligation (make sure to read Tip 27.2). A propagator is free to mix sub-
scriptions using advisors and subscriptions using propagation conditions, see Section 27.3.

For more information on advisors including design and evaluation, see [27].

27.2 The samedom constraint

The idea how the SameDom propagator implements the samedom constraint is straightforward.
The propagator creates an advisor for each of its views and as soon as the advise() function
decides for one of the views x that either

x ⊆ d or x∩ d= ;

holds, the propagator is informed what it has to do and is scheduled. Then, the propagator
performs the required propagation and becomes subsumed. That is, a SameDom propagator
is executed at most once.

Todo information. A SameDom propagator stores in todo what it has to do when it is exe-
cuted:

TODO INFORMATION ≡
enum ToDo { INCLUDE, EXCLUDE, NOTHING };

ToDo todo;

Initially, todo is NOTHING. When the propagator is scheduled on behalf of an advisor todo
is either INCLUDE (that is, the propagator must propagate that xi ⊆ d for 0 ≤ i < |x|) or
EXCLUDE (that is, the propagator must propagate that xi ∩ d= ; for 0≤ i < |x|).

View advisors. Each advisor used by the SameDom propagator stores the view it is subscribed
to. By this, the advise() function can use the view stored with an advisor to decide what
the propagator needs to do. A view advisor is defined as follows:

368

ADVISOR ≡
class ViewAdvisor : public Advisor {

public:

Int::IntView x;

ViewAdvisor(Space& home, Propagator& p,

Council<ViewAdvisor>& c, Int::IntView x0)

: Advisor(home,p,c), x(x0) {

x.subscribe(home,*this);

}

ViewAdvisor(Space& home, ViewAdvisor& a)

: Advisor(home,a) {

x.update(home,a.x);

}

void dispose(Space& home, Council<ViewAdvisor>& c) {

x.cancel(home,*this);

Advisor::dispose(home,c);

}

};

Council<ViewAdvisor> c;

An advisor must implement a constructor for creation which takes the home space, the
advisor’s propagator, and the council of advisors as arguments. Additionally, a view advisor
also takes the view as input and subscribes to the view.

An advisor does neither have an update() nor a copy() function, a constructor for cloning
with the typical arguments is sufficient. The dispose() function of an advisor does not have
to report the advisor’s size (in contrast to a propagator’s dispose() function).

The propagator maintains a council of view advisors c. A council controls disposal and
copying during cloning. Moreover, a council provides access to all advisors in the council
(where already disposed advisors are excluded). The SameDom propagator does not store its
views explicitly in a view array. As the council provides access to its advisors, all views can
be accessed from the council’s advisors.

Tip 27.1 (Different types of advisors for the same propagator). Any propagator that uses
advisors must have exactly one council. As the council depends on the advisor type, only one
advisor type per propagator is possible.

This is not a real restriction. If several different types of advisors are needed, one can ei-
ther use advisors with virtual member functions or encode the advisor’s type by some member
stored by the advisor. ◭

The propagator proper. The SameDom propagator is shown in Figure 27.1. The func-
tion include(home,x,d) constrains the view x to only take values from d, whereas
exclude(home,x,d) constrains the view x to not take any values from d. The function
dom(x,d) returns whether the values for x are included in d (INCLUDE is returned) or whether

369

SAMEDOM ≡ [DOWNLOAD]

· · ·
class SameDom : public Propagator {

protected:

◮ TODO INFORMATION

◮ ADVISOR

IntSet d;

static ModEvent include(Space& home, Int::IntView x,

const IntSet& d) {

· · ·
static ModEvent exclude(Space& home, Int::IntView x,

const IntSet& d) {

· · ·
static ToDo dom(Int::IntView x, const IntSet& d) {

· · ·
public:

◮ CONSTRUCTOR FOR POSTING

· · ·
◮ DISPOSAL

· · ·
◮ RE-SCHEDULING

◮ ADVISE FUNCTION

◮ PROPAGATION

};

· · ·

Figure 27.1: A samedom propagator using advisors

370

https://www.gecode.org/doc/6.2.0/MPG/samedom.cpp

values for x are excluded from d (EXCLUDE is returned). All these functions are implemented
with range iterators as discussed in Chapter 26.

Posting the propagator. The propagator post function (not shown) makes sure that the
propagator is only posted if for all views xi, it cannot be decided whether xi ∈ d or xi 6∈ d. If
this is not the case, the post function already performs the necessary propagation. Note that
the propagator post function by performing some propagation ensures the central invariant
of the SameDom propagator: the value of todo (which is NOTHING initially) corresponds to the
current domains of the propagator’s views.

The constructor for posting creates the required advisors as follows:

CONSTRUCTOR FOR POSTING ≡
SameDom(Home home, const IntVarArgs& x, const IntSet& d0)

: Propagator(home), todo(NOTHING), c(home), d(d0) {

for (int i=x.size(); i--;)

(void) new (home) ViewAdvisor(home,*this,c,x[i]);

home.notice(*this,AP_DISPOSE);

}

Tip 27.2 (Getting a propagator started with advisors). The SameDom propagator has the prop-
erty that when it is posted, it is known to be at fixpoint (the post() function ensures this by
checking for each view xi whether xi ∈ d or xi 6∈ d).

In general, it might not be true that a propagator using advisors is at fixpoint when it is
posted. In that case, the constructor of the propagator must not only create advisors but also
make sure that the propagator is scheduled for execution.

A propagator can be scheduled by using the static schedule() function of a view. For
example, assume that the propagator to be scheduled should be scheduled because one of its
integer views of type IntView is assigned. This can be achieved by:

IntView::schedule(home, *this, ME_INT_VAL);

where *this refers to the current propagator.
Likewise,

IntView::schedule(home, *this, ME_INT_BND);

schedules the propagator with the information that the bounds of some of its integer views
have changed. ◭

Re-scheduling the propagator. The reschedule() member function just checks whether
the propagator needs to be scheduled and uses the reschedule() member functions of inte-
ger views as discussed above:

RE-SCHEDULING ≡
virtual void reschedule(Space& home) {

if (todo != NOTHING)

Int::IntView::schedule(home, *this, Int::ME_INT_DOM);

}

371

Mandatory propagator disposal. The constructor also puts a notice on the propagator that
it must always be disposed, even if the home space is deleted (as discussed in Section 23.8).
Putting a notice is required because the integer set d of type IntSet is a proper data structure
and must hence be deleted when a SameDom propagator is disposed.

Accordingly, the dispose() function deletes the integer set d as follows:

DISPOSAL ≡
virtual size_t dispose(Space& home) {

home.ignore(*this,AP_DISPOSE);

c.dispose(home);

d.~IntSet();

(void) Propagator::dispose(home);

return sizeof(*this);

}

Disposing the council c also disposes all view advisors. Hence, also all subscriptions are
canceled (as the dispose() function of a ViewAdvisor cancels its subscription).

It is essential to ignore the notice in dispose() by calling home.notice(): otherwise
Gecode might attempt to dispose a now already disposed propagator just over and over again!

Propagation with advice. The advise() function is straightforward:

ADVISE FUNCTION ≡
virtual ExecStatus advise(Space&, Advisor& a, const Delta&) {

if (todo != NOTHING)

return ES_FIX;

todo = dom(static_cast<ViewAdvisor&>(a).x,d);

return (todo == NOTHING) ? ES_FIX : ES_NOFIX;

}

If todo is already different from NOTHING, the propagator has already been scheduled,
and the advise() function returns ES_FIX to signal that the propagator does not need to
be scheduled again.1 Otherwise, depending on the result of dom(), the advise() function
updates the todo value of the propagator and returns ES_NOFIX if the propagator needs
scheduling (as todo is different from NOTHING).

Note that the advise() function of SameDom ignores its Delta argument. In the next
section we will see a complementary design: the advisor does not carry any information, but
only uses the information provided by the Delta.

The propagate() member function is exactly as to be expected:

1Actually, it would also be okay to return ES_NOFIX. Scheduling an already scheduled propagator is okay.

372

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1IntSet.html

PROPAGATION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (todo == INCLUDE)

for (Advisors<ViewAdvisor> a(c); a(); ++a)

GECODE_ME_CHECK(include(home,a.advisor().x,d));

· · ·
}

The Advisors class provides an iterator over all advisors in the council c. As mentioned
earlier, the iterator (and hence the council) provides sufficient information to retrieve all
views of interest for propagation.

Tip 27.3 (Advisors and propagator obligations). The astute reader might have wondered
whether a SameDom propagator is actually “update complete” in the sense of Section 23.8.
The answer is yes, because the council copies all of its view advisors and each view advisor
updates its view in turn.

Likewise, the obligations “subscription complete” and “subscription correct” need to be
satisfied regardless of whether a propagator uses propagator condition-based or advisor-
based subscriptions to views. ◭

Advisor disposal. The SameDom propagator leaves the disposal of its advisors to its own
dispose() function. However, it could also request disposal of an advisor in the advise()

function itself. A different implementation of the advise function would be:

if (todo != NOTHING)

return home.ES_FIX_DISPOSE(c,static_cast<ViewAdvisor&>(a));

todo = dom(static_cast<ViewAdvisor&>(a).x,d);

return (todo == NOTHING) ? ES_FIX :

home.ES_NOFIX_DISPOSE(c,static_cast<ViewAdvisor&>(a));

With this design, all advisors would be disposed on behalf of the advise() function and
not by the propagator’s dispose() function. This is due to the following two facts:

■ A single advisor finds out that todo must be either EXCLUDE or INCLUDE. This advisor
returns ES_NOFIX_DISPOSE() and hence is disposed.

■ All other advisors will be executed at the very latest when the propagator performs
propagation and are disposed as well.

Using predefined view advisors. Unsurprisingly, view advisors are a common abstraction
for propagators using advisors. Hence, Gecode provides view advisors as predefined abstrac-
tions that are parametric with respect to their view type. Figure 27.2 shows how SameDom

can be implemented using predefined view advisors.

373

SAMEDOM USING PREDEFINED VIEW ADVISORS ≡ [DOWNLOAD]

· · ·
class SameDom : public Propagator {

protected:

· · ·
Council<ViewAdvisor<Int::IntView> > c;

IntSet d;

· · ·
public:

· · ·
virtual ExecStatus advise(Space&, Advisor& a, const Delta&) {

if (todo != NOTHING)

return ES_FIX;

todo = dom(static_cast<ViewAdvisor<Int::IntView>&>(a).view(),d);

return (todo == NOTHING) ? ES_FIX : ES_NOFIX;

}

· · ·
};

· · ·

Figure 27.2: A samedom propagator using predefined view advisors

374

https://www.gecode.org/doc/6.2.0/MPG/samedom-using-predefined-view-advisors.cpp

27.3 General Boolean disjunction

Let us consider an efficient propagator Or for implementing the Boolean disjunction

|x|−1∨

i=0

xi = y

where all xi and y are Boolean views. When y becomes assigned, propagation is straightfor-
ward. If y is assigned to 0, all xi must be assigned to 0 as well. If y is assigned to 1, Or is
rewritten into the propagator OrTrue from Section 24.3.

As it comes to the xi, the Or propagator uses a similar technique to the SameDom propa-
gator. It can use advisors to find out which view has been assigned instead of inspecting all
xi. However, the propagator requires very little information: it does not need to know which
view has changed, it only needs to know whether a view among the xi has been assigned
to 0 or 1. Our Or propagator uses the delta information passed to the advise() function to
determine the value to which a view has been assigned. The advantage is that the propagator
only needs a single advisor instead of one advisor per view.

Tip 27.4 (Advisor space requirements). A subscription requires one pointer, regardless of
whether a propagator or an advisor is subscribed to a view. Without any additional informa-
tion stored by an advisor, an advisor requires two pointers. Hence, it pays off to use as few
advisors as possible. ◭

The Or propagator. The Or propagator inherits from the MixNaryOnePropagator template
(to increase readability, a base class OrBase is defined as a type) and uses PC_BOOL_NONE as
propagation condition for the views in the view array x. That actually means that no subscrip-
tions are created for the views in x. A subscription with propagation condition PC_BOOL_VAL

is created for the single Boolean view y. The constructor for posting creates a single advisor
which subscribes to all views in x. In fact, the Or propagator mixes advisors with normal
subscriptions.

The advise() function uses the delta information to decide whether one of the views the
advisor has subscribed to is assigned to 0 (then Int::BoolView::zero() returns true):

ADVISE ≡
virtual ExecStatus advise(Space&, Advisor&, const Delta& d) {

if (Int::BoolView::zero(d) && (++n_zero < x.size()))

return ES_FIX;

else

return ES_NOFIX;

}

The advise() function counts the number of views assigned to zero in n_zero. By re-
turning ES_NOFIX it reports that the propagator must be scheduled, if all views have been

375

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MixNaryOnePropagator.html

OR ≡ [DOWNLOAD]

· · ·
typedef MixNaryOnePropagator<Int::BoolView,Int::PC_BOOL_NONE,

Int::BoolView,Int::PC_BOOL_VAL>

OrBase;

class Or : public OrBase {

protected:

int n_zero;

Council<Advisor> c;

public:

Or(Home home, ViewArray<Int::BoolView>& x, Int::BoolView y)

: OrBase(home,x,y), n_zero(0), c(home) {

x.subscribe(home,*new (home) Advisor(home,*this,c));

}

· · ·
◮ ADVISE

◮ RE-SCHEDULING

◮ PROPAGATION

};

· · ·

Figure 27.3: A Boolean disjunction propagator using advisors

376

https://www.gecode.org/doc/6.2.0/MPG/or.cpp

assigned to zero (that is, n_zero equals the number of views in x) or if a view has been as-
signed to one. Note that the propagator post function makes sure that the propagator is only
posted when none of the views in x are assigned.

The reschedule() function checks whether the propagator needs to be re-scheduled.
This is the case when y has been assigned, or a view in x has been assigned to one, or if all
views in x have been assigned zero.

RE-SCHEDULING ≡
virtual void reschedule(Space& home) {

if (y.assigned() || (n_zero == x.size()))

Int::BoolView::schedule(home, *this, Int::ME_BOOL_VAL);

for (int i=x.size(); i--;)

if (x[i].one()) {

Int::BoolView::schedule(home, *this, Int::ME_BOOL_VAL);

return;

}

}

The propagate() function is straightforward:

PROPAGATION ≡
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

if (y.one())

GECODE_REWRITE(*this,OrTrue::post(home(*this),x));

if (y.zero()) {

for (int i = x.size(); i--;)

GECODE_ME_CHECK(x[i].zero(home));

} else if (n_zero == x.size()) {

GECODE_ME_CHECK(y.zero(home));

} else {

GECODE_ME_CHECK(y.one(home));

}

return home.ES_SUBSUMED(*this);

}

It first checks whether the propagator has been executed because y has been assigned and
propagates as sketched before. Then it uses the value of n_zero to determine how to propa-
gate.

Delta information for integer views. The delta information provided to the advise()

function can be interpreted through the view the advisor has subscribed to. Boolean views
provide static member functions zero() and one() to find out whether the view has been
assigned to 0 or 1.

For integer views (and set views, see Section 29.2), one must use the view to which the
advisor has subscribed to for accessing the delta.

377

For example, suppose that the advisor a has subscribed to the view x by

x.subscribe(home,a);

When the advise() function is executed for the advisor a with delta d, the view x provides
access to the delta information (typically, this will mean that a in fact stores the view x).

The modification event of the operation that modified the view x is available by
x.modevent(d). If x.any(d) returns true, no further information about how the domain
of x has changed is available.

Only if x.any(d) is false, x.min(d) returns the smallest value and x.max(d) returns the
largest value of the values that have been removed from x. With other words, the delta d

only provides approximate information on how the old view domain has been changed.
For example, if x has the domain {0, 1, 4, 5, 6} and the value 4 is removed from x, then

a delta d is passed where x.any(d) is true. If the values {0, 1, 4} are removed and the new
domain is {5, 6} then a delta d is passed where x.any(d) is false and x.min(d) returns 0 and
x.max(d) returns 4.

For Boolean views, one can rely on the fact that the delta information is always accurate.
For integer views, it might be the case that x.any(d) returns true even though only the
bounds of x have changed.

27.4 Forced propagator re-scheduling

An advisor can force its propagator to be re-scheduled even though the propagator’s modifi-
cation event delta has not changed. As discussed in Section 26.5, the cost() function of a
propagator is only recomputed when its modification event delta changes.

When the advise() of a propagator returns ES_NOFIX_FORCE (or, the advise() function
calls ES_NOFIX_DISPOSE_FORCE()), the propagator is rescheduled regardless of its current
modification event delta. See also Status of constraint propagation and branching commit.

378

https://www.gecode.org/doc/6.2.0/reference/group__TaskActorStatus.html

28 Views

This chapter should come as a welcome diversion from the previous chapters in this part.
Instead of introducing more concepts and techniques for programming propagators, it shows
how to straightforwardly and efficiently reuse propagators for implementing several different
constraints. In a way, the chapter tells you how to cache in on all the effort that goes into
developing a propagator.

The idea is to make a propagator generic with respect to the views the propagator com-
putes with. As we are talking C++, generic propagators will be nothing but templates where
the template arguments happen to be view types. Then, by instantiating the template propa-
gator, one can obtain implementations for several constraints from a single propagator. More
on views (a concept introduced by Gecode) can be found in [56] and [54].

As it comes to importance, this chapter should be the second in this part. However, the
chapter comes rather late to be able to draw on the example propagators presented in the
previous chapters.

Overview. Integer variable views are discussed in Section 28.1 and Boolean variable views
are discussed in Section 28.2. How integer propagators can be reused for Boolean views is
presented in Section 28.3.

28.1 Integer views

Assume that we need an implementation for the min constraint. Of course, we could imple-
ment a Min propagator analogous to the Max propagator from Section 25.4. But let us assume
that we need to be lazy in that we do not have the time to implement Min (after all, there
are more interesting constraints out there that we want to implement).

What we could do to implement min(x,y) = z is to introduce three new variables x′, y′,
and z′, post three constraints such that x= −x′, y= −y′, and z= −z′, and finally post a max

constraint instead: max(x′,y′) = z′. While the strength of propagation is uncompromised,
efficiency is poor: three additional variables and three additional propagators are needed.

28.1.1 Minus views

Minus views can do exactly what we discussed above but without creating additional vari-
ables or propagators. Assume that we have an integer view x that serves as an interface to

379

MIN AND MAX ≡ [DOWNLOAD]

· · ·
template<class View>

class Max : public TernaryPropagator<View,Int::PC_INT_BND> {

protected:

using TernaryPropagator<View,Int::PC_INT_BND>::x0;

using TernaryPropagator<View,Int::PC_INT_BND>::x1;

using TernaryPropagator<View,Int::PC_INT_BND>::x2;

· · ·
};

void min(Home home, IntVar x0, IntVar x1, IntVar x2) {

GECODE_POST;

Int::MinusView y0(x0), y1(x1), y2(x2);

GECODE_ES_FAIL(Max<Int::MinusView>::post(home,y0,y1,y2));

}

void max(Home home, IntVar x0, IntVar x1, IntVar x2) {

GECODE_POST;

GECODE_ES_FAIL(Max<Int::IntView>::post(home,x0,x1,x2));

}

Figure 28.1: Minimum and maximum constraints implemented by a Max propagator

a variable implementation v. Then, a minus integer view m for v is also an interface to v,
however the interface implements operations such that m is an interface to −v.

For example, assume that the domain of x is {−1, 1, 3, 4, 6} (which also means that
v ∈ {−1, 1, 3, 4, 6}). Then, the domain for m is {−6,−4,−3,−1, 1}. For example, m.min()
returns −6 (which, of course, is nothing but -x.max()) and the modification operation
m.gq(home,-3) results in domains m ∈ {−3,−1, 1} and x ∈ {−1, 1, 3} (which, of course,
is the same as x.lq(home,-(-3)) and hence as x.lq(home,3)).

The very point of this exercise is: a minus view is just a different interface to an existing

variable implementation and does not require a new variable implementation. Moreover, the
operations performed by the minus view interface are optimized away at compile time.

Figure 28.1 shows how to obtain both min and max constraints from the very same Max

propagator using Int::IntView and Int::MinusView views. The only change needed com-
pared to the Max propagator from Section 25.4 is that the propagator does not hardwire its
view type. Instead, the propagator is generic by being implemented as a template over the
view type View it uses. The constraint post functions then just instantiate the Max propagator
with the appropriate view types.

Tip 28.1 (Using using clauses). Note the using clauses in Figure 28.1. They make x0, x1,
and x2 visible for the Max propagator. This is necessary in C++ as Max inherits from a base class

380

https://www.gecode.org/doc/6.2.0/MPG/min-and-max.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1IntView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1MinusView.html

DOMAIN EQUAL WITH AND WITHOUT OFFSET ≡ [DOWNLOAD]

· · ·
template<class View0, class View1>

class Equal

: public MixBinaryPropagator<View0,Int::PC_INT_DOM,

View1,Int::PC_INT_DOM> {

· · ·
};

void equal(Home home, IntVar x0, IntVar x1) {

GECODE_POST;

GECODE_ES_FAIL((Equal<Int::IntView,Int::IntView>

::post(home,x0,x1)));

}

void equal(Home home, IntVar x0, IntVar x1, int c) {

GECODE_POST;

GECODE_ES_FAIL((Equal<Int::IntView,Int::OffsetView>

::post(home,x0,Int::OffsetView(x1,c))));

}

Figure 28.2: Domain equality with and without offset

that itself depends on the template argument View of Max. There are other possibilities to
refer to members such as x0 that also work, for example by writing this->x0 instead of just
x0. We choose the variant with using clauses to keep the code of the propagator uncluttered.
◭

.

28.1.2 Offset views

An offset view o with offset c (an integer value) for a variable implementation v provides
operations such that o behaves as v + c.

Figure 28.2 shows how a domain equality constraint (see Section 26.2) and a domain
equality constraint with offset (see Section 26.3) can be obtained from the same domain
equality propagator Equal. Equal has two template arguments View0 and View1 for its
views x0 and x1 respectively. With two view template arguments, the propagator can
be instantiated with different view types for x0 and x1. Therefore, the propagator uses
MixBinaryPropagator as base class as it supports different view types as well.

shared versus ==. The domain modification operations inter_r and narrow_r used in
the Equal propagator from Section 26.2 are used such that the operations perform a more

381

https://www.gecode.org/doc/6.2.0/MPG/domain-equal-with-and-without-offset.cpp
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MixBinaryPropagator.html

efficient in-place update of the view domain (with an additional Boolean value false as last
and optional argument). This is only legal because the range iterator passed as argument to
the modification operations does not depend on the view being modified. The post function
of Equal ensures this by only posting the propagator if the two views x0 and x1 are not
referring to the very same variable implementation (that is, x0==x1 is false).

With arbitrary views, the situation becomes a little bit more involved. Assume that x0 is
an integer view referring to the variable implementation v and that x1 is an offset integer
view for the same variable implementation v and an integer value c 6= 0. In this case, the
views x0 and x1 share the same variable implementation v but are not the same.

The function shared() tests whether two views share the same variable implementation.
Hence, the use of domain modification operations in Equal have to be modified as follows:

DOMAIN PROPAGATION ≡
Int::ViewRanges<View0> r0(x0);

GECODE_ME_CHECK(x1.inter_r(home,r0,shared(x0,x1)));

Int::ViewRanges<View1> r1(x1);

GECODE_ME_CHECK(x0.narrow_r(home,r1,shared(x0,x1)));

Now, the more efficient in-place operations are used only if x0 and x1 do not share the
same variable implementation.

28.1.3 Constant and scale views

In addition to minus and offset views, Gecode offers scale views and constant views for integer
variable implementations.

A scale view for a variable implementation v with an integer scale factor a where a > 0 im-
plements operations for a·v. Scale views exist in two variants differing in the precision of mul-
tiplication: IntScaleView performs multiplication over integers, whereas LLongScaleView
performs multiplication over long long integers (see Integer views and Int::ScaleView).

An integer constant view Int::ConstIntView provides an integer view interface to an
integer constant c. With other words, an integer constant view for the integer c behaves as
an integer view assigned to the value c.

28.2 Boolean views

For Boolean views, the view resembling a minus view over integers is a view for negation. For
example, with Boolean negation views Int::NegBoolView both disjunction and conjunction
constraints can be obtained from a propagator for disjunction (see Figure 28.3).

28.3 Integer propagators on Boolean views

As has been discussed in Section 24.2, Boolean views feature all operations available on
integer views (such as lq() or gr()) in addition to the dedicated Boolean operations (such

382

https://www.gecode.org/doc/6.2.0/reference/group__TaskActorIntView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ScaleView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1ConstIntView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1NegBoolView.html

OR AND AND FROM OR ≡ [DOWNLOAD]

· · ·
template<class View>

class OrTrue :

public BinaryPropagator<View,Int::PC_BOOL_VAL> {

· · ·
};

void dis(Home home, const BoolVarArgs& x, int n) {

· · ·
}

void con(Home home, const BoolVarArgs& x, int n) {

· · ·
} else {

ViewArray<Int::NegBoolView> y(home,x.size());

for (int i=x.size(); i--;)

y[i]=Int::NegBoolView(x[i]);

GECODE_ES_FAIL(OrTrue<Int::NegBoolView>::post(home,y));

}

}

Figure 28.3: Disjunction and conjunction from same propagator

383

https://www.gecode.org/doc/6.2.0/MPG/or-and-and-from-or.cpp

LESS FOR INTEGER AND BOOLEAN VARIABLES ≡ [DOWNLOAD]

· · ·
template<class View>

class Less : public BinaryPropagator<View,Int::PC_INT_BND> {

protected:

· · ·
};

void less(Home home, IntVar x0, IntVar x1) {

GECODE_POST;

GECODE_ES_FAIL(Less<Int::IntView>::post(home,x0,x1));

}

void less(Home home, BoolVar x0, BoolVar x1) {

GECODE_POST;

GECODE_ES_FAIL(Less<Int::BoolView>::post(home,x0,x1));

}

Figure 28.4: Less constraints for both integer and Boolean variables

as one() or zero()). Due to the availability of integer operations on Boolean views, integer
propagators can be used to implement Boolean constraints.

Figure 28.4 shows how the propagator Less can be used to implement the less constraint
for both integer and Boolean variables.

Tip 28.2 (Boolean variables are not integer variables). The above example uses a template
to obtain an implementation of a constraint on both integer and Boolean variables. This is
necessary as Boolean variables are not integer variables (in the sense that BoolVar is not a
subclass of IntVar). The same holds true for their views and variable implementations.

This is by design: Boolean variables are not integer variables as they have a specially
optimized implementation (taking advantage of the limited possible variable domains and
that only PC_BOOL_VAL as propagation condition is needed). ◭

384

https://www.gecode.org/doc/6.2.0/MPG/less-for-integer-and-Boolean-variables.cpp

29 Propagators for set
constraints

This chapter shows how to implement propagators for constraints over set variables. We
assume that you have worked through the chapters on implementing integer propagators, as
most of the techniques readily carry over and are not explained again here.

We also assume a basic knowledge of propagation for set constraints. To read more about
this topic, please refer to [19, 62].

Overview. Section 29.1 demonstrates a propagator that implements set interesection. Set
views and their related concepts are summarized in Section 29.2.

29.1 A simple example

Figure 29.1 shows a propagator for the ternary intersection constraint x0 ∩ x1 = x2 for three
set variables x0, x1, and x2.

As you can see, propagators for set constraints follow exactly the same structure as prop-
agators for integer or Boolean constraints. The same propagator patterns can be used (see
Section 23.7). The appropriate views and propagation conditions are defined in the names-
pace Gecode::Set.

In order to understand the propagate() function, we have to look at how set variable
domains are represented.

The set bounds approximation. We already saw in Chapter 5 that set variable domains
are represented as intervals in order to avoid an exponential representation. For example,
recall that

� {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} 	

cannot be captured exactly by an interval, but is instead approximated by the smallest en-
closing interval [{} .. {1, 2, 3}].

Set propagators therefore access and modify the interval bounds. Naturally, set-valued
domain operations similar to the ones for integer variables (see Chapter 26) play an impor-
tant role for set propagators.

For each set view, Set::GlbRanges provides a range iterator for its lower bound, and
Set::LubRanges iterates the upper bound. The main iterator-based modification operations

385

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Set.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1GlbRanges.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1LubRanges.html

INTERSECTION ≡ [DOWNLOAD]

#include <gecode/set.hh>

using namespace Gecode;

class Intersection

: public TernaryPropagator<Set::SetView,Set::PC_SET_ANY> {

public:

Intersection(Home home, Set::SetView x0, Set::SetView x1,

Set::SetView x2)

: TernaryPropagator<Set::SetView,Set::PC_SET_ANY>(home,

x0,x1,x2) {}

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

using namespace Iter::Ranges; using namespace Set;

bool assigned = x0.assigned() && x1.assigned() && x2.assigned();

◮ RULE 1

◮ RULE 2

◮ RULE 3

◮ RULE 4

◮ RULE 5

◮ RULE 6

◮ CARDINALITY

return assigned ? home.ES_SUBSUMED(*this) : ES_NOFIX;

}

};

void intersection(Home home, SetVar x0, SetVar x1, SetVar x2) {

GECODE_POST;

GECODE_ES_FAIL(Intersection::post(home,x0,x1,x2));

}

Figure 29.1: A constraint and propagator for set intersection

386

https://www.gecode.org/doc/6.2.0/MPG/intersection.cpp

on set views are includeI (adding a set to the lower bound), excludeI (removing a set from
the upper bound), and intersectI (intersecting the upper bound with a set).

Filtering rules. Coming back to the example propagator for ternary intersection, we have
to devise filtering rules that express the constraint in terms of the interval bounds. In the
following, we write x and x for the lower bound resp. upper bound of a view x . Then,
ternary intersection can be propagated with the following rules and implemented with set
domain operations:

1. x0 ∩ x1 ⊆ x2

RULE 1 ≡
{

GlbRanges<SetView> x0lb(x0), x1lb(x1);

Inter<GlbRanges<SetView>, GlbRanges<SetView> > i(x0lb,x1lb);

GECODE_ME_CHECK(x2.includeI(home,i));

}

2. x0 ∩ x1 ⊇ x2

RULE 2 ≡
{

LubRanges<SetView> x0ub(x0), x1ub(x1);

Inter<LubRanges<SetView>, LubRanges<SetView> > i1(x0ub,x1ub);

GECODE_ME_CHECK(x2.intersectI(home,i1));

}

3. x2 ⊆ x0

RULE 3 ≡
{

GlbRanges<SetView> x2lb(x2);

GECODE_ME_CHECK(x0.includeI(home,x2lb));

}

4. x2 ⊆ x1

RULE 4 ≡
{

GlbRanges<SetView> x2lb(x2);

GECODE_ME_CHECK(x1.includeI(home,x2lb));

}

387

integer-valued bounds operations

glbMin() / glbMax() return minimum/maximum of lower bound
lubMin() / lubMax() return minimum/maximum of upper bound
glbSize() / lubSize() return size of lower/upper bound
unknownSize() return number of elements in upper but not in lower bound
contains() test whether lower bound contains element
notContains() test whether upper bound does not contain element
include() add element (or range) to lower bound
exclude() remove element (or range) from upper bound
intersect() intersect upper bound with element or range

set-valued bounds modifications

includeI() add elements to lower bound
excludeI() remove elements from upper bound
intersectI() intersect upper bound with given set

cardinality operations

cardMin() return/modify minimum cardinality
cardMax() return/modify maximum cardinality

Figure 29.2: Set view operations

5. x0 \ x2 6⊆ x1

RULE 5 ≡
{

GlbRanges<SetView> x0lb(x0); LubRanges<SetView> x2ub(x2);

Diff<GlbRanges<SetView>, LubRanges<SetView> > diff(x0lb, x2ub);

GECODE_ME_CHECK(x1.excludeI(home,diff));

}

6. x1 \ x2 6⊆ x0

RULE 6 ≡
{

GlbRanges<SetView> x1lb(x1); LubRanges<SetView> x2ub(x2);

Diff<GlbRanges<SetView>, LubRanges<SetView> > diff(x1lb, x2ub);

GECODE_ME_CHECK(x0.excludeI(home,diff));

}

The first four rules should be self-explanatory. The last two rules state that anything that
is in x0 but not in x2 cannot be in x1 (and the same for x0 and x1 swapped). The full list of
operations on set views appears in Figure 29.2.

388

Fixpoint. Note how the propagator determines which execution status to return. Before
applying any of the filtering rules, it checks whether all of the variables are already assigned.
If they are, then propagation will compute a fixpoint and the propagator can return that it
is subsumed after applying the filtering rules. Otherwise, it has not necessarily computed a
fixpoint (e.g. rule 6 may modify the upper bound of x0, making it necessary to apply rule 2
again).

Cardinality. In addition to the interval bounds, set variables store cardinality bounds, that
is, the minimum and maximum cardinality of the set variable. These bounds are stored and
modified independently of the interval bounds, but of course modifications to these different
bounds affect each other.

For example, consider a set variable with a domain represented by the interval
[{} .. {1, 2}] and the cardinality # [1 .. 2]. Adding 1 to the lower bound would result in
the cardinality lower bound being increased to 1. Removing 1 from the upper bound would
result in 2 being added to the lower bound to satisfy the minimum cardinality of 1.

Using cardinality information, propagation for some set constraints can be strengthened.
For the ternary intersection example, we can for instance add the following filtering rules:

CARDINALITY ≡
LubRanges<SetView> x0ub(x0), x1ub(x1);

Union<LubRanges<SetView>, LubRanges<SetView> > u_lub(x0ub,x1ub);

unsigned int s_lub = size(u_lub);

if (x0.cardMin() + x1.cardMin() > s_lub)

GECODE_ME_CHECK(x2.cardMin(home, x0.cardMin()+x1.cardMin()-s_lub));

GlbRanges<SetView> x0lb(x0), x1lb(x1);

Union<GlbRanges<SetView>, GlbRanges<SetView> > u_glb(x0lb,x1lb);

unsigned int s_glb = size(u_glb);

GECODE_ME_CHECK(x2.cardMax(home,x0.cardMax()+x1.cardMax()-s_glb));

GECODE_ME_CHECK(x0.cardMin(home,x2.cardMin()));

GECODE_ME_CHECK(x1.cardMin(home,x2.cardMin()));

When dealing with cardinality, it is important to handle overflow or signedness issues.
In the above example, we have to check whether x0.cardMin()+x1.cardMin()>s, because
otherwise the expression x0.cardMin()+x1.cardMin()-s may underflow (as we are dealing
with unsigned integers here). This is not the case for the second cardinality rule. Here, we
can be sure that the size of the union of the lower bounds is always greater than the sum of
the maximum cardinalities.

29.2 Modification events, propagation conditions, views,

and advisors

This section summarizes how these concepts are specialized for set variables and propagators.

389

Modification events and propagation conditions. The modification events and propa-
gation conditions for set propagators (see Figure 29.3) capture the parts of a set variable
domain that can change.

One could imagine a richer set, for example distinguishing between lower and upper
bound changes of the cardinality, or separating the cardinality changes from the interval
bound changes. However, the number of propagation conditions has a direct influence on
the size of a variable, see Section 35.1. Just like for integer views, this set of modification
events and propagation conditions has been chosen as a compromise between expressiveness
on the one hand, and keeping the set small on the other.

Set variable views. In addition to the basic Set::SetView class, there are five other set
views: Set::ConstSetView, Set::EmptyView, Set::UniverseView, Set::SingletonView,
and Set::ComplementView.

The first three are constant views. A SingletonView wraps an integer view x in the
interface of a set view, so that it acts like the singleton set {x}. A ComplementView is like
Boolean negation, it provides the set complement with respect to the global Gecode universe
for set variables (defined as [Set :: Limits :: min .. Set :: Limits :: max], see Set::Limits).

Advisors for set propagators. Advisors for set constraints get informed about the domain
modifications using a Set::SetDelta. The set delta provides only information about the
minimum and maximum values that were added to the lower bound and/or removed from
the upper bound.

390

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1SetView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1ConstSetView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1EmptyView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1UniverseView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1SingletonView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1ComplementView.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Set_1_1Limits.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Set_1_1SetDelta.html

set modification events

Set::ME_SET_NONE the view has not been changed
Set::ME_SET_FAILED the domain has become empty
Set::ME_SET_VAL the view has been assigned to a single set
Set::ME_SET_CARD the view has been assigned to a single set
Set::ME_SET_LUB the upper bound has been changed
Set::ME_SET_GLB the lower bound has been changed
Set::ME_SET_BB both bounds have been changed
Set::ME_SET_CLUB cardinality and upper bound have changed
Set::ME_SET_CGLB cardinality and lower bound have changed
Set::ME_SET_CBB cardinality and both bounds have changed

set propagation conditions

Set::PC_SET_VAL schedule when the view is assigned
Set::PC_SET_CARD schedule when the cardinality changes
Set::PC_SET_CLUB schedule when the cardinality or the upper bound changes
Set::PC_SET_CGLB schedule when the cardinality or the lower bound changes
Set::PC_SET_ANY schedule at any change
Set::PC_SET_NONE do not schedule

Figure 29.3: Set modification events and propagation conditions

391

392

30 Propagators for float
constraints

This chapter shows how to implement propagators for constraints over float variables. We
assume that you have worked through the chapters on implementing integer propagators, as
most of the techniques readily carry over and are not explained again here.

Overview. Section 30.1 demonstrates a propagator that implements a ternary linear con-
straint. Float views and their related concepts are summarized in Section 30.2.

30.1 A simple example

Figure 30.1 shows a propagator for the ternary linear constraint x0 + x1 + x2 = 0 for three
float variables x0, x1, and x2.

As you can see, propagators for float constraints follow exactly the same structure as
propagators for integer or Boolean constraints. The same propagator patterns can be used
(see Section 23.7). The appropriate views and propagation conditions are defined in the
namespace Gecode::Float.

Operations on float views. The most important operations on float views for program-
ming propagators are summarized in Figure 30.2, the full information can be found in
Float::FloatView. The lack of operations such as gr() (for greater), le() (for less), and
nq() (for disequality) is due to the fact that domains are closed intervals, see Section 6.1 and
Tip 6.4.

Creating a rounding object. The propagation rules of the Linear propagator will require
that it can be controlled whether to round downwards or upwards in a floating point opera-
tion on a float number. Access to operations with explicit rounding control is provided by an
object of class Float::Rounding. The creation of an object of this class initializes the under-
lying floating point unit such that it performs exact rounding in the required direction. Note,
that explicit rounding is only required if rounding provided by operations on float values is
not sufficient.

Figure 30.3 lists the supported operations with explicit rounding, where the _down()

variants round downwards and the _up() variants round upwards. The functions marked

393

https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Float.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1FloatView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1Rounding.html

LINEAR ≡ [DOWNLOAD]

#include <gecode/float.hh>

using namespace Gecode;

class Linear

: public TernaryPropagator<Float::FloatView,Float::PC_FLOAT_BND> {

public:

Linear(Home home, Float::FloatView x0, Float::FloatView x1,

Float::FloatView x2)

: TernaryPropagator<Float::FloatView,Float::PC_FLOAT_BND>

(home,x0,x1,x2) {}

· · ·
virtual ExecStatus propagate(Space& home, const ModEventDelta&) {

using namespace Float;

◮ CREATE ROUNDING OBJECT

◮ PRUNE UPPER BOUNDS

◮ PRUNE LOWER BOUNDS

return (x0.assigned() && x1.assigned()) ?

home.ES_SUBSUMED(*this) : ES_NOFIX;

}

};

void linear(Home home, FloatVar x0, FloatVar x1, FloatVar x2) {

GECODE_POST;

GECODE_ES_FAIL(Linear::post(home,x0,x1,x2));

}

Figure 30.1: A constraint and propagator for ternary linear

394

https://www.gecode.org/doc/6.2.0/MPG/linear.cpp

access operations

min() return lower bound (a float number)
max() return upper bound (a float number)
size() return width of domain (a float number)
assigned() whether view is assigned
in(n) whether float number n is contained in domain
in(n) whether float value n is contained in domain

modification operations

eq(home,n) restrict values to be equal to n

lq(home,n) restrict values to be less or equal than n

gq(home,n) restrict values to be greater or equal than n

Figure 30.2: Most important float view operations

function meaning default

add_down(x,y), add_up(x,y) l/u bound of x+ y ✓

sub_down(x,y), sub_up(x,y) l/u bound of x− y ✓

mul_down(x,y), mul_up(x,y) l/u bound of x× y ✓

div_down(x,y), div_up(x,y) l/u bound of x/y ✓

sqrt_down(x), sqrt_up(x) l/u bound of
p
x ✓

int_down(x) next downward-rounded integer of x ✓

int_up(x) next upward-rounded integer of x ✓

exp_down(x), exp_up(x) l/u bound of exp(x)
log_down(x), log_up(x) l/u bound of log(x)

sin_down(x), sin_up(x) l/u bound of sin(x)
cos_down(x), cos_up(x) l/u bound of cos(x)
tan_down(x), tan_up(x) l/u bound of tan(x)

asin_down(x), asin_up(x) l/u bound of arcsin(x)
acos_down(x), acos_up(x) l/u bound of arccos(x)
atan_down(x), atan_up(x) l/u bound of arctan(x)

sinh_down(x), sinh_up(x) l/u bound of sinh(x)
cosh_down(x), cosh_up(x) l/u bound of cosh(x)
tanh_down(x), tanh_up(x) l/u bound of tanh(x)

asinh_down(x), asinh_up(x) l/u bound of arcsinh(x)
acosh_down(x), acosh_up(x) l/u bound of arccosh(x)
atanh_down(x), atanh_up(x) l/u bound of arctanh(x)

Figure 30.3: Rounding operations on float numbers (x and y are float numbers)

395

as default are always supported, the others are only supported if Gecode has been built
accordingly, see Tip 6.1.

Hence, the first thing that the propagate() function of the Linear propagator does is to
create a rounding object r as follows:

CREATE ROUNDING OBJECT ≡
Rounding r;

Pruning lower and upper bounds. The propagation rules for Linear are quite straight-
forward. As x0 + x1 + x2 = 0 we can isolate x0 (x1 and x2 are of course analogous):

x0 = −x1 − x2

The upper bound of x0 can be constrained following:

x0 ≤ max (−x1 − x2)

= −min (x1 + x2)

= −min (min(x1) +min(x2))

and, accordingly, the lower bound of x0 can be constrained following:

x0 ≥ min (−x1 − x2)

= −max (x1 + x2)

= −max (max(x1) +max(x2))

The equations can be translated directly into update operations, where min corresponds
to rounding downwards:

PRUNE UPPER BOUNDS ≡
GECODE_ME_CHECK(x0.lq(home,-r.add_down(x1.min(),x2.min())));

GECODE_ME_CHECK(x1.lq(home,-r.add_down(x0.min(),x2.min())));

GECODE_ME_CHECK(x2.lq(home,-r.add_down(x0.min(),x1.min())));

and max corresponds to rounding upwards:

PRUNE LOWER BOUNDS ≡
GECODE_ME_CHECK(x0.gq(home,-r.add_up(x1.max(),x2.max())));

GECODE_ME_CHECK(x1.gq(home,-r.add_up(x0.max(),x2.max())));

GECODE_ME_CHECK(x2.gq(home,-r.add_up(x0.max(),x1.max())));

30.2 Modification events, propagation conditions, views,

and advisors

This section summarizes how these concepts are specialized for float variables and propaga-
tors.

396

float modification events

Float::ME_FLOAT_NONE the view has not been changed
Float::ME_FLOAT_FAILED the domain has become empty
Float::ME_FLOAT_VAL the view has been assigned
Float::ME_FLOAT_BND the bounds have changed (the domain has changed)

float propagation conditions

Float::PC_FLOAT_VAL schedule when the view is assigned
Float::PC_FLOAT_BND schedule when the domain changes
Float::PC_FLOAT_NONE do not schedule

Figure 30.4: Float modification events and propagation conditions

Modification events and propagation conditions. The modification events and propaga-
tion conditions for float propagators (see Figure 30.4) capture how the variable domain of a
float view can change.

Float variable views. In addition to the basic Float::FloatView class, there are two other
float views: Float::MinusView, and Float::ScaleView. The two latter views are defined
similarly to minus view for integers (see Section 28.1.1) and scale views for integers (see
Section 28.1.3).

Advisors for float propagators. Advisors for float constraints get informed about the do-
main modifications using a float delta of class Float::FloatDelta.

Float deltas are also represented by a minimum and maximum float number and hence
also constitute a closed interval (like float values and float variables). That means that a float
delta cannot describe exactly which values have been removed. For example, assume that x
is a float view and that the domain of x is [−1.0 .. 1.0]. Then, executing

GECODE_ME_CHECK(x.lq(home,0.0));

will generate a float delta d such that x.min(d) returns 0.0 and x.max(d) returns 1.0 even
though the domain of x is now [−1.0 .. 0.0] and still includes 0.0.

397

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1FloatView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1MinusView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1ScaleView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Float_1_1FloatDelta.html

398

31 Managing memory

This chapter provides an overview of memory management for propagators. In fact, the
memory management aspects discussed here are also valid for branchers (Part B) and to
some extent even for variables (Part V).

Overview. Section 31.1 describes the different memory areas available in Gecode together
with their allocation policies. The following section (Section 31.2) discusses how a propa-
gator can efficiently manage its own state. Section 31.3 discusses an abstraction for sharing
data structures globally, whereas Section 31.4 discusses an abstraction for sharing data struc-
tures among several propagators (or branchers) that belong to the same space.

31.1 Memory areas

Gecode manages several different memory areas with different allocation policies: spaces

provide access to space-allocated memory, regions provide access to temporary memory with
implicit deallocation, and space-allocated freelists provide efficient access to small chunks of
memory which require frequent allocation and deallocation.

All memory areas but freelists provide operations alloc(), realloc(), and free() for
allocation, reallocation, and deallocation of memory from the respective area. To provide a
uniform interface, Gecode also defines a heap object (see Heap memory management) im-
plementing the very same allocation functions. All memory-management related operations
are documented in Memory management.

Memory management functions. Let us consider allocation from the heap as an example.
By

int* i = heap.alloc<int>(n);

a memory chunk for n integers is allocated. Likewise, by

heap.free<int>(i,n);

the memory is freed (for heap, the memory is returned to the operating system). By

int* j = heap.realloc<int>(i,n,m);

399

https://www.gecode.org/doc/6.2.0/reference/group__FuncMemHeap.html
https://www.gecode.org/doc/6.2.0/reference/group__FuncMem.html

a memory chunk is allocated for m integers. If possible, j will refer to the same memory
chunk as i (but there is no guarantee, of course).

The memory management functions implement C++ semantics: alloc() calls the default
constructor for each element allocated; realloc() calls the destructor, default constructor,
or copy constructor (depending on whether the memory area must shrink or grow); free()
calls the destructor for each element freed.

Space. Space-allocated memory (see Space-memory management) is managed per each
individual space. All space-allocated memory is returned to the operating system if a space
is deleted. Freeing memory (via the free() operation) enables the memory to be reused by
later alloc() operations.

Spaces manage several blocks of memory allocated from the operating system, the block
sizes are automatically chosen based on the recent memory allocations of a space (and, if a
space has been created by cloning, the memory allocation history of the original space). The
exact policies can be configured, see the namespace Kernel::MemoryConfig.

Memory chunks allocated from the operating system for spaces are cached among all
spaces for a single thread. This cache for the current thread can be flushed by invoking the
flush() member function of Space.

Variable implementations, propagators, branchers, view arrays, for example, are allocated
from their home space. An important characteristic is that all these data structures have
fixed size throughout their lifetimes or even shrink. As space-allocated memory is managed
for later reusal if it is freed, frequent allocation/reallocation/deallocation leads to highly
fragmented memory with little chance of reusal. Hence, space-allocated memory is absolutely

unsuited for data structures that require frequent allocation/deallocation and/or resizing. For
these data structures it is better to use the heap or freelists, if possible. See Section 31.2 for
more information.

Note that space-allocated memory is available with allocators compatible with the C++

STL, see Using allocators with Gecode.

Region. A region is a chunk of memory for temporary data structures with very ef-
ficient allocation and deallocation (again, its exact size is defined in the namespace
Kernel::MemoryConfig). The code fragment

Region r;

creates a new region r for memory management (see Region memory management). A re-
gion does not impose any size limit on the memory blocks allocated from it. If necessary, a
region transparently falls back to heap-allocated memory.

400

https://www.gecode.org/doc/6.2.0/reference/group__FuncMemSpace.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Kernel_1_1MemoryConfig.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html
https://www.gecode.org/doc/6.2.0/reference/group__FuncMemAllocator.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Kernel_1_1MemoryConfig.html
https://www.gecode.org/doc/6.2.0/reference/group__FuncMemRegion.html

Several regions can exist simultaneously. For example,

Region r1;

int* i = r1.alloc<int>(n);

Region r2;

int* j = r2.alloc<int>(m);

· · ·

The speciality of a region is that it does not require free() operations. If a region is
destructed, all memory allocated from it is freed. Even though a region does not require
free() operations, it can profit from it: if the memory allocated last is freed first, the freed
memory becomes immediately available for future allocation.

Tip 31.1 (Freeing memory explicitly). In order to make best use of the memory provided by
a region you can explicitly deallocate it. It is good practice to tie the expelicit deallocation to
scoping units. For example, suppose that in the following example

Region r;

{

int* i = r.alloc<int>(n);

· · ·
}

{

int* i = r.alloc<int>(n);

· · ·
}

the memory allocated for i is not used outside the two blocks. Then it is in fact better to
rewrite the code to:

Region r;

{

int* i = r.alloc<int>(n);

· · ·
r.free();

}

{

int* i = r.alloc<int>(n);

· · ·
r.free();

}

Then both blocks will have access to the full memory of the region. ◭

401

Heap. The heap (a global variable, see Heap memory management) is nothing but a C++-
wrapper around memory allocation functions typically provided by the underlying operating
system. In case memory is exhausted, an exception of type MemoryExhausted is thrown. The
default memory allocator can be replaced by a user-defined memory allocator as discussed
below.

Tip 31.2 (Memory alignment). Memory allocated from the heap or a region is aligned as de-
fined by the maximum std::max_align_t and the macro GECODE_MEMORY_ALIGNMENT.
This is not true for memory allocated from a space, which is aligned by
GECODE_MEMORY_ALIGNMENT. If differently aligned memory is needed for storing data
structures for a space, it is recommended to manage that memory explicitly by allocating it
from the heap instead.

However, the macro GECODE_MEMORY_ALIGNMENT can be defined when Gecode is com-
piled. ◭

Using a different memory allocator. The heap object uses an object allocator of class
Support::Allocator. The class provides the basic operations for allocation, re-allocation,
de-allocation, and copying of memory areas. By default, the allocator object uses functions
such as malloc() and free() from the underlying operating system.

If a different allocator is needed, Gecode can be configured to not enable the default
allocator (see Section 2.6.3). If Gecode has been configured without the default allocator
the macro GECODE_ALLOCATOR is undefined. Then an Allocator class must be defined in
the namespace Gecode::Support that implements the interface shown in Figure 31.1. The
declaration must occur before any Gecode header file is included.

Space-allocated freelists. Freelists are allocated from space memory. Any object to be
managed by a freelist must inherit from the class FreeList which already defines a pointer
to a next freelist element. The sizes for freelist objects are quite constrained, check the values
fl_size_min and fl_size_max as defined in the namespace Kernel::MemoryConfig.

Allocation and deallocation is available through the member functions fl_alloc() and
fl_dispose() of the class Space.

31.2 Managing propagator state

Many propagators require sophisticated data structures to perform propagation. The data
structures are typically kept between successive executions of a propagator. There are two
main issues for these data structures: where to allocate them and when to allocate them.

Where to allocate. Typically, the data structures used by a propagator are of dynamic size
and hence cannot be stored in a simple member of the propagator. This means that the prop-
agator is free to allocate the memory from either its own space or from the heap. Allocation

402

https://www.gecode.org/doc/6.2.0/reference/group__FuncMemHeap.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MemoryExhausted.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Support_1_1Allocator.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1FreeList.html
https://www.gecode.org/doc/6.2.0/reference/namespaceGecode_1_1Kernel_1_1MemoryConfig.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html

#ifndef GECODE_ALLOCATOR

namespace Gecode { namespace Support {

class Allocator {

public:

// Default constructor

Allocator(void);

// Allocate memory block of size n

void* alloc(size_t n);

// Return address of reallocated memory block p of size n

void* realloc(void* p, size_t n);

// Free memory block p

void free(void* p);

// Copy n bytes from s to d and return d

void* memcpy(void *d, const void *s, size_t n);

};

}}

#endif

Figure 31.1: Declaration of an Allocator class

403

from the heap could also mean to use other operations to allocate and free memory, such as
malloc() and free() provided by the operating system or new and delete provided by C++.

In case the data structure does not change its size often, it is best to allocate from a space:
allocation is more efficient and deallocation is automatic when the space is deleted.

In case the data structure requires frequent reallocation operations, it is better to allo-
cate from the heap. Then, the memory will not be automatically freed when a space is
deleted. The memory must be freed by the propagator’s dispose() function. Furthermore,
the Gecode kernel must be informed that the dispose() function must be called when the
propagator’s home space is deleted, see Section 23.9.

When to allocate. An important fact on which search engines in Gecode rely (see Part S)
is that they always store a space created by cloning for backtracking and never a space that
has already been used for propagation. The reason is that in order to perform propagation,
the propagators, variables, and branchers might require some additional memory. Hence, a
space that has performed propagation is likely to require more memory than a pristine clone.
As the spaces stored by a search engine define the total amount of memory allocated for
solving a problem with Gecode, it pays to save memory by storing pristine clones.

The most obvious policy is to allocate eagerly: the data structures are allocated when the
propagator is created and they are copied exactly when the propagator is copied.

However, very often it is better to lazily recompute the data structures as follows. The
data structures are initialized and allocated the first time a propagator is executed. Likewise,
the data structures are not copied and construction is again postponed until the propagator
is executed again. Creating and allocating data structures lazily is often as simple as cre-
ating them eagerly. The benefit is that clones of spaces on which no propagation has been
performed yet require considerably less memory.

Most propagators in Gecode that require involved data structures construct their data
structures lazily (for example, the propagator for domain consistent distinct using the al-
gorithm from [46], see Int::Distinct::Dom). Some use a hybrid approach where some data
structures are created eagerly and others lazily (for example the propagator for extensional
for finite automata using the algorithm from [41], see Int::Extensional::LayeredGraph).

31.3 Shared objects and handles

A common request for managing a data structure (we will refer to data structure here just as
object) is that it is used and shared by several propagators or branchers from different spaces
possibly executed by parallel threads. Gecode provides shared objects and shared handles for
this form of sharing.

A shared object is heap-allocated and is referred to by several shared handles. If the last
shared handle is deleted, also the shared object is deleted (implemented by efficient thread-
safe reference counting).

Figure 31.2 shows a simple example of a shared object and the shared handle using the
object. A shared object SIO (for Shared Integer Object) stores a single integer data to be

404

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1Distinct_1_1Dom.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Int_1_1Extensional_1_1LayeredGraph.html

SHARED OBJECT AND HANDLE ≡ [DOWNLOAD]

· · ·
class SI : public SharedHandle {

protected:

class SIO : public SharedHandle::Object {

public:

int data;

SIO(int d) : data(d) {}

virtual ~SIO(void) {}

};

public:

SI(int d)

: SharedHandle(new SIO(d)) {}

SI(const SI& si)

: SharedHandle(si) {}

SI& operator =(const SI& si) {

return static_cast<SI&>(SharedHandle::operator =(si));

}

int get(void) const {

return static_cast<SIO*>(object())->data;

}

void set(int d) {

static_cast<SIO*>(object())->data = d;

}

~SI(void) {}

};

Figure 31.2: A simple shared object and handle

405

https://www.gecode.org/doc/6.2.0/MPG/shared-object-and-handle.cpp

shared (normally, this will be an interesting data structure). A shared object must inherit
from SharedHandle::Object and can define a virtual destructor if needed.

The shared handle SI (for Shared Integer) is the only class that has access to a shared ob-
ject of type SIO. A shared handle must inherit from SharedHandle and can use the object()

member function to access and update its shared object.
Shared integer arrays are an example for shared objects, see Tip 4.8.

31.4 Local objects and handles

For some applications, it is necessary to share data structures between different propagators
(and/or branchers, see Part B) that belong to the same space. For example, several schedul-
ing propagators might record precedences between tasks in a shared data structure. Local

objects and local handles implement this form of sharing.
A local object is space-allocated and is referred to by several local handles. A local object

is deleted when its home space is deleted. Local handles provide an update() function that
creates a new copy of the local object when the space is cloned (while maintaining the sharing
of local objects within a space).

Figure 31.3 shows a simple local object and handle. Similar to the shared integer objects
from Figure 31.2, the local integer objects here provide shared access to a single integer.
However, this integer object is copied whenever the space is copied, so changes to the object
are kept within the same space.

If a local object additionally allocates external resources or non-space allocated memory,
it must inform its home space about this fact, very much like propagators (see Section 23.9).
Figure 31.4 shows a local object and handle that implement an array of integers. In the
constructor and the dispose function, the local object registers and de-registers itself for
disposal using AP_DISPOSE.

406

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SharedHandle_1_1Object.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SharedHandle.html

LOCAL OBJECT AND HANDLE ≡ [DOWNLOAD]

· · ·
class LI : public LocalHandle {

protected:

class LIO : public LocalObject {

public:

int data;

LIO(Space& home, int d) : LocalObject(home), data(d) {}

LIO(Space& home, LIO& l)

: LocalObject(home,l), data(l.data) {}

virtual LocalObject* copy(Space& home) {

return new (home) LIO(home,*this);

}

virtual size_t dispose(Space&) { return sizeof(*this); }

};

public:

LI(Space& home, int d)

: LocalHandle(new (home) LIO(home,d)) {}

LI(const LI& li)

: LocalHandle(li) {}

LI& operator =(const LI& li) {

return static_cast<LI&>(LocalHandle::operator =(li));

}

int get(void) const {

return static_cast<LIO*>(object())->data;

}

void set(int d) {

static_cast<LIO*>(object())->data = d;

}

};

Figure 31.3: A simple local object and handle

407

https://www.gecode.org/doc/6.2.0/MPG/local-object-and-handle.cpp

LOCAL OBJECT WITH EXTERNAL RESOURCES ≡ [DOWNLOAD]

· · ·
class LI : public LocalHandle {

protected:

class LIO : public LocalObject {

public:

int* data;

int n;

LIO(Space& home, int n0)

: LocalObject(home), data(heap.alloc<int>(n0)), n(n0) {

home.notice(*this,AP_DISPOSE);

}

LIO(Space& home, LIO& l)

: LocalObject(home,l), data(l.data) {}

virtual LocalObject* copy(Space& home) {

return new (home) LIO(home,*this);

}

virtual size_t dispose(Space& home) {

home.ignore(*this,AP_DISPOSE);

heap.free<int>(data,n);

return sizeof(*this);

}

};

public:

· · ·
int operator [](int i) const {

return static_cast<const LIO*>(object())->data[i];

}

int& operator [](int i) {

return static_cast<LIO*>(object())->data[i];

}

};

Figure 31.4: A local object and handle with external resources

408

https://www.gecode.org/doc/6.2.0/MPG/local-object-with-external-resources.cpp

B

Programming branchers
Christian Schulte

This part presents how to program branchers as implementations of branchings.
Chapter 32 (Getting started) shows how to implement simple branchers. More advanced

topics are discussed in Chapter 33 (Advanced topics).
How to implement a whole array of variable-value branchings (a need that typically arises

when implementing new variables) is discussed in Chapter 38 of Part B.

32 Getting started

This chapters presents how to program branchers as implementations of branchings. It fo-
cuses on the basic concepts for programming branchers, more advanced topics are discussed
in Chapter 33.

Important. You need to read about search and programming propagators before reading
this chapter. For search, you need to read Chapter 9 first, in particular Section 9.1. For
programming propagators, the initial Chapter 23 is sufficient.

Overview. Section 32.1 sets the stage for programming branchers by explaining how search
engines, spaces, and branchers together implement the branching process during search. A
simple brancher is used as an initial example in Section 32.2. A brancher that chooses its
views for branching according to some criterion is demonstrated in Section 32.3.

32.1 What to implement?

A branching is used in modeling for describing the shape of the search tree. A brancher

implements a branching. That is, a branching is similar to a constraint, whereas a brancher
is similar to a propagator. Branchings take variables as arguments and branchers compute
with variable views.

Brancher order. Creating a brancher registers it with its home space. A space maintains
a queue of its branchers in that the brancher that is registered first is also used first for
branching. The first brancher in the queue of branchers is referred to as the current brancher.

Executing branchers. A brancher in Gecode is implemented as a subclass of the class
Brancher. Similar to a propagator, a brancher must implement several virtual member func-
tions defining the brancher’s behavior.

The most important functions of a brancher can be sketched as follows:

■ The status() function tests whether the current brancher has anything left to do.

■ The choice() function creates a choice that describes the next alternatives for search.
The choice must be independent of the brancher’s home space, and must contain all
necessary information for the alternatives.

411

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Brancher.html

■ The commit() function takes a previously created choice and commits to one of the
choice’s alternatives. Note that commit() must use only the information in the choice,
the domains of the brancher’s views might be weaker, stronger, or incomparable to the
domains when the choice was created (due to recomputation, see Section 42.2.1).

■ The print() function takes a previously created choice and prints some information
of one of the choice’s alternatives.

■ The ngl() function takes a previously created choice and returns a no-good literal which
then can be used as part of a no-good (see also Section 9.6). The no-good literal is an
implementation of a typically simple constraint that corresponds to an alternative as
described by the choice. No-good literals are mostly orthogonal to the other functions
and are hence discussed in the next chapter in section Section 33.2.

Branchers and propagators are both actors, they both inherit from the class Actor. That
entails that copying and disposal of branchers is the same as it is for propagators and hence
does not require any further discussion (see Section 23.3). Also memory management is
identical, see Chapter 31.

How branchers execute is best understood when studying the operations that are per-
formed by a search engine on a space.

Status computation. A search engine calls the status() function of a space to determine
whether a space is failed, solved, or must be branched on. When the status() function of
a space is executed, constraint propagation is performed as described in Section 23.1. If the
space is failed, status() returns the value SS_FAILED (a value of type SpaceStatus, see
Programming search engines).

Assume that constraint propagation has finished (hence, the space is stable) and the space
is not failed. Then, status() computes the status of the current brancher. The status of a
brancher is computed by the virtual status() member function a brancher implements. If
the brancher’s status() function returns false, the space’s status() function tries to select
the next brancher in the queue of branchers as the current brancher. If there are no branchers
left in the queue of branchers, the space’s status() function terminates and reports that the
space is solved (by returning SS_SOLVED). Otherwise the process is repeated until the space
has a current brancher such that its status() function has returned true. In this case, the
space’s status() function returns SS_BRANCH to signal to the search engine that the space
requires branching.

The status() function of a brancher does not do anything to actually perform branching,
it just checks whether there is something left to do for the brancher (for example, whether
there are unassigned views left in an array of views to be branched on).

Choice creation. In case the space’s status() function has returned SS_BRANCH, the search
engine typically branches. In order to actually branch, the search engine must know how to
branch. To keep search engines orthogonal to the space type they compute with (that is,

412

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Actor.html
https://www.gecode.org/doc/6.2.0/reference/group__TaskSearch.html

the problem a search engine tries to find solutions for), a search engine can request a choice

as a description of how to branch. With a choice, a search engine can commit a space to
a particular alternative as defined by the choice. Alternatives are numbered from zero to
the number of alternatives minus one, where the number of alternatives is defined by the
choice. A choice is specific to a brancher and must provide sufficient information such that
the brancher together with the choice can commit to all possible alternatives.

A search engine requests the computation of a choice by executing the choice() function
of a space. The space’s choice() function does nothing but returning the choice created by
the choice() function of the current brancher. Let us postpone the discussion of how a choice
can store the information needed for branching. A choice always provides two important
pieces of information:

■ The number of its alternatives (an unsigned integer greater than zero) is available
through the function alternatives().

■ A unique identity inherited from the brancher that has created the choice. This infor-
mation is not available to a programmer but makes it possible for a space to find the
corresponding brancher for a given choice (to be detailed below).

A search engine must execute the choice() function of a space immediately after execut-
ing the space’s status() function. Any other action on the space (such as adding propaga-
tors or modifying views) might change the current brancher of the space and hence choice()
might fail to compute the correct choice.

Committing to alternatives. Assume that the engine has a choice ch with two alternatives
and that the engine has created a clone c of the current space s by1

Space* c = s->clone();

The search engine typically commits s to the first alternative (the alternative with num-
ber 0) as defined by the space and later it might commit c to the second alternative (the
alternative with number 1). Let us first consider committing the space s to the first alterna-
tive by:

s->commit(*ch,0);

The space’s commit() function attempts to find a brancher that corresponds to the choice ch

(based on the identity that is stored by the choice). Assume, the space’s commit() function
finds a brancher b. Then it invokes the commit() function of the brancher b as follows:

b.commit(*s,*ch,0);

1Note that search engines compute with pointers to spaces and choices rather than references, hence s, c,
and ch are pointers.

413

Now the brancher b executes its commit() function. The function typically modifies a view
as defined by the choice (*ch in our example) and the number of the alternative (0 in our
example) passed as arguments. The brancher’s commit() function must return an executions
status that captures whether the operations performed by commit() have failed (ES_FAILED
is returned) or not (ES_OK is returned).

If the space’s commit() function does not find a brancher that corresponds to the choice
ch, an exception of type SpaceNoBrancher is thrown. The reason for being unable to find a
corresponding brancher is that the search engine is implemented incorrectly (see Part S).

At some later time, the search engine might decide to explore the second alternative of
the choice ch by using the clone c:

c->commit(*ch,1);

Then, the commit() function of the space c tries to find the brancher corresponding to ch.
This of course will be a different brancher in a different space: however, the brancher found
will be a copy of the brancher b.

More on choices. A consequence of the discussion of commit() is that choices cannot store
information that belongs to a particular space: the very idea of a choice is that it can be used
with different spaces (above: original and clone)! That also entails that a choice is allocated
independently from any space and must be deleted explicitly by a search engine.

Consider as an example a brancher that wants to create the choice (xi = n) ∨ (xi 6= n)

where x is an array of integer views (that is, xi = n is alternative 0 and xi 6= n is alternative 1).
The choice is not allowed to store xi directly (as xi belongs to a space), instead it stores the
position i in the array x and the integer value n. When the brancher’s commit() function is
executed, the brancher provides the view array x (the part that is specific to a space) and
the choice provides the position i and the value n (the parts that are space-independent). A
choice must inherit from the class Choice.

Even more on (archives of) choices. Branchers and choices must support one more op-
eration, the (un-)archiving of choices. Archiving enables choices to be used not only in the
same search engine with a different space, but transferred to a search engine in a different
process, possibly on a different computer. The main application for this are distributed search
engines.

An Archive is simply an array of unsigned integers, which is easy to transmit e.g. over
a network. Every choice must implement a virtual archive() member function, which in
turn calls archive() on the super class and then writes the contents of the choice into the
archive. Conversely, branchers must implement a virtual choice() member function that
gets an archive as the argument and returns a new choice.

Brancher invariants and life cycle. The very idea of a choice is that it is a space-
independent description of how to perform commits on a space. Consider the following
example scenario: a search engine has a space s and a clone c of s. Then, the search engine

414

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SpaceNoBrancher.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Choice.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Archive.html

explores part of the search tree starting from s and stores a sequence of choices while ex-
ploring. Then, the engine wants to recompute a node in the search tree and uses the clone c

for it: it can recompute by performing commits with the choices it has stored.

In this scenario, the brancher to which the choices correspond must be able to perform
the commits as described by the choices. That in particular entails that a brancher cannot
modify its state arbitrarily: it must always guarantee that choices it created earlier (actually,
that a copy of it created earlier) can be interpreted correctly.

The status() and choice() functions of a brancher can be seen as being orthogonal to
its commit() function. The former functions compute new choices. The latter function must
be capable to commit according to other choices that are unrelated to the choice that might
be computed by the choice() function. Even if the status() function of a brancher has
already returned false, the brancher must still be capable of performing commits. Hence, a
brancher cannot be disposed immediately when its status() returns false.

Spaces impose an important invariant on the use of its commit() and choice() function.
After having executed the choice() function, no calls to commit() are allowed with choices
created earlier (that is, choice() invalidates all previously created choices for commit()).
That also clarifies when branchers are disposed: the choice() function of a space disposes
all branchers for which their status() functions have returned false before. This invariant
is essential for recomputation, see Section 42.2.1.

Garbage collection of branchers. As the choice() function of a space performs garbage
collection of branchers, it can also be called in case the space’s status() function returned
SS_SOLVED (signaling that no more branchers are left). In this case, the branchers are garbage
collected but no choice is returned (instead, NULL is returned). See Section 41.2 for an ex-
ample and Section 41.1 for a discussion.

32.2 Implementing a nonemin branching

This section presents an example for a branching and its implementing brancher.

The branching

void nonemin(Home home, const IntVarArgs& x);

branches by selecting the first unassigned variable xi in x and tries to assign xi to the smallest
possible value of xi.

That is, nonemin is equivalent to the predefined branching (see Section 8.2) used as

branch(home, x, INT_VAR_NONE(), INT_VAL_MIN());

For examples of problem-specific branchers see Chapter 19 and Chapter 20.

415

NONE MIN ≡ [DOWNLOAD]

· · ·
class NoneMin : public Brancher {

protected:

ViewArray<Int::IntView> x;

◮ CHOICE DEFINITION

public:

NoneMin(Home home, ViewArray<Int::IntView>& x0)

: Brancher(home), x(x0) {}

static void post(Home home, ViewArray<Int::IntView>& x) {

(void) new (home) NoneMin(home,x);

}

· · ·
◮ STATUS

◮ CHOICE

◮ COMMIT

◮ PRINT

};

void nonemin(Home home, const IntVarArgs& x) {

if (home.failed()) return;

ViewArray<Int::IntView> y(home,x);

NoneMin::post(home,y);

}

Figure 32.1: A branching and brancher for nonemin

416

https://www.gecode.org/doc/6.2.0/MPG/none-min.cpp

32.2.1 A naive brancher

Figure 32.1 shows the class NoneMin implementing the brancher for the branching nonemin.
NoneMin inherits from the class Brancher. The branching post function creates a view array
and posts a brancher of class NoneMin. The brancher post function does not return an execu-
tion status as posting a brancher does not fail (in contrast to a propagator post function, see
Section 23.4). The constructor as well as the brancher post function of NoneMin are exactly
as to be expected from our knowledge on implementing propagators (of course, branchers
do not use subscriptions).

Status computation. The status computation of a NoneMin brancher is straightforward.
The status() function scans all views in the view array x and returns true if there is an
unassigned view left:

STATUS ≡
virtual bool status(const Space& home) const {

for (int i=0; i<x.size(); i++)

if (!x[i].assigned())

return true;

return false;

}

Choice computation. Computing the choice for a brancher involves two aspects: the def-
inition of the class for the choice object and the choice() member function of a brancher
that creates choice objects.

The choice object PosVal inherits from the class Choice. The information that is required
for committing is which view and which value should be used. As discussed above, the PosVal
choice does not store the view directly, but the position pos of the view in the view array x.
A PosVal choice stores both position and value as integers as follows:

CHOICE DEFINITION ≡
class PosVal : public Choice {

public:

int pos; int val;

PosVal(const NoneMin& b, int p, int v)

: Choice(b,2), pos(p), val(v) {}

virtual void archive(Archive& e) const {

Choice::archive(e);

e << pos << val;

}

};

The constructor of PosVal uses the constructor of Choice for initialization, where both
the brancher b and the number of alternatives of the choice (2 for PosVal) are passed as

417

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Brancher.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Choice.html

arguments. The archive() function calls Choice::archive() and then writes the position
and value to the archive.

The choice(Space& home) member function of the brancher is called directly (by the
choice(Space& home) function of a space) after the status() function of the brancher in
case the status() of the brancher has returned true. That is, the brancher is the current
brancher of the space and still needs to create choices for branching. For a NoneMin brancher
that means that there is definitely a not yet assigned view in the view array x, and that the
brancher must choose the first unassigned view:

CHOICE ≡
virtual Choice* choice(Space& home) {

for (int i=0; true; i++)

if (!x[i].assigned())

return new PosVal(*this,i,x[i].min());

GECODE_NEVER;

return NULL;

}

virtual Choice* choice(const Space&, Archive& e) {

int pos, val;

e >> pos >> val;

return new PosVal(*this, pos, val);

}

The choice(Space& home) function returns a new PosVal object for position i and the
smallest value of x[i]. The choice(const Space&, Archive& e) function creates a choice
from the information contained in the archive.

Tip 32.1 (Never execute). The macro GECODE_NEVER states that it will never be executed.
If compiled in debug mode, GECODE_NEVER corresponds to the assertion assert(false). If
compiled in release mode, the macro informs the compiler (depending on the platform) that
GECODE_NEVER is never executed so that the compiler can take advantage of this information
for optimization. ◭

Committing to alternatives. The commit() function of NoneMin can safely assume that
the choice c passed as argument is in fact an object pv of class PosVal. This is due to the
fact that the space commit() function uses the identity stored in a choice object to find the
corresponding brancher.

418

COMMIT ≡
virtual ExecStatus commit(Space& home,

const Choice& c,

unsigned int a) {

const PosVal& pv = static_cast<const PosVal&>(c);

int pos=pv.pos, val=pv.val;

if (a == 0)

return me_failed(x[pos].eq(home,val)) ? ES_FAILED : ES_OK;

else

return me_failed(x[pos].nq(home,val)) ? ES_FAILED : ES_OK;

}

From the PosVal object the position of the view pos and the value val are extracted.
Then, if the commit is for the first alternative (a is 0), the brancher assigns the view x[pos] to
val using the view modification operation eq (see Figure 23.5). If the modification operation
returns a modification event signaling failure, me_failed is true and hence the execution
status ES_FAILED is returned. Otherwise, ES_OK is returned as execution status. If the commit
is for the second alternative (a is 1), the value val is excluded from the view x[pos].

Printing information on alternatives. The print() function of NoneMin is straightfor-
ward, it prints on the standard output stream o information about an alternative (it prints
what commit() does):

PRINT ≡
virtual void print(const Space& home, const Choice& c,

unsigned int a,

std::ostream& o) const {

const PosVal& pv = static_cast<const PosVal&>(c);

int pos=pv.pos, val=pv.val;

if (a == 0)

o << "x[" << pos << "] = " << val;

else

o << "x[" << pos << "] != " << val;

}

The print() function is used for displaying information about alternatives explored dur-
ing search. For example, it is used in Gist (see Section 10.3.4) or can be used in other search
engines (see Tip 41.1).

32.2.2 Improving status and choice

The status() and choice() functions of NoneMin as defined in Figure 32.1 are inefficient
as they always inspect the entire view array for finding the first unassigned view.

419

NONE MIN IMPROVED ≡ [DOWNLOAD]

· · ·
class NoneMin : public Brancher {

protected:

ViewArray<Int::IntView> x;

mutable int start;

· · ·
virtual bool status(const Space& home) const {

for (int i=start; i<x.size(); i++)

if (!x[i].assigned()) {

start = i; return true;

}

return false;

}

virtual Choice* choice(Space& home) {

return new PosVal(*this,start,x[start].min());

}

· · ·
};

· · ·

Figure 32.2: An improved brancher for nonemin

420

https://www.gecode.org/doc/6.2.0/MPG/none-min-improved.cpp

SIZE MIN ≡ [DOWNLOAD]

· · ·
class SizeMin : public Brancher {

· · ·
virtual Choice* choice(Space& home) {

int p = start;

unsigned int s = x[p].size();

for (int i=start+1; i<x.size(); i++)

if (!x[i].assigned() && (x[i].size() < s)) {

p = i; s = x[p].size();

}

return new PosVal(*this,p,x[p].min());

}

· · ·
};

· · ·

Figure 32.3: A brancher for sizemin

The brancher shown in Figure 32.2 stores an integer start to remember which of the
views in x are already assigned. The brancher maintains the invariant that all xi are assigned
for 0≤ i < start. The value of start will be updated by the status() function which must
be declared as const. As start is updated by a const-function, it is declared as mutable.

The choice() function of an improved NoneMin brancher can rely on the fact that
x[start] is the first unassigned view in the view array x.

32.3 Implementing a sizemin branching

This section presents an example for a brancher that implements a more interesting selection
of the view to branch on. The branching

void sizemin(Home home, const IntVarArgs& x);

branches by selecting the variable in x with smallest domain size first and tries to assign
the selected variable to its smallest possible value. That is, sizemin is equivalent to the
predefined branching (see Section 8.2) if used as

branch(home, x, INT_VAR_SIZE_MIN(), INT_VAL_MIN());

Figure 32.3 shows the brancher SizeMin implementing the sizemin branching. The
status() function is not shown as it is exactly the same function as for NoneMin from the pre-
vious section: after all, the brancher is done only after all of its views are assigned. Likewise,
the PosVal choice and the commit() and print() functions are unchanged.

421

https://www.gecode.org/doc/6.2.0/MPG/size-min.cpp

The choice() function uses the integer p for the position of the unassigned view with the
so-far smallest domain size and the unsigned integer s for the so-far smallest size. Then, all
views that are not known to be assigned are scanned to find the view with smallest domain
size. Keep in mind that due to the invariant enforced by the brancher’s status() function,
x[start] is not assigned.

It is absolutely essential to skip already assigned views. If assigned views were not
skipped, then the same choice would be created over and over again leading to an infinite
search tree.

422

33 Advanced topics

This chapters presents advanced topics for programming branchers as implementations of
branchings.

Overview. Section 33.1 presents a specialized brancher for assigning views rather than
branching on them. How branchers support no-goods is discussed in Section 33.2. Variable
views for branchers are discussed in Section 33.3.

33.1 Assignment branchers

This section presents an example for a brancher that assigns all of its views rather than
branches on its views. The branching

void assignmin(Home home, const IntVarArgs& x);

assigns all variables in x to their smallest possible value. That is, assignmin is equivalent to
the predefined branching (see Section 8.13) used as

assign(home, x, INT_ASSIGN_MIN());

Figure 33.1 shows the relevant parts of the brancher AssignMin. Unsurprisingly, both the
status() and choice() function are identical to those shown in Figure 32.2 (and hence are
omitted).

The changes concern the created choice of type PosVal: the constructor now initializes
a choice with a single alternative only (the second argument to the call of the constructor
Choice). The commit() function is a specialized version of the commit() function defined
in Figure 32.2. It only needs to be capable of handling a single alternative. The same holds
true for the print() function.

33.2 Supporting no-goods

Supporting no-goods by a brancher is straightforward: every brancher has a virtual member
function ngl() (for no-good literal) that takes the same arguments as the commit() mem-
ber function: a space, a choice, and the number of the alternative and returns a pointer

423

ASSIGN MIN ≡ [DOWNLOAD]

· · ·
class AssignMin : public Brancher {

· · ·
class PosVal : public Choice {

public:

int pos; int val;

PosVal(const AssignMin& b, int p, int v)

: Choice(b,1), pos(p), val(v) {}

· · ·
};

· · ·
virtual ExecStatus commit(Space& home,

const Choice& c,

unsigned int a) {

const PosVal& pv = static_cast<const PosVal&>(c);

int pos=pv.pos, val=pv.val;

return me_failed(x[pos].eq(home,val)) ? ES_FAILED : ES_OK;

}

· · ·
};

· · ·

Figure 33.1: A brancher for assignmin

424

https://www.gecode.org/doc/6.2.0/MPG/assign-min.cpp

to a no-good literal of class NGL. The ngl() function is called during no-good genera-
tion (see Section 9.6) and the returned no-good literal is then used by a no-good propa-
gator that propagates the no-goods (if you are curious, the propagator is implemented by
Search::NoGoodsProp).

By default, the ngl() function of a brancher returns NULL, which means that the brancher
does not support no-goods. In order to support no-goods, a brancher must redefine the
ngl() function and must define a class (or several classes) for the no-good literals to be
returned. The class EqNGL implementing a no-good literal for equality and the ngl() function
is shown in Figure 33.2. Otherwise, the brancher is the same as the nonemin brancher shown
in Figure 32.2.

33.2.1 Returning no-good literals

The ngl() function of a brancher has the following options:

■ As mentioned above, it can always return NULL and hence the brancher does not support
no-goods.

■ It returns for each alternative of a choice a no-good literal. For our NoneMin brancher
this would entail that when ngl(home,c,0) is called, it returns a no-good literal imple-
menting equality between a view and an integer that corresponds to the first alternative
(for a given space home and a choice c).

For the second alternative ngl(home,c,1) a no-good literal implementing disequality
should be returned. This would work, but the brancher can do better than that as is
explained below.

■ When ngl(home,c,a) is called for an alternative where a > 0 with a space home and
a choice c and a is the last alternative (for NoneMin, a = 1) and the last alternative is
the logical negation of all other alternatives, then the ngl() function can return NULL

as an optimization.

Assume that the alternatives of a choice are

l0 ∨ . . .∨ ln−1

where n is the arity of the choice and it holds that

(l0 ∨ . . .∨ ln−2)⇔¬ln−1

is true, then the ngl() function can return NULL for the last alternative (that is, for the
alternative n− 1).

Note that this optimization implements the very same idea as discussed at the beginning
of Section 9.6. Note also that this property is typically only true for branchers with
binary choices such as in our example.

425

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1NGL.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Search_1_1NoGoodsProp.html

NONE MIN WITH NO-GOOD SUPPORT ≡ [DOWNLOAD]

· · ·
class EqNGL : public NGL {

protected:

Int::IntView x; int n;

public:

EqNGL(Space& home, Int::IntView x0, int n0)

: NGL(home), x(x0), n(n0) {}

EqNGL(Space& home, EqNGL& ngl)

: NGL(home, ngl), n(ngl.n) {

x.update(home, ngl.x);

}

◮ STATUS

◮ PRUNE

◮ SUBSCRIBE AND CANCEL

◮ RE-SCHEDULING

virtual NGL* copy(Space& home) {

return new (home) EqNGL(home,*this);

}

virtual size_t dispose(Space& home) {

(void) NGL::dispose(home);

return sizeof(*this);

}

};

class NoneMin : public Brancher {

· · ·
public:

· · ·
◮ NO-GOOD LITERAL CREATION

};

· · ·

Figure 33.2: Branching for nonemin with no-good support

426

https://www.gecode.org/doc/6.2.0/MPG/none-min-with-no-good-support.cpp

In our example, the second alternative is indeed the negation of the first alternative.
Hence the following ngl() function implements no-good literal creation and only requires a
single class EqNGL for no-good literals implementing equality:

NO-GOOD LITERAL CREATION ≡
virtual NGL* ngl(Space& home, const Choice& c,

unsigned int a) const {

const PosVal& pv = static_cast<const PosVal&>(c);

int pos=pv.pos, val=pv.val;

if (a == 0)

return new (home) EqNGL(home, x[pos], val);

else

return NULL;

}

33.2.2 Implementing no-good literals

No-good literals implement constraints that correspond to alternatives of choices. But instead
of implementing these constraints by a propagator, they have a specialized implementation
that is used by a no-good propagator. All concepts needed to implement a no-good literal are
concepts that are familiar from implementing a propagator.

A no-good literal inherits from the class NGL and must implement the following construc-
tors and functions:

■ Unsurprisingly, a no-good literal must implement constructors for creation and cloning
and member functions copy() for copying and dispose() for disposal. They are
straightforward and are shown in Figure 33.2.

■ It must implement a status() function that checks whether the no-good literal
is subsumed (the function returns NGL::SUBSUMED), failed (the function returns
NGL::FAILED), or neither (the function returns NGL::NONE). The return type is
NGL::Status as defined in the NGL class.

It is important to understand that the no-good propagator using no-good literals can
only perform propagation if some of its no-good literals become subsumed. Hence, the
test for subsumption used in status() should try to detect subsumption as early as
possible.

Testing subsumption for our EqNGL no-good literal is straightforward:

STATUS ≡
virtual NGL::Status status(const Space& home) const {

if (x.assigned())

return (x.val() == n) ? NGL::SUBSUMED : NGL::FAILED;

else

return x.in(n) ? NGL::NONE : NGL::FAILED;

}

427

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1NGL.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1NGL.html

■ The prune() function propagates the negation of the constraint that the no-good literal
implements.

Again, the prune() function for NoneMin is straightforward:

PRUNE ≡
virtual ExecStatus prune(Space& home) {

return me_failed(x.nq(home,n)) ? ES_FAILED : ES_OK;

}

■ A no-good literal must implement a subscribe() and a cancel() function that sub-
scribe and cancel the no-good propagator to the no-good literal’s views.

As mentioned above, the earlier the status() function detects subsumption, the more
constraint propagation can be expected from the no-good propagator. Hence, it is im-
portant to choose the propagation condition for subscriptions such that whenever there
is a modification to the view that could result in subsumption the no-good propagator
is executed.

For the EqNGL no-good literal, we choose the propagation condition for subscriptions
to be Int::PC_INT_VAL (see Section 23.6 for a discussion of propagation conditions).
This choice reflects the fact that subsumption can only be decided after the view x has
been assigned:

SUBSCRIBE AND CANCEL ≡
virtual void subscribe(Space& home, Propagator& p) {

x.subscribe(home, p, Int::PC_INT_VAL);

}

virtual void cancel(Space& home, Propagator& p) {

x.cancel(home, p, Int::PC_INT_VAL);

}

■ A no-good literal must also implement a reschedule() function that re-schedules the
no-goods propagator when it is re-enabled. The reschedule() function is straightfor-
ward, following the patterns of the subscribe() and cancel() functions:

RE-SCHEDULING ≡
virtual void reschedule(Space& home, Propagator& p) {

x.reschedule(home, p, Int::PC_INT_VAL);

}

In case a no-good literal uses members that must be deallocated when the home-space is
deleted, the no-good literal’s class must redefine the virtual member functions notice() and
dispose(), for example by:

428

NONE MIN AND NONE MAX ≡ [DOWNLOAD]

· · ·
template<class View>

class NoneMin : public Brancher {

· · ·
};

void nonemin(Home home, const IntVarArgs& x) {

· · ·
}

void nonemax(Home home, const IntVarArgs& x) {

if (home.failed()) return;

ViewArray<Int::MinusView> y(home,x.size());

for (int i=x.size(); i--;)

y[i]=Int::MinusView(x[i]);

NoneMin<Int::MinusView>::post(home,y);

}

Figure 33.3: Branchings for nonemin and nonemax

virtual bool notice(void) const {

return true;

}

virtual size_t dispose(Space& home) {

· · ·
}

If notice() returns true, the no-good propagator ensures that the no-good literal’s
dispose() function is called whenever the propagator’s home-space is deleted.

33.3 Using variable views

Variable views can also be used for reusing branchers to obtain several branchings, similar to
reusing propagators for several constraints, see Chapter 28.

While in principle all different variable views introduced in Chapter 28 can be used for
branchers, the only meaningful variable view for branchers is the minus integer view (see
Section 28.1.1).

As an example consider the branchings nonemin (see Section 32.2) and nonemax where
the latter tries to assign the maximal value of a view first. The corresponding program frag-
ment is shown in Figure 33.3. The class NoneMin is made generic with respect to the type
of view it uses. Then, both nonemin and nonemax can be obtained by instantiating NoneMin

with integer views or integer minus views.

429

https://www.gecode.org/doc/6.2.0/MPG/none-min-and-none-max.cpp

430

V

Programming variables
Christian Schulte

This part explains how new variable types can be programmed with Gecode.
In order to be able to program variables, all chapters in this part should be read. The

chapters capture the following:

■ Chapter 34 (Getting started) outlines how a new variable type can be programmed for
Gecode.

■ Chapter 35 (Variable implementations) shows how the kernel-specific and variable
domain-specific aspects of a variable implementation are specified and programmed.

■ Chapter 36 (Variables and variable arrays) shows how variables and variable arrays for
modeling are programmed for a given variable implementation.

■ Chapter 37 (Views) shows how views for programming propagators and branchers are
programmed for a given variable implementation.

■ Chapter 38 (Variable-value branchings) explains how variable-value branchings can be
implemented from functionality provided by Gecode.

■ Chapter 40 (Putting everything together) finally explains how a new variable type can
be used with Gecode.

Important. Programming variables requires to configure and recompile Gecode from its
source code. Using one of the pre-compiled packages is not sufficient. More details can be
found in Chapter 40.

34 Getting started

This chapter outlines how a new variable type can be programmed with Gecode. The chap-
ter (and the entire part on programming variables) chooses integer interval variables as its
running example.

Overview. An overview of what needs to be designed and programmed is presented in
Section 34.1. The structure of how the implementation of a variable type is organized is
presented in Section 34.2.

Important. Programming variables requires to configure and recompile Gecode from its
source code. More details can be found in Chapter 40.

34.1 Overview

We are going to use integer interval variables as the running example for programming vari-
ables. Integer interval variables take integer values (like the integer variables that come
pre-defined with Gecode do) but their domain is defined by a lower and an upper bound
only. That is, the domain is always an interval. This is in contrast to the integer variables
that come with Gecode, where their domain can be any finite set of integer values.

The focus of this part is on understanding what needs to be done for implementing new
variables, so we deliberately choose very simple variables together with very few operations
on them as an example.

Even though integer interval variables seem not very interesting, variants of them could
in fact be interesting. For example, the integer values used for the lower and upper bound
could be integers of arbitrary precision, or instead of integer values one could choose floating
point values.

What must be programmed. Programming variables includes the following tasks:

■ Variable implementations (Chapter 35): Programming a variable implementation con-
sists of two tasks.

– The first task is to specify domain-independent aspects of a variable implemen-
tation. This includes specifying a name for the variable implementation type,

433

scope information, modification events, and propagation conditions. From a sim-
ple specification file containing this information a domain-independent base class
for a variable implementation and the corresponding C++ definitions of modifica-
tion events and propagation conditions is generated.

The generated base class together with the definition of modification events and
propagation conditions actually become part of Gecode’s kernel. The kernel needs
these definitions to schedule propagators that have subscribed to a variable im-
plementation and to maintain these subscriptions during cloning.

– The second task consists of programming the domain-dependent operations of
a variable implementation. This is achieved by defining a class for a variable
implementation that inherits from the generated, domain-independent base class
and defines the respective domain operations.

■ Variables and variable arrays (Chapter 36): As a variable is nothing but a simple and
read-only interface to a variable implementation, a variable is obtained by inheriting
from a base class for variables that depends on the variable implementation type. The
actual programming amounts to defining read-only variable operations that invoke the
corresponding operations on the variable’s variable implementation.

Variable arrays and variable argument arrays are, as variables, needed for modeling.
Their programming requires the definition of several traits classes so that the defined
arrays can be used with Gecode-provided functionality (for example, with the matrix
interface for arrays, see Section 7.2).

■ Views (Chapter 37): Programming a view depends on the type of the view: whether
the view is a direct interface to a variable implementation (a variable implementation

view), whether it is a constant view, or whether it is derived (a derived view) from some
other view. As examples, we are going to implement an integer view as a variable
implementation view, minus and offset views as derived views, and an integer constant
view as a constant view.

In addition to the classes for views, some additional functions on views must be defined
for testing in which order views are and whether two views are shared or the same (see
Section 28.1.2).

■ Constraints and branchings: typically, when implementing variables one also needs to
implement constraints and branchings for them. The implementation of constraints for
a new variable type is not in any way different from what is described in Part P.

The situation for implementing branchings is quite different: here one would want
to offer at least a common set of variable-value branchings similar to those for inte-
ger variables (see Section 8.2). Gecode offers substantial support for implementing
variable-value branchings, including support for the specification of variable and value
selection strategies, random and action-based selection of variables, tie-breaking, filter
functions, no-goods, and much more. How to use Gecode’s support for implementing
variable-value branchings is detailed in Chapter 38.

434

In case one implements reified constraints, it is possible to use these reified constraints
together with Boolean expressions and relations as provided by the MiniModel model-
ing support. For an example, please consider Section 7.1.5.

■ Tracing support (Chapter 39): in order to support variable tracing, one needs to imple-
ment a few classes.

Only so-called trace views require some effort, the remaining functionality that needs
to be implemented is straightforward and can be done by following a simple recipe.

Putting everything together. Even though we are presenting the implementation of integer
interval variables only as an example, Chapter 40 shows how everything is put together. This
includes examples of propagators, post functions using various views, and a simple script
(Golomb rulers, see Chapter 13) using integer interval variables.

It also shows how Gecode must be configured and compiled such that integer interval
variables are supported by Gecode’s kernel.

34.2 Structure

The implementation of integer interval variables is contained in a single header file int.hh,
which is shown in Figure 34.1.

Namespaces. The implementation is contained in the namespace MPG (for Modeling and
Programming with Gecode) to avoid name-clashes with functionality provided by Gecode.
To keep the implementation of integer interval variables concise, some important definitions
in the Gecode namespace are made available by using declarations (see Figure 34.1).

Similar to the organization of namespaces in Gecode, definitions that are used for mod-
eling (variables and variable arrays) are contained in the namespace MPG, while definitions
that are used for programming (variable implementations, views, branchers, and additional
support) are in the namespace MPG::Int.

As the structure of namespaces matters (part of the support for variable arrays must be
defined inside the Gecode namespace), each program fragment is shown in its appropriate
namespace.

As an example, consider the definition of exceptions. Two are thrown by the constructor
of the integer interval variable, in case the variable domain is ill-specified. The third exception
is thrown when the variable or value selection for a branching is unknown.

435

https://www.gecode.org/doc/6.2.0/MPG/int.hh

INT.HH ≡ [DOWNLOAD]

#ifndef __MPG_INT_HH__

#define __MPG_INT_HH__

· · ·
#include <gecode/kernel.hh>

using Gecode::Advisor;

· · ·

◮ EXCEPTIONS

◮ VARIABLE IMPLEMENTATION

◮ VARIABLE

◮ ARRAY TRAITS

◮ VARIABLE ARRAYS

◮ INTEGER VIEW

◮ CONSTANT INTEGER VIEW

◮MINUS VIEW

◮OFFSET VIEW

◮ BRANCHING

◮ TRACING

#endif

Figure 34.1: The header file for integer interval variables

436

https://www.gecode.org/doc/6.2.0/MPG/int.hh

The exceptions are defined as follows:

EXCEPTIONS ≡
namespace MPG { namespace Int {

class OutOfLimits : public Exception {

public:

OutOfLimits(const char* l)

: Exception(l,"Number out of limits") {}

};

class VariableEmptyDomain : public Exception {

· · ·
};

class UnknownBranching : public Exception {

· · ·
};

}}

As discussed above, Exception is Gecode::Exception (see Exception) and has been
introduced by a using declaration.

Naming scheme. The naming scheme follows the same naming scheme for integer vari-
ables as defined by Gecode (albeit defined in the namespace MPG instead of Gecode):

■ Variable implementations: The base class is named IntVarImpBase whereas the vari-
able implementation class is named IntVarImp. The names of modification events
start with ME_INT_ whereas the names of propagation conditions start with PC_INT_.
As mentioned above, these classes and identifiers are defined within the namespace
MPG::Int.

■ Variables and variable arrays: Integer interval variables are implemented by the class
IntVar. Variable arrays of integer interval variables are implemented by the class
IntVarArray, whereas the corresponding variable argument array is implemented by
the class IntVarArgs. These classes are defined in the namespace MPG.

■ Views: the respective views are implemented by classes IntView, ConstIntView,
MinusView, and OffsetView. They are all defined within the namespace MPG::Int.

■ Branchings: how variables and values are selected is implemented by functions such
as INT_VAR_NONE() or INT_VAL_MIN() and the actual branching is implemented by
a single branch() function. The good news is that no actual brancher must in fact
be implemented, even though a number of rather straightforward support definitions
must be implemented (which are contained in the namespace MPG::Int).

■ Variable tracing: variable tracers are implemented by the class IntTracer (a type def-
inition), a standard variable tracer is implemented by the class StdIntTracer, a vari-
able trace recorder by a class IntTraceRecorder (also a type definition), and an integer

437

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Exception.html

trace delta by a class IntTraceDelta. Additionally, trace views are implemented by a
class Int::IntTraceView and some traits must be defined.

Inline functions as simplification. All functions, be they member or non-member func-
tions are defined as inline. The reason for this is to make it easier to follow the example, as
only the single header file int.hh is needed. In a real implementation one would move the
definitions of some functions to a source file and only leave the declaration of the functions
in the header file. This is in particular true for many of the functions defined in Chapter 38.

438

https://www.gecode.org/doc/6.2.0/MPG/int.hh

35 Variable
implementations

This chapter describes how variable implementations can be programmed with Gecode. The
chapter uses integer interval variables as introduced in Chapter 34 as its running example.

Overview. The design of integer interval variables is detailed in Section 35.1. After having
finalized the design, Section 35.2 explains how the domain-independent base class for the
variable implementation together with definitions of modification events and propagation
conditions can be generated from a simple specification. Section 35.3 shows how the actual
variable implementation is programmed from the generated base class for a variable imple-
mentation. Section 35.4 provides an overview of additional options for generating a variable
implementation base class from its specification.

35.1 Design decisions

Before starting with the description of the implementation of integer interval variables, let
us detail their design. This includes the design of the variable domain including access and
modification operations, deltas for advisors (see Chapter 27), modification events, and prop-
agation conditions.

Variable domain and operations. Unsurprisingly, the variable domain of an integer vari-
able implementation is represented by two integers l (lower bound) and u (upper bound).
The variable implementation provides access operations min() and max() that return these
integers.

To modify an integer interval variable implementation, the operation gq(home,n) mod-
ifies the domain such that its values must be greater or equal to n, whereas the operation
lq(home,n) modifies the domain such that its values must be less or equal to n.

The values l and u can only be initialized (when creating a new variable, see Section 36.1)
and modified such that they obey the following invariants:

1. The domain is never empty, that is, l≤ u.

2. The domain values never exceed the limits defined by (INT_MAX is the largest possible
value for an int):

439

LIMITS ≡
namespace Limits {

const int max = (INT_MAX / 2) - 1;

const int min = -max;

}

That is, Int :: Limits :: min≤ l≤ u≤ Int :: Limits :: max.

The choice of values for Limits::min and Limits::max are motivated by simplicity only.
To keep the example propagators used in Chapter 40 simple, the limits are chosen such that
the addition and subtraction of two integer values within the limits do not lead to numerical
overflow. A real-life variable implementation would try to make as many values as possible
available for a variable domain, see for example Section 4.1.2.

Tip 35.1 (Correctness matters). While the decision to restrict the possible values of a variable
implementation is motivated by simplicity, the decision for a real-life variable implementation
is absolutely essential.

Being unclear about which values can correctly be maintained by a variable implemen-
tation, not ensuring that no numerical overflow occurs, or not checking for the necessary
invariants when a new variable is created, renders the very idea of constraint programming
obsolete: that whenever a solution is found by Gecode, it actually happens to be a solution.
Hence correctness does not only matter for implementing propagators and branchers but also
for getting the basic design of variables right. ◭

Assigned variables. An integer interval variable is assigned iff l= u.

Deltas for advisors. We design the delta information for an advisor computed by a mod-
ification operation on the variable implementation to be an interval as well. The interval
defines the values that are removed by a modification operation. Due to the nature of the
modification operations lq() and gq(), the removed values always form an interval.

The design of deltas to be used by advisors for a variable implementation depends directly
on the design of the modification operations provided by a variable implementation. For
example, if our integer interval variable implementation also featured an operation eq() to
assign a variable implementation to a value, then one also would have to choose a different
design for the delta information. Assume a variable implementation with domain [l .. u]
and that the modification operation eq(home,n) is executed where l < n < u. Then one
could design the delta information to either accurately represent the set of removed values
[l .. n− 1] ∪ [n+ 1 .. u] or to provide support for signaling that the domain has changed
arbitrarily (this is the design chosen for integer variables in Gecode, see Section 27.3).

Modification events. Any variable implementation must support the mandatory events for
no modification (to be implemented as ME_INT_NONE), for failure (to be implemented as
ME_INT_FAILED), and for assignment to a value (to be implemented as ME_INT_VAL).

440

The additional events must be chosen such that they take the following two aspects into
account:

■ The modification operations should return meaningful values that describe how the
domain of a variable implementation has changed. They must return ME_INT_VAL

if the variable implementation becomes assigned. Otherwise, we choose to return
ME_INT_MIN if the lower bound changes and to return ME_INT_MAX if the upper bound
changes.

■ When a new propagator is posted and the propagator subscribes to some views (and
hence to some variable implementations), the propagator must be scheduled with re-
spect to some modification event. This modification event should capture that “some-
how the variable has changed for the propagator”. In case an integer interval variable
implementation is not yet assigned (otherwise the propagator will be scheduled with
the modification event ME_INT_VAL anyway), we use an additional modification event
ME_INT_BND capturing that one or both of the bounds have changed.

Again, there is quite some degree of freedom in the choice of modification events. Another
design would be to only provide the modification event ME_INT_BND instead (apart from
the mandatory modification events). An important aspect in which design to choose is the
relation between modification events and propagation conditions to be discussed below.

Propagation conditions. To make our example variable implementations sufficiently in-
teresting, we design the propagation conditions such that they can take full advantage of the
modification events.

That is, apart from the mandatory propagation condition for not creating any subscrip-
tion (to be implemented as PC_INT_NONE) and the mandatory propagation condition for an
assigned variable implementation (to be implemented as PC_INT_VAL), we have three prop-
agation conditions as follows:

■ PC_INT_MIN: schedule a propagator if the lower bound of a variable implementation
changes.

■ PC_INT_MAX: schedule a propagator if the upper bound changes.

■ PC_INT_BND: schedule a propagator if lower or upper bound changes.

This design can also be reformulated in terms of modification events that are generated by a
modification operation:

■ PC_INT_MIN: schedule a propagator for ME_INT_VAL, ME_INT_MIN, and ME_INT_BND.

■ PC_INT_MAX: schedule a propagator for ME_INT_VAL, ME_INT_MAX, and ME_INT_BND.

■ PC_INT_BND: schedule a propagator for ME_INT_VAL, ME_INT_MIN, ME_INT_MAX, and
ME_INT_BND.

441

A simpler design would be to have the single non-mandatory propagation condition
PC_INT_BND. The decision which design is best is not straightforward, as the tradeoff be-
tween the cost for additional propagation conditions (see below) and the gain from avoiding
propagator executions depends on many different aspects. For a discussion and an evaluation
in the context of Gecode’s integer variables, see [53, Section 5].

Costs and limits for modification events and propagation conditions. The cost per each
individual modification event and propagation condition is as follows:

■ Assume that a variable implementation uses n different modification events (including
the mandatory ones). The size of n does not affect efficiency. To represent these mod-
ification events, the Gecode kernel reserves ⌈log2(n − 1)⌉ bits in each propagator for
maintaining modification event deltas, see Section 26.4.

The totally available number of bits for all variable implementation types used by
Gecode is 32 (independent of whether Gecode is run on a 32 bit or 64 bit platform).
That is, if we assume less than ten modification events per variable implementation
type, the Gecode kernel can support at least ten different variable implementation
types.1

■ The number of different propagation conditions m per variable implementation type is
only limited by the largest value of an unsigned integer in C++.

For each propagation condition, every variable implementation needs a 32-bit word,
that is a variable implementation requires at least O(m) space (which is typically
dwarfed by the space consumed for actually storing the subscriptions of a propaga-
tor or an advisor to a variable implementation).

Subscribing to a variable implementation requires O(m) time. Canceling a subscrip-
tion with propagation condition p requires O(m + k) time, where k is the number of
subscriptions with propagation condition p.

35.2 Base definitions

The variable implementation base class together with definitions of modification events and
propagation conditions are not programmed but are generated from a simple specification
file. The specification contains three sections: a general section for naming, a section for
modification events, and a section for propagation conditions.

In the following we describe how to turn the parts of the design from the previous section
that is concerned with modification events and propagation conditions into the specification.
The member functions of the generated base class are used and explained in the next section.

1If you ever exceed this limit, please let us know. Adding more bits is easy, even though we do not expect
that to happen anytime soon.

442

VARIABLE IMPLEMENTATION SPECIFICATION ≡ [DOWNLOAD]

[General]

Name: Int

Namespace: MPG::Int

◮MODIFICATION EVENTS

◮ PROPAGATION CONDITIONS

[End]

Figure 35.1: Variable implementation specification

General section. The specification file (named int.vis, where vis stands for variable
implementation specification; however the file extension does not matter) is shown in
Figure 35.1. The specification file must start with [General] defining the start of the general
section and must end with a line [End]. The Name option defines the names of the entities to
be generated. In our example, a variable implementation base class IntVarImpBase (that is,
the specified name is prepended to VarImpBase) generated, the identifiers for modification
events start with ME_INT_ (that is, the specified name is put after the ME_ in capital letters),
and the identifiers for propagation conditions start with PC_INT_. All these definitions are
contained within the namespace as defined by the Namespace option.

The general section (and also the other sections discussed below) supports additional
specification options, see Section 35.4 for a summary and a specification file template for
download.

Modification event section. Every modification event requires a definition that is preceded
by a line containing [ModEvent] as shown in Figure 35.2. The option Name defines the name
of the modification event (in fact, just the part after ME_INT_ for our example). The values
on the right-hand side of = specify that some modification events are special:

■ The modification events named FAILED (that is, ME_INT_FAILED) and NONE (that
is, ME_INT_NONE) are defined to be the events for failure (=FAILED) and no change
(=NONE).

■ The modification event named VAL is defined to be the event when a variable imple-
mentation becomes assigned (=ASSIGNED) to a value.

■ The modification event named BND is defined to be used for scheduling a prop-
agator when the propagator subscribes to a non-assigned variable implementation
(=SUBSCRIBE).

Any variable implementation must define special events with =NONE, =FAILED, =ASSIGNED,
and =SUBSCRIBE. In case there are only three modification events (all of them special
with =NONE, =FAILED, =ASSIGNED), the modification event used for scheduling a propaga-
tor (that is, =SUBSCRIBE) is defined to be the event for a variable becoming assigned (that is,
=ASSIGNED).

443

https://www.gecode.org/doc/6.2.0/MPG/int.vis

MODIFICATION EVENTS ≡
[ModEvent]

Name: FAILED=FAILED

[ModEvent]

Name: NONE=NONE

[ModEvent]

Name: VAL=ASSIGNED

Combine: VAL=VAL, MIN=VAL, MAX=VAL, BND=VAL

[ModEvent]

Name: BND=SUBSCRIBE

Combine: VAL=VAL, MIN=BND, MAX=BND, BND=BND

[ModEvent]

Name: MIN

Combine: VAL=VAL, MIN=MIN, MAX=BND, BND=BND

[ModEvent]

Name: MAX

Combine: VAL=VAL, MIN=BND, MAX=MAX, BND=BND

Figure 35.2: Modification event section

The section for modification events also defines how modification events are combined
with a Combine option. The combination of modification events is needed for the correctness
of scheduling propagators and also for modification event deltas, see Section 26.4. An entry
l = r for the modification event m defines that m combined with l is r.

The definition of the combination of modification events can be expressed as a table:

VAL MIN MAX BND

VAL VAL VAL VAL VAL

MIN VAL MIN BND BND

MAX VAL BND MAX BND

BND VAL BND BND BND

This table is exactly what is specified by the Combine options. The special modification events
NONE and FAILED do not have a Combine option.

We will not present the full mathematical detail of the properties that must hold for the
combination of modification events, the theory is presented in [62, Section 5.5].

Propagation condition section. Every propagation condition requires a definition that is
preceded by a line containing [PropCond] as shown in Figure 35.3. The option Name defines
the name of the propagation condition (in fact, just the part after PC_INT_ for our example).
The values on the right-hand side of = specify that some propagation conditions are special:

444

PROPAGATION CONDITIONS ≡
[PropCond]

Name: NONE=NONE

[PropCond]

Name: VAL=ASSIGNED

ScheduledBy: VAL

[PropCond]

Name: BND

ScheduledBy: VAL, BND, MIN, MAX

[PropCond]

Name: MIN

ScheduledBy: VAL, BND, MIN

[PropCond]

Name: MAX

ScheduledBy: VAL, BND, MAX

Figure 35.3: Propagation condition section

■ The propagation condition named NONE (that is, PC_INT_NONE) is defined to be the
propagation condition for not creating any subscription (=NONE).

■ The propagation condition named VAL (that is, PC_INT_VAL) is defined to be the condi-
tion when a propagator wants to subscribe to the event that a variable implementation
becomes assigned (=ASSIGNED).

Any variable implementation must define the special propagation conditions =NONE and
=ASSIGNED.

For each propagation condition (but for =NONE), it must be defined by a ScheduledBy op-
tion which modification events schedule a propagator for execution. That is, when defining a
propagation condition p, an entry m in the list of modification events defines the following: a
propagator subscribed to a variable implementation x with propagation condition p is sched-
uled for execution when a modification operation on x returns the modification event m. The
modification events in our example correspond to the design presented in Section 35.1.

35.3 Variable implementation

The variable implementation for integer interval variables is shown in Figure 35.4. As dis-
cussed in the previous sections, the variable implementation inherits from the generated base
class IntVarImpBase and implements a lower bound l and an upper bound u.

Access operations. Every variable implementation must implement a member function
assigned() that tests whether the variable is assigned to a value:

445

VARIABLE IMPLEMENTATION ≡
namespace MPG { namespace Int {

◮ LIMITS

◮ DELTA FOR ADVISORS

class IntVarImp : public IntVarImpBase {

protected:

int l, u;

public:

IntVarImp(Space& home, int min, int max)

: IntVarImpBase(home), l(min), u(max) {}

◮ ACCESS OPERATIONS

◮ ASSIGNMENT TEST

◮MODIFICATION OPERATIONS

◮ SUBSCRIPTIONS

◮ RE-SCHEDULING

◮ COPYING

◮ DELTA INFORMATION

};

}}

Figure 35.4: Variable implementation

446

ASSIGNMENT TEST ≡
bool assigned(void) const {

return l == u;

}

The test for assignment is used in the implementation of other member functions of the
variable implementation. Furthermore, variables and views automatically provide imple-
mentations of a member function assigned() that calls the assigned() function of their
variable implementation.

The access operations for the lower and upper bound are straightforward. Here, and
in the following, we only show one of the operations, the operation for the other bound is
analogous:

ACCESS OPERATIONS ≡
int min(void) const {

return l;

}

· · ·

Modification operations. The modification operations must notify the Gecode kernel if
a variable implementation is modified. As a description how a variable implementation
changes, they must pass a modification event and delta information for advisors to a mem-
ber function notify(). The notify() function executes subscribed advisors and schedules
subscribed propagators (depending on the passed modification event and the propagators’
propagation conditions). The notify() function is inherited from the generated variable im-
plementation base class and depends on the specified modification events and propagation
conditions.

The delta information is implemented as discussed in Section 35.1 as an interval with
lower and upper bound:

DELTA FOR ADVISORS ≡
class IntDelta : public Delta {

private:

int l, u;

public:

IntDelta(int min, int max) : l(min), u(max) {}

int min(void) const {

return l;

}

· · ·
};

The actual modification operations first test whether the variable implementation does
not require modification or whether the operation fails and only then perform the actual

447

modification. Before updating the upper bound u to n, the lq() operation creates the delta
information d that describes that values between n+1 and u are being removed.

The notify() function is given the home space, a modification event, and the variable
delta d as argument. The modification event passed to notify() must capture how the do-
main has changed. In particular, it must reflect whether the variable implementation has
been assigned. The notify() function executes the advisors subscribed to this variable im-
plementation and schedules all subscribed propagators with appropriate propagation con-
ditions. Note that the notify() function returns a modification event. In case an advisor
reports failure after its execution, notify() returns ME_INT_FAILED. Otherwise it returns the
modification event that has been passed as argument:

MODIFICATION OPERATIONS ≡
ModEvent lq(Space& home, int n) {

if (n >= u) return ME_INT_NONE;

if (n < l) return fail(home);

IntDelta d(n+1,u); u = n;

return notify(home, assigned() ? ME_INT_VAL : ME_INT_MAX, d);

}

· · ·
If a modification operation fails it must return ME_INT_FAILED as modification event and

must call the fail() function. The fail() function is similar to notify() and executes
advisors that have registered to be executed on failure. For convenience, the fail() function
itself returns ME_INT_FAILED.

Tip 35.2 (Variable implementations must always be consistent). Even if a modification oper-
ation fails, the data structures for the variable implementation must be still consistent. That
is, all operations must still work. See also Section 4.1.3. ◭

Delta information access. The variable implementation must also implement functions
that provide access to the delta information:

DELTA INFORMATION ≡
static int min(const Delta& d) {

return static_cast<const IntDelta&>(d).min();

}

· · ·
This construction appears nonsensical at first sight, however there are two good reasons

why a variable implementation interprets the information stored in the delta information (of
course, in that case one would have to declare the operation as const but not static). First,
the variable implementation can change the information based on its own state. Second, the
very same idea is needed for views (see Section 37.4.2 for an example) and hence this design
keeps the interfaces of views and variable implementations as similar as possible.

448

Subscriptions. A variable implementation must implement subscribe() operations for
both propagators and advisors. The implementation of these operations always follow the
same structure as shown below.

The reason why these functions have to be implemented in the variable implementa-
tion class even though they are (in slightly different form) already defined in the variable
implementation base class is that they require information about whether a variable imple-
mentation is assigned. The definitions are as follows:

SUBSCRIPTIONS ≡
void subscribe(Space& home, Propagator& p, PropCond pc,

bool schedule=true) {

IntVarImpBase::subscribe(home,p,pc,assigned(),schedule);

}

void subscribe(Space& home, Advisor& a, bool fail) {

IntVarImpBase::subscribe(home,a,assigned(),fail);

}

Re-scheduling. A variable implementation must implement a reschedule() operation for
propagators. The implementation of this operation is almost identical to the subscribe()

member function discussed previously. The definition is as follows:

RE-SCHEDULING ≡
void reschedule(Space& home, Propagator& p, PropCond pc) {

IntVarImpBase::reschedule(home,p,pc,assigned());

}

Copying during cloning. Copying a variable implementation during cloning is imple-
mented by a constructor and a copy() function. The constructor is straightforward and the
copy() function only creates a new variable implementation if the variable implementation
has not been copied before. If it has been copied before (that is, copied() returns true),
the copy() function must return the forwarding pointer to the previously created copy as
follows:

COPYING ≡
IntVarImp(Space& home, IntVarImp& y)

: IntVarImpBase(home,y), l(y.l), u(y.u) {}

IntVarImp* copy(Space& home) {

if (copied())

return static_cast<IntVarImp*>(forward());

else

return new (home) IntVarImp(home,*this);

}

449

access operations

degree() returns degree (number of subscriptions)
afc() returns accumulated failure count

subscriptions

cancel() cancel subscription of propagator
cancel() cancel subscription of advisor

scheduling support

schedule() schedule propagator
reschedule() re-schedule propagator

modification event deltas

me() extract modification event
med() construct modification event delta

delta information access

modevent() return modification event from delta

Figure 35.5: Summary of member functions predefined by variable implementations

Additional inherited member functions. In addition to the constructor and the member
functions defined and used by our variable implementation, several other member functions
are typically just inherited and are defined by the class VarImp. The most important inher-
ited member functions are summarized in Figure 35.5. For an explanation of degree and
accumulated failure count, see Section 8.5.

35.4 Additional specification options

This section provides an overview of additional specification options not discussed in
Section 35.2.

Comments. Any line starting with # is discarded and hence can serve as a comment in the
specification file.

Generating headers, footers, and comments. Any text after the options for a [ModEvent]
and [PropCond] definition until the next definition is added to the generated C++-code before
the generated identifier definition. This can be used for defining comments to be added to
the generated C++-code. For example, by

450

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarImp.html

[PropCond]

Name: NONE=NONE

// Propagation condition to be ignored

[PropCond]

· · ·
the comment

// Propagation condition to be ignored

is put before the definition of the generated propagation condition.
Related support exists for putting a header before (or a footer after) all gener-

ated definitions for modification events and propagation conditions: The text following
[ModEventHeader], [ModEventFooter], [PropCondHeader], and [PropCondFooter] is in-
serted at the respective places in the generated code.

Conditional compilation. Giving an option Ifdef in the general section followed by some
C++-preprocessor identifier IDENT wraps the entire generated code in preprocessor directives
as follows:

#ifdef IDENT

· · ·
#endif

By this, the Gecode kernel can be compiled with or without a particular variable type without
being forced to reconfigure the Gecode kernel, see also Section 40.2.

Explicitly disposing variable implementations. Our example variables are entirely space-
allocated and do not require external memory or other resources. However, for some variable
types, the variable implementation might use external resources or memory that is not space-
allocated and must explicitly be freed.

For an example, suppose the integer interval variables had been implemented by using
arbitrary precision integers for the lower and upper bound and that these bounds must ex-
plicitly be freed.

By specifying in the general section

Dispose: true

and implementing in the variable implementation class a dispose(Space& home) member
function, all variable implementations are disposed by calling their dispose() functions.
The variable implementations are disposed when their home space is deleted.

Additionally, an object must be created that controls the disposal of variable implemen-
tations. Assume that our example integer variables used external memory and that its spec-
ification file contains

Dispose: true

451

and that MPG::IntVarImp implements a dispose() function. Then, your program must
create a variable implementation disposer as follows:

Gecode::VarImpDisposer<MPG::IntVarImp> disposer;

The disposer object must be initialized before the first variable using MPG::IntVarImp is
created.

Reserving bits. A limited number of bits b can be reserved within each variable implemen-
tation by specifying in the general section

Bits: b

Then, the variable implementation can get a reference to a value of type unsigned int by
calling the member function bits() where the least b bits can be used freely. However, the
maximal number of subscriptions (both propagators and advisors) for that variable imple-
mentation type is reduced from 231 − 1 to 231−b − 1. Furthermore, any attempt to use more
than the specified number of bits will crash Gecode in a truly spectacular fashion!

Specification file template. The specification template contains all possible specification
options to assist in defining your own variable types.

452

https://www.gecode.org/doc/6.2.0/MPG/template.vis

36 Variables and
variable arrays

This chapter describes how variables can be programmed from variable implementations and
how variable arrays and variable argument arrays can be programmed. The chapter uses
integer interval variables as introduced in Chapter 34 together with their implementations
as defined in Chapter 35 as its running example.

Overview. How integer interval variables are implemented is detailed in Section 36.1. Vari-
able arrays and variable argument arrays are discussed in Section 36.2.

36.1 Variables

As a variable is just a read-only interface to a variable implementation, its implementation is
straightforward. The definition of integer variables is shown in Figure 36.1. The copy con-
structor uses the member function varimp() that returns the pointer to the variable’s variable
implementation. Note that every variable must have a constructor that takes a pointer to the
corresponding variable implementation as argument.

Note that within the class IntVar, a pointer to the corresponding variable implementation
is available as protected member x (see Tip 28.1 for information on using).

One also must define an output operator << for a variable as shown in Figure 36.1.
It is important to remember that variables are defined in the namespace MPG. This is in

contrast to variable implementations, which are defined in the namespace MPG::Int.

Variable creation. Creating a new variable is done with the following constructor that cre-
ates a new variable implementation as follows:

VARIABLE CREATION ≡
IntVar(Space& home, int min, int max)

: VarImpVar<Int::IntVarImp>

(new (home) Int::IntVarImp(home,min,max)) {

if ((min < Int::Limits::min) || (max > Int::Limits::max))

throw Int::OutOfLimits("IntVar::IntVar");

if (min > max)

throw Int::VariableEmptyDomain("IntVar::IntVar");

}

453

VARIABLE ≡
namespace MPG {

class IntVar : public VarImpVar<Int::IntVarImp> {

protected:

using VarImpVar<Int::IntVarImp>::x;

public:

IntVar(void) {}

IntVar(const IntVar& y)

: VarImpVar<Int::IntVarImp>(y.varimp()) {}

IntVar(Int::IntVarImp* y)

: VarImpVar<Int::IntVarImp>(y) {}

◮ VARIABLE CREATION

◮ ACCESS OPERATIONS

};

template<class Char, class Traits>

std::basic_ostream<Char,Traits>&

operator <<(std::basic_ostream<Char,Traits>& os, const IntVar& x) {

· · ·
}

}

Figure 36.1: Variable programmed from a variable implementation

454

access operations

varimp() returns pointer to variable implementation
assigned() whether variable is assigned
degree() returns degree (number of subscriptions)
afc() returns accumulated failure count

update during cloning

update() updates variable during cloning

Figure 36.2: Summary of member functions predefined by variables

Note that the constructor ensures the invariants for the lower and upper bound of a vari-
able as discussed in Section 35.1 by possibly throwing exceptions.

Access operations. In addition to constructors, variables typically implement the same ac-
cess operations as their corresponding variable implementation:

ACCESS OPERATIONS ≡
int min(void) const {

return x->min();

}

· · ·

Additional inherited member functions. In addition to the constructor and member func-
tions defined by our variables, several other member functions are typically just inherited
and are defined by the class VarImpVar. The most important inherited member functions are
summarized in Figure 36.2. For an explanation of degree and accumulated failure count, see
Section 8.5.

36.2 Variable arrays and variable argument arrays

Defining variable arrays and variable argument arrays (see also Section 4.2) requires the
implementation of the arrays proper together with some traits. The traits classes for variable
arrays and variable argument arrays ensure that Gecode-provided functionality for arrays
can be used with the newly defined arrays.

Array traits. The definition of the array traits classes is shown in Figure 36.3. The defi-
nition is done in two steps. The first step provides forward declarations of the array types
IntVarArgs and IntVarArray in the namespace MPG (because that is where these arrays will
be defined).

455

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarImpVar.html

ARRAY TRAITS ≡
namespace MPG {

class IntVarArgs; class IntVarArray;

}

namespace Gecode {

template<>

class ArrayTraits<Gecode::VarArray<MPG::IntVar> > {

public:

typedef MPG::IntVarArray StorageType;

typedef MPG::IntVar ValueType;

typedef MPG::IntVarArgs ArgsType;

};

template<>

class ArrayTraits<MPG::IntVarArray> {

· · ·
};

template<>

class ArrayTraits<Gecode::VarArgArray<MPG::IntVar> > {

public:

typedef MPG::IntVarArgs StorageType;

typedef MPG::IntVar ValueType;

typedef MPG::IntVarArgs ArgsType;

};

template<>

class ArrayTraits<MPG::IntVarArgs> {

· · ·
};

}

Figure 36.3: Array traits for variable arrays

456

VARIABLE ARRAYS ≡
namespace MPG {

class IntVarArgs : public VarArgArray<IntVar> {

public:

IntVarArgs(void) {}

explicit IntVarArgs(int n) : VarArgArray<IntVar>(n) {}

IntVarArgs(const IntVarArgs& a) : VarArgArray<IntVar>(a) {}

IntVarArgs(const VarArray<IntVar>& a) : VarArgArray<IntVar>(a) {}

IntVarArgs(Space& home, int n, int min, int max)

: VarArgArray<IntVar>(n) {

for (int i=0; i<n; i++)

(*this)[i] = IntVar(home,min,max);

}

};

class IntVarArray : public VarArray<IntVar> {

public:

IntVarArray(void) {}

IntVarArray(const IntVarArray& a)

: VarArray<IntVar>(a) {}

IntVarArray(Space& home, int n, int min, int max)

· · ·
}

};

}

Figure 36.4: Variable arrays

The second step requires to define traits for these two array types. The trait classes must
be defined in the namespace Gecode. For each array type, two traits classes are needed: one
for the base class (for example, Gecode::VarArray<MPG::IntVar>) and one for the class to
be implemented (for example, MPG::IntVarArray). The definitions for the array type and
its base class must be identical and follow the examples shown in Figure 36.3.

Variable arrays. The implementation of variable arrays and variable argument arrays typi-
cally only require the implementation of various constructors when inheriting from the base
classes VarArray and VarArgArray. The minimal set of constructors such that the arrays are
compatible to arrays as used by Gecode is shown in Figure 36.4.

457

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarArray.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarArgArray.html

458

37 Views

This chapter describes how views as needed for programming propagators and branchers
can be programmed. The chapter uses integer interval variables as introduced in Chapter 34
together with their implementations as defined in Chapter 35 as its running example.

Overview. Section 37.1 provides an overview of the different types of views available in
Gecode. The remaining sections provide examples for each different view type: Section 37.2
shows how an integer view IntView is constructed as a variable implementation view;
Section 37.3 shows how a constant integer view ConstIntView is programmed as a con-
stant view; Section 37.4 shows how a minus view MinusView and an offset view OffsetView

are programmed as derived views.

37.1 View types

Gecode provides three different types of views:

■ Variable implementation views: a variable implementation view is nothing but a direct
interface to a variable implementation. A variable implementation view must inherit
from VarImpView. The class VarImpView is parametric with respect to a variable and
not a variable implementation (as one might expect). This is due to the fact that the
type of the variable implementation can be obtained automatically from the type of
a variable. Making a variable implementation view parametric with respect to a vari-
able type has the advantage that information on both the variable type and variable
implementation type become available.

■ Constant views: a constant view must implement the same interface and must perform
the same operations as some assigned variable implementation view. This particular
variable implementation view is called the corresponding variable implementation view.
A constant view must inherit from ConstView which is parametric with respect to the
corresponding variable implementation view.

■ Derived views: a derived view is a view that is implemented in terms of some other view
(all view types are possible: variable implementation, constant, and derived). The view
from which the derived view is derived, is called the base view. A derived view must
inherit from DerivedView which is parametric with respect to the base view.

459

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarImpView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarImpView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ConstView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DerivedView.html

access operations

varimp() returns pointer to variable implementation
assigned() whether variable is assigned
degree() returns degree (number of subscriptions)
afc() returns accumulated failure count

subscriptions

subscribe() subscribe propagator/advisor
cancel() cancel propagator/advisor

scheduling support

schedule() schedule propagator
reschedule() re-schedule propagator

modification event deltas

me() extract modification event
med() construct modification event delta

delta information access

modevent() return modification event from delta

update during cloning

update() updates view during cloning

Figure 37.1: Summary of member functions predefined by views

Predefined member functions. The classes VarImpView, ConstView, and DerivedView

define already many member functions that simplify the implementation of new views. The
most important predefined member functions are summarized in Figure 37.1.

Note that the varimp() function for a constant view or for a view derived from a constant
view returns NULL, as no variable implementation exists.

View test functions. There are three different functions predefined for views:

■ The function shared(x,y) returns true, if both views x and y share a common variable
implementation (see Section 28.1.2). Typically, the definition of shared() does not
need to be overloaded for newly defined views.

■ The operator x==y returns true, if both views x and y are identical (see Section 28.1.2).
For constant views and derived views, the definition of operator ==() must be over-
loaded for newly defined views (see Section 37.3 and Section 37.4.2 for examples).
The operator x!=y is analogous.

460

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarImpView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ConstView.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1DerivedView.html

INTEGER VIEW ≡
namespace MPG { namespace Int {

class IntView : public VarImpView<IntVar> {

protected:

using VarImpView<IntVar>::x;

public:

IntView(void) {}

IntView(const IntVar& y)

: VarImpView<IntVar>(y.varimp()) {}

IntView(IntVarImp* y)

: VarImpView<IntVar>(y) {}

◮ ACCESS OPERATIONS

◮MODIFICATION OPERATIONS

◮ DELTA INFORMATION

};

template<class Char, class Traits>

std::basic_ostream<Char,Traits>&

operator<<(std::basic_ostream<Char,Traits>& os, const IntView& x) {

· · ·
}

}}

Figure 37.2: Integer view

■ The operator x<y returns true, if x comes before y in some arbitrary total and strict
order for ordering views. The function is mainly used for sorting arrays of views into
some order (in particular for detecting duplicate views). For constant views and derived
views, the definition of operator <() must be overloaded for newly defined views (see
Section 37.3 and Section 37.4.2 for examples).

Output operator. For every view also an output operator << must be defined. We sketch
this only for integer views in Section 37.2, for all other views the definition is analogous.

37.2 Variable implementation views: integer view

Figure 37.2 shows the definition of the class IntView for integer views from the class
VarImpView for variable implementation views. Please remember that a variable implemen-
tation view is parametric with respect to a variable type (IntVar in our example, such that

461

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarImpView.html

IntView uses the same variable implementation type IntVarImp as IntVar does).
Similar to variables obtained from variable implementations, a variable implementation

view has a protected member x that is a pointer to its variable implementation (see Tip 28.1
for information on using). A variable implementation view must implement at least the
shown constructors such that it can be initialized both from the corresponding variable type
and from the corresponding variable implementation type.

The remaining implementation tasks for variable implementation views are straightfor-
ward: all operations that are specific to a variable type (in our case, specific to integer interval
variables) must be implemented. The implementation is straightforward as only the corre-
sponding operations of the variable implementation are invoked:

■ The access operations must be implemented:

ACCESS OPERATIONS ≡
int min(void) const {

return x->min();

}

· · ·

■ The modification operations must be implemented:

MODIFICATION OPERATIONS ≡
ModEvent lq(Space& home, int n) {

return x->lq(home,n);

}

· · ·

■ Finally, the operations for accessing delta information must be implemented:

DELTA INFORMATION ≡
int min(const Delta& d) const {

return IntVarImp::min(d);

}

· · ·

37.3 Constant views: constant integer view

Figure 37.3 shows the implementation of a constant integer view with IntView as the cor-
responding variable implementation view. A constant integer view ConstIntView stores an
integer value x and must implement all variable-specific operations that are implemented by
the corresponding IntView class (as shown in Figure 37.3).

Slightly less obvious is the implementation of operations that access delta information.
While these operations must be implemented such that constant integer views can be used

462

CONSTANT INTEGER VIEW ≡
namespace MPG { namespace Int {

class ConstIntView : public ConstView<IntView> {

protected:

int x;

public:

ConstIntView(void) : x(0) {}

ConstIntView(int n) : x(n) {}

int min(void) const {

return x;

}

· · ·
ModEvent lq(Space& home, int n) {

return (x <= n) ? ME_INT_NONE : ME_INT_FAILED;

}

· · ·
◮ DELTA INFORMATION

◮ UPDATE DURING CLONING

};

◮ VIEW TESTS

· · ·

}}

Figure 37.3: Constant integer view

463

instead of integer views, they will never be executed (by definition, a constant view can
never change). Hence we use the macro GECODE_NEVER (see Tip 32.1) to clarify that the
delta information operations are never executed:

DELTA INFORMATION ≡
int min(const Delta& d) const {

GECODE_NEVER; return 0;

}

· · ·

Update during cloning. The definition of the update() member function of ConstView
does not take care of the integer value x. Hence we need to provide a new update() function
that updates the value of x as follows:

UPDATE DURING CLONING ≡
void update(Space& home, ConstIntView& y) {

ConstView<IntView>::update(home,y);

x = y.x;

}

View tests. Also the default definitions of the view test operators ==, !=, and < for constant
views do not take the integer value x of the view into account. Overloaded versions for
constant integer views are as follows:

VIEW TESTS ≡
inline bool operator ==(const ConstIntView& x, const ConstIntView& y) {

return x.min() == y.min();

}

inline bool operator !=(const ConstIntView& x, const ConstIntView& y) {

return !(x == y);

}

inline bool operator <(const ConstIntView& x, const ConstIntView& y) {

return x.min() < y.min();

}

37.4 Derived views

This section exemplifies two different derived views: minus views and offset views. Why
these views are useful and what their semantics is can be seen in Section 28.1.1 for minus
views and in Section 28.1.2 for offset views.

464

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ConstView.html

MINUS VIEW ≡
namespace MPG { namespace Int {

class MinusView : public DerivedView<IntView> {

protected:

using DerivedView<IntView>::x;

◮MODIFICATION EVENTS AND PROPAGATION CONDITIONS

public:

MinusView(void) {}

explicit MinusView(const IntView& y)

: DerivedView<IntView>(y) {}

◮ ACCESS OPERATIONS

◮MODIFICATION OPERATIONS

◮ SUPPORT OPERATIONS

◮ SUBSCRIPTIONS

◮ RE-SCHEDULING

◮ DELTA INFORMATION

};

inline bool operator ==(const MinusView& x, const MinusView& y) {

return x.base() == y.base();

}

· · ·

· · ·

}}

Figure 37.4: Minus view

465

MODIFICATION EVENTS AND PROPAGATION CONDITIONS ≡
static ModEvent minusme(ModEvent me) {

switch (me) {

case ME_INT_MIN: return ME_INT_MAX;

case ME_INT_MAX: return ME_INT_MIN;

default: return me;

}

}

static PropCond minuspc(PropCond pc) {

· · ·
}

Figure 37.5: Negation of modification events and propagation conditions

37.4.1 Minus views

Figure 37.4 shows that a minus view is derived from an integer view IntView. The protected
member x refers to the base view, that is the integer view from which the minus view is
derived (see Tip 28.1 for information on using).

Access operations. The access operations are as to be expected for a minus view. That is,
the lower bound of the derived view is the negation of the upper bound of the base view:

ACCESS OPERATIONS ≡
int min(void) const {

return -x.max();

}

· · ·

Modification operations. The modification operations are slightly more involved than the
access operations as they return a modification event. If the modification event of the base
view is ME_INT_MAX (the upper bound of the base view has changed), then the modification
event for the derived view must be ME_INT_MIN (the lower bound of the derived view has
changed).

Figure 37.5 shows functions minusme() and minuspc() that return the negation of mod-
ification events and propagation conditions (to be discussed later).

Using the function minusme, the modification operations can be defined as follows:

MODIFICATION OPERATIONS ≡
ModEvent lq(Space& home, int n) {

return minusme(x.gq(home,-n));

}

· · ·

466

Accessing delta information. Accessing delta information must also take into account that
the modification event stored in a delta must be converted with minusme(). Also the other
operations for accessing delta information must be adopted accordingly:

DELTA INFORMATION ≡
static ModEvent modevent(const Delta& d) {

return minusme(IntView::modevent(d));

}

int min(const Delta& d) const {

return -x.max(d);

}

· · ·

Additional operations. Any operation that is concerned with either modification events
or propagation conditions must be implemented to take the switch between lower bound
and upper bound into account. These operations include the operations for handling sub-
scriptions of propagators (the function minuspc() is defined analogously to minusme() in
Figure 37.5):

SUBSCRIPTIONS ≡
void subscribe(Space& home, Propagator& p, PropCond pc,

bool schedule=true) {

x.subscribe(home,p,minuspc(pc),schedule);

}

void subscribe(Space& home, Advisor& a) {

x.subscribe(home,a);

}

· · ·

Note that the operations that subscribe advisors must be re-implemented even though
they are unchanged. This is due to inheritance in C++: as the overloaded functions for prop-
agators are redefined, also the functions for advisors are considered to be redefined.

Likewise, the member function for re-escheduling must also be implemented following
the same idea:

RE-SCHEDULING ≡
void reschedule(Space& home, Propagator& p, PropCond pc) {

x.reschedule(home,p,minuspc(pc));

}

467

The remaining operations to be implemented are support operations:

SUPPORT OPERATIONS ≡
static void schedule(Space& home, Propagator& p, ModEvent me) {

return IntView::schedule(home,p,minusme(me));

}

static ModEvent me(const ModEventDelta& med) {

return minusme(IntView::me(med));

}

static ModEventDelta med(ModEvent me) {

return IntView::med(minusme(me));

}

37.4.2 Offset views

Figure 37.6 shows that an offset view is derived from an integer view IntView and stores
an additional integer value c for the offset. The protected member x refers to the base view,
that is the integer view from which the offset view is derived (see Tip 28.1 for information on
using). The access, modification, and delta information access operations of an offset view
are as to be expected.

The update() function must also update the integer offset c as follows:

UPDATE DURING CLONING ≡
void update(Space& home, OffsetView& y) {

x.update(home,y.x);

c=y.c;

}

Likewise, the view test operators ==, != and < must take into account the integer offset c:

VIEW TESTS ≡
inline bool operator ==(const OffsetView& x, const OffsetView& y) {

return (x.base() == y.base()) && (x.offset() == y.offset());

}

inline bool operator !=(const OffsetView& x, const OffsetView& y) {

return !(x == y);

}

inline bool operator <(const OffsetView& x, const OffsetView& y) {

return (x.base() < y.base())

|| ((x.base() == y.base()) && (x.offset() < y.offset()));

}

468

OFFSET VIEW ≡
namespace MPG { namespace Int {

class OffsetView : public DerivedView<IntView> {

protected:

using DerivedView<IntView>::x;

int c;

public:

OffsetView(void) {}

OffsetView(const IntView& y, int d)

: DerivedView<IntView>(y), c(d) {}

int offset(void) const {

return c;

}

int min(void) const {

return x.min()+c;

}

· · ·
ModEvent lq(Space& home, int n) {

return x.lq(home,n-c);

}

· · ·
int min(const Delta& d) const {

return x.min(d)+c;

}

· · ·
◮ UPDATE DURING CLONING

};

◮ VIEW TESTS

· · ·
}}

Figure 37.6: Offset view

469

470

38 Variable-value
branchings

This chapter explains how to program common variable-value branchings using the abstrac-
tions provided by Gecode.

Overview. Section 38.1 explains which simple types must be defined for variable-value
branchings. How functions for variable selection and value selection are implemented is
demonstrated in Section 38.2. Section 38.3 shows how a function that creates an object for
selecting views during branching is implemented. How functions for selecting values and
committing to these values are implemented is shown in Section 38.4. This section also
explains how to add support for no-goods to a variable-value brancher. How the actual
branchings are implemented is then detailed in Section 38.5.

This structure is reflected in the part of the int.hh header file that is concerned with
branching (shown in Figure 38.1).

38.1 Type, traits, action, and more

The way how a variable-value branching works can to some extent be controlled by the user
by functions:

■ A branching filter function defines which variables are actually considered for branch-
ing, see Section 8.11.

■ A variable value print function defines how to print information on alternatives of vari-
able value branchers during search. Variable value branchers print some default infor-
mation even if the user does not supply a variable value print function, see Section 8.12.

■ A branch merit function can define which variable is selected for branching, see
Section 8.7.

■ A branch value function selects a value that is used for branching, see Section 8.8.

■ A branch commit function constrains a variable with respect to a value passed as argu-
ment, see Section 8.8.

In the following type definitions, the type IntVar of the argument x, the return type int

of the branch value function of type IntBranchVal, and the type int of the argument n is

471

https://www.gecode.org/doc/6.2.0/MPG/int.hh

BRANCHING ≡
◮ BRANCH FUNCTION TYPES

◮ BRANCH TRAITS

◮ VARIABLE AFC

◮ VARIABLE ACTION

◮ VARIABLE CHB

namespace MPG {

◮ VARIABLE SELECTION CLASS

◮ VARIABLE SELECTION FUNCTIONS

◮ VALUE SELECTION FUNCTIONS

}

namespace MPG { namespace Int {

◮ VIEW SELECTION CREATION FUNCTION

◮ VALUE SELECTION AND COMMIT CREATION FUNCTION

}}

namespace MPG {

◮ BRANCH FUNCTION

◮ BRANCH FUNCTION WITH TIE-BREAKING

}

Figure 38.1: Part of header file concerned with branching

472

dependent on our integer interval variables (they are of type IntVar and they take values of
type int).

The remaining argument and return types are required by Gecode and are as follows:

BRANCH FUNCTION TYPES ≡
namespace MPG {

typedef std::function<bool(const Space& home,

IntVar x, int i)>

IntBranchFilter;

typedef std::function<void(const Space &home,

const Brancher& b, unsigned int a,

IntVar x, int i, const int& n,

std::ostream& o)>

IntVarValPrint;

typedef std::function<double(const Space& home,

IntVar x, int i)>

IntBranchMerit;

typedef std::function<int(const Space& home,

IntVar x, int i)>

IntBranchVal;

typedef std::function<void(Space& home, unsigned int a,

IntVar x, int i, int n)>

IntBranchCommit;

}

These function type definitions must be connected to the variable type IntVar by means
of a traits-class of type BranchTraits. As the functionality for variable-value branching is
defined in the Gecode namespace, the trait class must also be defined there:

BRANCH TRAITS ≡
namespace Gecode {

template<>

class BranchTraits<MPG::IntVar> {

public:

typedef MPG::IntBranchFilter Filter;

typedef MPG::IntBranchMerit Merit;

typedef MPG::IntBranchVal Val;

typedef int ValType;

typedef MPG::IntBranchCommit Commit;

};

}

The last remaining definitions specializes AFC, action, and CHB information for integer
interval variables by defining a class IntAFC as follows:

473

VARIABLE AFC ≡
namespace MPG {

class IntAFC : public AFC {

public:

IntAFC(void);

IntAFC(const IntAFC& a);

IntAFC& operator =(const IntAFC& a);

IntAFC(Home home, const IntVarArgs& x, double d=1.0);

void init(Home home, const IntVarArgs& x, double d=1.0);

};

· · ·
}

a class IntAction as follows:

VARIABLE ACTION ≡
namespace MPG {

class IntAction : public Action {

public:

IntAction(void);

IntAction(const IntAction& a);

IntAction& operator =(const IntAction& a);

IntAction(Home home, const IntVarArgs& x, double d=1.0,

IntBranchMerit bm=nullptr);

void init(Home home, const IntVarArgs& x, double d=1.0,

IntBranchMerit bm=nullptr);

};

· · ·
}

and a class IntCHB as follows:

VARIABLE CHB ≡
namespace MPG {

class IntCHB : public CHB {

public:

IntCHB(void);

IntCHB(const IntCHB& c);

IntCHB& operator =(const IntCHB& c);

IntCHB(Home home, const IntVarArgs& x,

IntBranchMerit bm=nullptr);

void init(Home home, const IntVarArgs& x,

IntBranchMerit bm=nullptr);

};

· · ·
}

474

The actual implementations are omitted as they contain nothing more than the type special-
ization and creation of view arrays in the initializing constructor and the init() function.

38.2 Variable and value selection

An important part of the interface of the branching is support for specifying how variables and
values are selected for branching. This is implemented by a set of variable and value selection
functions that are used for specification. These functions return objects that are then used
for creating the appropriate branchers. In this section we are not interested in describing
a complete set of variable and value selection functions but in a set that demonstrates the
features of variable-value branchings.

Variable selection. The variable selection functions we are considering here are defined
as follows (their names and what they do coincides with the variable selection functions for
normal integer variables in Gecode, see Section 8.2):

VARIABLE SELECTION FUNCTIONS ≡
IntVarBranch INT_VAR_NONE(void);

IntVarBranch INT_VAR_RND(Rnd r);

IntVarBranch INT_VAR_MERIT_MAX(IntBranchMerit bm,

BranchTbl tbl=nullptr);

IntVarBranch INT_VAR_DEGREE_MAX(BranchTbl tbl=nullptr);

IntVarBranch INT_VAR_ACTION_MAX(double d=1.0,

BranchTbl tbl=nullptr);

IntVarBranch INT_VAR_ACTION_MAX(IntAction a,

BranchTbl tbl=nullptr);

IntVarBranch INT_VAR_SIZE_MIN(BranchTbl tbl=nullptr);

◮ VARIABLE SELECTION FUNCTION IMPLEMENTATION

All but INT_VAR_NONE() take arguments: unsurprisingly, a random number generator must
be passed to INT_VAR_RND() and a double as decay-factor or an integer action object to
INT_VAR_ACTION_MAX(). Both INT_VAR_NONE() and INT_VAR_RND() are special in that they
are not useful for tie-breaking. All other variable selection functions take an optional argu-
ment of type BranchTbl as a branch tie-breaking limit function (we will abbreviate this here
as tbl-function), see Section 8.9 for a description of tie-breaking and tbl-functions.

The implementation of the variable selection functions is simple: each function returns
an object of class IntVarBranch that stores all necessary information required for creating
the appropriate brancher. As an example of an implementation consider the following, the
other functions are similar:

475

VARIABLE SELECTION CLASS ≡
class IntVarBranch : public VarBranch<IntVar> {

public:

enum Select {

SEL_NONE, SEL_RND, SEL_MERIT_MAX,

SEL_DEGREE_MAX, SEL_ACTION_MAX, SEL_SIZE_MIN

};

protected:

Select s;

public:

IntVarBranch(void) ;

IntVarBranch(Rnd r);

IntVarBranch(Select s0, BranchTbl t);

IntVarBranch(Select s0, double d, BranchTbl t);

IntVarBranch(Select s0, Action a, BranchTbl t);

IntVarBranch(Select s0, IntBranchMerit mf, BranchTbl t);

Select select(void) const;

◮ EXPAND ACTION

};

· · ·

Figure 38.2: Variable selection class

476

VARIABLE SELECTION FUNCTION IMPLEMENTATION ≡
inline IntVarBranch

INT_VAR_MERIT_MAX(IntBranchMerit bm, BranchTbl tbl) {

return IntVarBranch(IntVarBranch::SEL_MERIT_MAX,bm,tbl);

}

· · ·
The implementation of the class IntVarBranch is shown in Figure 38.2. It defines an

enumeration of all variable selection strategies and a set of constructors for the different
types of arguments the variable selection functions take. The select() function returns a
value of the enumeration type that is stored by the object. All other information is handled
by the base class VarBranch that is parametric with respect to the variable type.

The class must also implement an expand() member function. It checks whether
INT_VAR_ACTION_MAX() had been called just with a decay-factor instead of an integer ac-
tion object. In this case it creates an integer action object and stores it as follows:

EXPAND ACTION ≡
void expand(Home home, const IntVarArgs& x) {

if ((select() == SEL_ACTION_MAX) && !action())

action(IntAction(home,x,decay()));

}

Value selection. Value selection functions are implemented similarly to variable selec-
tion functions. They return an object of class IntValBranch (inheriting from the template
base class ValBranch) which stores the necessary information for creating the appropriate
brancher. We are considering the following value selection functions as examples:

VALUE SELECTION FUNCTIONS ≡
class IntValBranch : public ValBranch<IntVar> {

· · ·
};

IntValBranch INT_VAL_MIN(void);

IntValBranch INT_VAL_RND(Rnd r);

IntValBranch INT_VAL(IntBranchVal v, IntBranchCommit c=nullptr);

· · ·
Note that the last argument of the value selection function INT_VAL() is optional, the

default behavior will be defined in Section 38.4.

38.3 View selection creation

The view selection creation function shown in Figure 38.3 takes an object ivb of class
IntVarBranch as an argument, creates an object of class ViewSel and returns a pointer to

477

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1VarBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValBranch.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSel.html

VIEW SELECTION CREATION FUNCTION ≡
◮ SIZE MERIT CLASS

inline ViewSel<IntView>*
viewsel(Space& home, const IntVarBranch& ivb) {

if (ivb.select() == IntVarBranch::SEL_NONE)

return new (home) ViewSelNone<IntView>(home,ivb);

if (ivb.select() == IntVarBranch::SEL_RND)

return new (home) ViewSelRnd<IntView>(home,ivb);

if (ivb.tbl()) {

◮ VIEW SELECTION WITH TBL-FUNCTION

} else {

◮ VIEW SELECTION WITHOUT TBL-FUNCTION

}

throw UnknownBranching("Int::branch");

}

Figure 38.3: View selection creation function

it. The object ivb is a specification of which object should be returned. The returned object
is used to select views during brancher execution.

Selection of the first unassigned view (corresponding to SEL_NONE, that is, the object ivb
has been created by calling the function INT_VAR_NONE()) is implemented by the Gecode-
defined class ViewSelNone. Also random view selection is provided by Gecode through the
class ViewSelRnd. Both classes are parametric with respect to a view type.

View selection with tbl-function. The other strategies for view selection exist in two vari-
ants: one variant that uses a tbl-function and one variant that does not. In case a tbl-function
has been supplied as additional argument to one of the variable selection functions, the fol-
lowing creates the appropriate object for view selection:

VIEW SELECTION WITH TBL-FUNCTION ≡
switch (ivb.select()) {

case IntVarBranch::SEL_MERIT_MAX:

return new (home) ViewSelMaxTbl<MeritFunction<IntView>>(home,ivb);

case IntVarBranch::SEL_DEGREE_MAX:

return new (home) ViewSelMaxTbl<MeritDegree<IntView>>(home,ivb);

case IntVarBranch::SEL_ACTION_MAX:

return new (home) ViewSelMaxTbl<MeritAction<IntView>>(home,ivb);

case IntVarBranch::SEL_SIZE_MIN:

return new (home) ViewSelMinTbl<MeritSize>(home,ivb);

default: ;

}

478

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelNone.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelRnd.html

SIZE MERIT CLASS ≡
class MeritSize : public MeritBase<IntView,unsigned int> {

public:

MeritSize(Space& home, const VarBranch<IntVar>& vb)

: MeritBase<IntView,unsigned int>(home,vb) {}

MeritSize(Space& home, MeritSize& m)

: MeritBase<IntView,unsigned int>(home,m) {}

unsigned int operator ()(const Space& home, IntView x, int i) {

return x.max() - x.min();

}

};

Figure 38.4: Size merit class

Depending on how the view is to be selected, different objects are created. An object
of class ViewSelMaxTbl selects a variable with maximal merit (for the definition of merit,
see Section 8.2), whereas an object of class ViewSelMinTbl selects a variable with minimal
merit. Objects of both classes take a tbl-function during selection into account. Both classes
expect a class as template argument that computes the actual merit value for a given view.

The classes MeritFunction, MeritDegree, and MeritAction are defined by Gecode and
are parametric with respect to the actual view type.

Selecting a view with minimal size is specific to our integer interval variables and
views. The implementation of the class MeritSize inherits from MeritBase and is shown in
Figure 38.4.

The class MeritBase is parametric with respect to the view type (IntView in our case)
and the type of the merit value (unsigned int in our case). The constructors are as to be
expected and the call operator must return the merit value of type unsigned int (the same
as the second template argument to MeritBase) of the view x (i refers to the position of the
view x in the array of views used in the brancher).

In case the merit class uses members that must be deallocated when the home-space is
deleted, the merit class must redefine the member functions notice() and dispose(), for
example by:

bool notice(void) const {

return true;

}

void dispose(Space& home) {

· · ·
}

View selection without tbl-function. Implementing view selection without a tbl-function
is analogous, the only difference is that the classes ViewSelMax (instead of ViewSelMaxTbl)

479

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelMaxTbl.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelMinTbl.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MeritFunction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MeritDegree.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MeritAction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MeritBase.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MeritBase.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1MeritBase.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelMax.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelMaxTbl.html

VALUE SELECTION AND COMMIT CREATION FUNCTION ≡
◮ VALUE SELECTION CLASSES

◮ VALUE COMMIT CLASS

inline ValSelCommitBase<IntView,int>*
valselcommit(Space& home, const IntValBranch& ivb) {

switch (ivb.select()) {

case IntValBranch::SEL_MIN:

return new (home)

ValSelCommit<ValSelMin,ValCommitLq>(home,ivb);

case IntValBranch::SEL_RND:

return new (home)

ValSelCommit<ValSelRnd,ValCommitLq>(home,ivb);

case IntValBranch::SEL_VAL_COMMIT:

◮ USER-DEFINED VALUE SELECTION AND COMMIT FUNCTIONS

default:

throw UnknownBranching("Int::branch");

}

}

Figure 38.5: Value selection and commit creation function

and ViewSelMin (instead of ViewSelMinTbl) must be used:

VIEW SELECTION WITHOUT TBL-FUNCTION ≡
switch (ivb.select()) {

case IntVarBranch::SEL_MERIT_MAX:

return new (home) ViewSelMax<MeritFunction<IntView>>(home,ivb);

· · ·
}

38.4 Value selection and commit creation

The value selection and commit creation function is very similar to the variable selection
creation function from the previous section. It creates and returns an object that performs
value selection and value commit during branching depending on a specification object of
class IntValBranch.

The function is shown in Figure 38.5 and returns an object of class ValSelCommitBase.
Again, this class is parametric with respect to the view type (IntView) and the value type
(int). Depending on which value selection strategy is defined by the argument ivb, a cor-
responding object of class ValSelCommit is created.

The class ValSelCommit is parametric with respect to a value selection class and a value
commit class (to be discussed below). The classes ValSelMin, ValSelRnd, and ValCommitLq

480

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelMin.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewSelMinTbl.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValSelCommitBase.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValSelCommit.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValSelCommit.html

are specific to integer interval variables and views and are discussed below.

Value selection classes. A value selection class must inherit from the class ValSel which
again is parametric with respect to the view and value type. The constructors (one for cre-
ation and for cloning) are exactly the same as for merit classes discussed in the previous
section.

Also, similar to merit classes, a value selection class can redefine the member functions
notice() and dispose() if explicit disposal is required when the home-space is deleted.

In addition, the classes must define a member function val() that returns a value for a
given view x as follows (i again is the position in the view array):

VALUE SELECTION CLASSES ≡
class ValSelMin : public ValSel<IntView,int> {

· · ·
int val(const Space& home, IntView x, int i) {

return x.min();

}

};

· · ·

Value commit classes. For our integer interval variables and views we need a single value
commit class only (how many classes are needed depends of course on which value selec-
tion strategies are provided). A value commit class must inherit from the parametric class
ValCommit and must implement one constructor for creation and one for cloning. In addi-
tion, it must define a commit() function, an ngl() function (to be discussed later), and a
default print() function. The commit() function returns a modification event and takes the
number of the alternative a, a view x, its position i, and a value n as arguments. The print()
function takes an output stream o as additional argument:

481

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValSel.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValCommit.html

VALUE COMMIT CLASS ≡
◮ NO-GOOD LITERAL CLASS

· · ·
class ValCommitLq : public ValCommit<IntView,int> {

public:

· · ·
ModEvent commit(Space& home, unsigned int a,

IntView x, int i, int n) {

return (a == 0) ? x.lq(home,n) : x.gq(home,n+1);

}

void print(const Space&, unsigned int a,

IntView, int i, int n,

std::ostream& o) const {

o << "x[" << i << "] "

<< ((a == 0) ? "<=" : ">") << " " << n;

}

◮ NO-GOOD LITERAL CREATION

};

No-good support. The value commit class must also implement a function ngl() that
returns a no-good literal for an alternative. The idea is exactly the same as described in
Section 33.2, the only difference is that the ngl() function here gets a view and a value as
arguments rather than a choice.

The ngl() function of the ValCommitLq class returns a no-good literal implemented by
the class LqNGL for the first alternative and NULL for the second alternative as follows:

NO-GOOD LITERAL CREATION ≡
NGL* ngl(Space& home, unsigned int a,

IntView x, int n) const {

return (a == 0) ? new (home) LqNGL(home,x,n) : nullptr;

}

482

The no-good literal class LqNGL used by the ngl() function is defined as follows:

NO-GOOD LITERAL CLASS ≡
class LqNGL : public ViewValNGL<IntView,int,PC_INT_BND> {

using ViewValNGL<IntView,int,PC_INT_BND>::x;

using ViewValNGL<IntView,int,PC_INT_BND>::n;

public:

LqNGL(Space& home, IntView x, int n);

LqNGL(Space& home, LqNGL& ngl);

virtual NGL* copy(Space& home);

virtual NGL::Status status(const Space& home) const;

virtual ExecStatus prune(Space& home);

};

It inherits from the template class ViewValNGL, which expects a view type, a value
type, and a propagation condition as argument. The definition of the constructors, the
copy() function, the status() function, and the prune() function are exactly as discussed
in Section 33.2. The remaining functions for disposal and subscription are pre-defined by
ViewValNGL.

User-defined value selection and commit functions. For the value selection function
INT_VAL(v,c) for a user-defined value selection function v and a user-defined commit func-
tion c it is possible to leave out c, as it has been declared as an optional argument. When
the argument is not provided, c is equal to nullptr. This is taken into account as follows:

USER-DEFINED VALUE SELECTION AND COMMIT FUNCTIONS ≡
if (!ivb.commit()) {

return new (home)

ValSelCommit<ValSelFunction<IntView>,

ValCommitLq>(home,ivb);

} else {

return new (home)

ValSelCommit<ValSelFunction<IntView>,

ValCommitFunction<IntView> >(home,ivb);

}

The classes ValSelFunction and ValCommitFunction are defined by Gecode and are para-
metric with respect to a view. They use the functions as specified by the object ivb.

38.5 Branchings

Implementing the actual branch() functions with and without tie-breaking is straightfor-
ward. They only have to create a brancher that uses the view selection creation func-
tion viewsel() from Section 38.3 and the value selection and commit creation function
valselcommit() from Figure 38.5.

483

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewValNGL.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewValNGL.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValSelFunction.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ValCommitFunction.html

BRANCH FUNCTION ≡
inline void

branch(Home home, const IntVarArgs& x,

IntVarBranch vars, IntValBranch vals,

IntBranchFilter bf=nullptr,

IntVarValPrint vvp=nullptr) {

using namespace Int;

if (home.failed()) return;

vars.expand(home,x);

ViewArray<IntView> xv(home,x);

ViewSel<IntView>* vs[1] = {

viewsel(home,vars)

};

postviewvalbrancher<IntView,1,int,2>

(home,xv,vs,valselcommit(home,vals),bf,vvp);

}

Figure 38.6: Branch function

Branching without tie-breaking. The branch() function is shown in Figure 38.6. It cre-
ates an array of integer views IntView, expands a possibly missing integer action object,
creates an array with a single view selector object returned by the function viewsel() as dis-
cussed in Section 38.3 and posts the view-value brancher of class ViewValBrancher through
the function postviewvalbrancher(). The function is parametric, where the arguments
describe the following:

1. The view type which is IntView in our case.

2. The number of view selection objects to be used during view selection. As we are not
using tie-breaking, the number is 1 and corresponds to the number of elements in the
array vs.

3. The value type which is int in our case.

4. The number of alternatives that should be created during branching, which is 2 in our
example1.

Branching with tie-breaking. The branch() function with tie-breaking is shown in
Figure 38.7. It takes an object vars of class TieBreak as argument, where vars.a is the
first variable selection strategy of class IntVarBranch, vars.b the second, vars.c the third,
and vars.d the forth and last to be used during tie-breaking.

1By choosing the value 1 here, one can obtain branchers that perform value assignment similar to the
assign() function described in Section 8.13.

484

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewValBrancher.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1TieBreak.html

BRANCH FUNCTION WITH TIE-BREAKING ≡
inline void

branch(Home home, const IntVarArgs& x,

TieBreak<IntVarBranch> vars, IntValBranch vals,

IntBranchFilter bf=nullptr,

IntVarValPrint vvp=nullptr) {

using namespace Int;

if (home.failed()) return;

vars.a.expand(home,x);

◮ NORMALIZING TIE-BREAKING

ViewArray<IntView> xv(home,x);

if (vars.b.select() == IntVarBranch::SEL_NONE) {

· · ·
} else if (vars.c.select() == IntVarBranch::SEL_NONE) {

ViewSel<IntView>* vs[2] = {

viewsel(home,vars.a), viewsel(home,vars.b)

};

postviewvalbrancher<IntView,2,int,2>

(home,xv,vs,valselcommit(home,vals),bf,vvp);

} else if (vars.d.select() == IntVarBranch::SEL_NONE) {

ViewSel<IntView>* vs[3] = {

viewsel(home,vars.a), viewsel(home,vars.b),

viewsel(home,vars.c)

};

postviewvalbrancher<IntView,3,int,2>

(home,xv,vs,valselcommit(home,vals),bf,vvp);

} else {

· · ·
}

}

Figure 38.7: Branch function with tie-breaking

485

Before creating the brancher, the variable selection strategies are normalized. As
mentioned earlier, there should be no tie-breaking after the variable selection strategies
INT_VAR_NONE() and INT_VAR_RND() (corresponding to SEL_NONE and SEL_RND, respec-
tively). The normalization first tries to normalize var.b, then var.c and finally var.d as
follows (the var.c and var.d case is analogous and hence omitted):

NORMALIZING TIE-BREAKING ≡
if ((vars.a.select() == IntVarBranch::SEL_NONE) ||

(vars.a.select() == IntVarBranch::SEL_RND))

vars.b = INT_VAR_NONE();

vars.b.expand(home,x);

if ((vars.b.select() == IntVarBranch::SEL_NONE) ||

(vars.b.select() == IntVarBranch::SEL_RND))

vars.c = INT_VAR_NONE();

vars.c.expand(home,x);

if ((vars.c.select() == IntVarBranch::SEL_NONE) ||

(vars.c.select() == IntVarBranch::SEL_RND))

vars.d = INT_VAR_NONE();

vars.d.expand(home,x);

After normalization, the branch() function shown in Figure 38.7 posts a brancher of
class ViewValBrancher with the appropriate number of view selection objects by calling the
postviewvalbrancher() function. In Figure 38.7, only the cases for two and three objects
is shown, the other cases are analogous.

486

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1ViewValBrancher.html

39 Variable tracing
support

This chapter shows how to add variable tracing support for a new variable type.

Overview. Figure 39.1 shows the part of the header file concerned with tracing. Trace views
are used to save the state of a view’s domain after it has been modified by a prune-event and
trace deltas are used to compute the values that have been removed by a prune-event. They
are discussed in Section 39.1. How tracers and trace recorders are instantiated is described
in Section 39.2. Finally, Section 39.3 describes how to actually post trace recorders through
trace post functions.

39.1 Trace views and deltas

Trace views are used to save the domain of a view after a prune-event has occurred. When
another prune event occurs, a trace view is used to compute a trace delta between the previ-
ously recorded domain and the current domain of the view. For our integer interval variables,
the integer trace view stores the lower and upper bound as follows:

487

TRACING ≡
namespace MPG { namespace Int {

◮ TRACE VIEW

}}

namespace MPG {

◮ TRACE DELTA

}

namespace Gecode {

◮ TRACE TRAITS

}

namespace MPG {

◮ TRACER AND TRACE RECORDER

◮ STANDARD TRACER

◮ TRACE POST FUNCTION

◮ TRACE POST FUNCTION CONVENIENCE

}

Figure 39.1: Part of header file concerned with tracing

TRACE VIEW ≡
class IntTraceView {

protected:

int l, u;

public:

IntTraceView(void) {}

IntTraceView(Space& home, IntView x)

: l(x.min()), u(x.max()) {}

int min(void) const {

return l;

}

· · ·
void update(Space& home, IntTraceView x) {

l=x.l; u=x.u;

}

◮ PRUNE FUNCTION

◮ SLACK FUNCTION

};

The trace view is initialized by its constructor. It does not have to implement all functions
of a view, only an update() function is needed and two functions that are specific to trace

488

views.

Prune function. The prune function is executed when a prune-event has occurred. Here
the integer view x is the view after the prune event and the modification delta d contains
information about the prune-event. For integer interval variables it is sufficient to update the
lower and upper bound of the trace view as follows:

PRUNE FUNCTION ≡
void prune(Space& home, IntView x, const Delta& d) {

l=x.min(); u=x.min();

}

Slack function. For all other event types, the slack of a variable must be available, com-
puted by a slack() function as follows:

SLACK FUNCTION ≡
static unsigned long long int slack(IntView x) {

return static_cast<unsigned long long int>(x.max() - x.min());

}

Here the slack is defined as the values that are still to be removed and to avoid numeric
overflow for several views the return type is defined as unsigned long long int.

Trace delta. The trace delta provides information about which values have been removed
by a prune-event. For integer interval variables, the trace delta is defined and computed as
follows:

TRACE DELTA ≡
class IntTraceDelta {

protected:

int l, u;

public:

IntTraceDelta(Int::IntTraceView o, Int::IntView n, const Delta& d) {

if (n.min() > o.min()) {

l=o.min(); u=n.min()-1;

} else {

l=n.max()+1; u=o.max();

}

}

int min(void) const {

return l;

}

· · ·
};

489

Note as integer interval variables are so simple, it would also have been possible to not
store the lower and upper bound in the trace view but to extract the information from the
modification delta d directly.

39.2 Tracers and trace recorders

For tracers and trace recorders it is sufficient to define some traits for tracing as follows:

TRACE TRAITS ≡
template<>

class TraceTraits<MPG::Int::IntView> {

public:

typedef MPG::Int::IntTraceView TraceView;

typedef MPG::IntTraceDelta TraceDelta;

typedef unsigned long long int SlackValue;

};

Here the type names are self explanatory.
An integer tracer and trace recorder can be obtained by simple type definitions as follows:

TRACER AND TRACE RECORDER ≡
typedef ViewTracer<Int::IntView> IntTracer;

typedef ViewTraceRecorder<Int::IntView> IntTraceRecorder;

If desired, one can also define a standard tracer for convenience:

STANDARD TRACER ≡
class StdIntTracer : public IntTracer {

protected:

std::ostream& os;

public:

StdIntTracer(std::ostream& os0 = std::cerr) : os(os0) {}

· · ·
static StdIntTracer def;

};

StdIntTracer StdIntTracer::def;

The implementation is not detailed here, see Section 12.6 for details.

39.3 Trace post functions

The trace post function is like a constraint post function: it creates integer views for the
variables and then posts the trace recorder as follows:

490

TRACE POST FUNCTION ≡
inline void

trace(Home home, const IntVarArgs& x, TraceFilter tf,

int te = (TE_INIT | TE_PRUNE | TE_FIX | TE_FAIL | TE_DONE),

IntTracer& t = StdIntTracer::def) {

GECODE_POST;

ViewArray<Int::IntView> xv(home,x);

GECODE_ES_FAIL(IntTraceRecorder::post(home,xv,tf,te,t));

}

For convenience, the following post function allows to post a trace recorder without spec-
ifying any trace filter:

TRACE POST FUNCTION CONVENIENCE ≡
inline void

trace(Home home, const IntVarArgs& x,

int te = (TE_INIT | TE_PRUNE | TE_FIX | TE_FAIL | TE_DONE),

IntTracer& t = StdIntTracer::def) {

trace(home,x,TraceFilter::all,te,t);

}

491

492

40 Putting everything
together

This chapter finally explains how integer interval variables can be used with Gecode.

Overview. Section 40.1 sketches an example script together with implementations of con-
straints and branchings using integer interval variables. The following section, Section 40.2,
shows how Gecode can be configured to use integer interval variables and how to compile
and run the example script.

Important. Please make sure to carefully read Section 2.6.2, before reading any further in
this chapter!

40.1 Golomb rulers à la integer interval variables

Figure 40.1 shows the top-level structure of a single C++-file containing a script together with
all required implementations of post functions, propagators, and branchers. The example
script implements a naive version of the Golomb ruler model presented in Chapter 13. The
reason to package everything into a single C++-file is to simplify compiling the example.

The implementations of the constraints in the C++-file are carefully constructed to exercise
most of the functionality described in the previous chapters in this part. In particular, some
constraints have a slightly non-standard implementation to exercise all views presented in
Chapter 37.

40.2 Configuring and compiling Gecode

The following steps configure and compile Gecode with integer interval variables:

1. Start a shell.

2. Create a new directory, say MPG, and make it the current directory:

mkdir MPG; cd MPG

3. Download a Gecode 6.2.0 source package or check-out Gecode 6.2.0 from svn. We
assume that the Gecode source code is contained in a directory named gecode-6.2.0.

493

PUTTING EVERYTHING TOGETHER ≡ [DOWNLOAD]

#include "int.hh"

#include <gecode/search.hh>

using namespace MPG;

· · ·

class GolombRuler : public Gecode::Space {

· · ·
};

int main(int argc, char* argv[]) {

· · ·
}

Figure 40.1: Golomb rulers à la integer interval variables

4. If you have not yet done so, download and copy all files required for integer interval
variables and the example into the current directory:

■ The header file int.hh containing the implementation of integer interval vari-
ables.

■ The variable implementation specification file int.vis.

■ The file putting-everything-together.cpp from the previous section.

5. Configure Gecode to incorporate integer interval variables:

cd gecode-6.2.0

./configure --with-vis=../int.vis

After this step, Gecode has been configured to incorporate the generated definitions
as described by the specification file int.vis. If you need to pass other options to
configure to successfully build Gecode, please do so.

6. Compile Gecode and leave the directory

make;cd ..

494

https://www.gecode.org/doc/6.2.0/MPG/putting-everything-together.cpp
https://www.gecode.org/doc/6.2.0/MPG/int.hh
https://www.gecode.org/doc/6.2.0/MPG/int.vis
https://www.gecode.org/doc/6.2.0/MPG/putting-everything-together.cpp

7. Set the PATH environment variable to point to the just compiled Gecode installation:

export PATH="gecode-6.2.0:$PATH"

Depending on the platform you use, you might also have to set the environment variable
LD_LIBRARY_PATH accordingly.

Finally: compile, link, and run the example script putting-everything-together.cpp
as described in Section 2.3, where you need to make sure that the directory for include files
and library files is gecode-6.2.0.

495

496

S

Programming search engines
Christian Schulte

This part shows how to program search engines in Gecode.
Chapter 41 (Getting started) presents how to implement simple search engines, where

the focus is on understanding the basic operations available on spaces to implement search
engines. Chapter 42 (Recomputation) explains recomputation as the most essential tech-
nique for efficient search in Gecode. Chapter 43 (An example engine) puts all techniques for
search and recomputation from Chapter 41 and Chapter 42 together and presents a realistic
search engine.

41 Getting started

This chapters presents how to implement simple search engines. The focus is on understand-
ing the basic operations available on spaces to implement search engines. None of the engines
presented here is realistic as they do not use recomputation. The full picture is developed in
Chapter 42 and Chapter 43.

Overview. Section 41.1 sets the stage by explaining space operations for programming
search engines. A depth-first search engine that makes the simplifying assumption that
all choices explored during search are binary is shown in Section 41.2. The next section,
Section 41.3, shows depth-first search for choices with an arbitrary number of alternatives.
How best solution search can be programmed from spaces is exemplified by a simple branch-
and-bound search engine in Section 41.4.

41.1 Space-based search

Search engines compute with spaces: a space implements a constraint model and exploration
of its search space is implemented by operation on spaces. The operations on spaces include:
computing the status of a space by the status() function, creating a clone of a space by the
clone() function, and committing to an alternative of a choice by the commit() function. To
commit to an alternative, a space provides the function choice() that returns a choice defin-
ing how the space can be committed to one of its alternatives. Another operation required
to program exploration is the function alternatives() defined by a choice that returns the
number of alternatives of a choice.

Spaces implement also a constrain() function for best solution search. Its discussion is
postponed to Section 41.4.

This section reviews the above operations from the perspective of a search engine, the
perspective how branchers are controlled by these operations is detailed in Section 32.1.
Gecode’s architecture for search is designed such that a search engine does not need to know
which problem is being solved by a search engine: any problem implemented with spaces
can be solved by a search engine, and different search engines can be used for solving the
same problem. The basic idea of this factorization is due to [49].

Note that here and in the following, spaces and choices are always assumed to be pointers

to the respective objects. Pointers are necessary as search engines dynamically create and
delete spaces and choices.

499

Status computation. A search engine needs to decide how to proceed during search by
computing the status of a space by invoking its status() function. The status() func-
tion performs constraint propagation (see Section 23.1) followed by determining the next
brancher for branching, if possible (see Section 32.1). Depending on the result of constraint
propagation and brancher selection, the status() function returns one of the following val-
ues of the type SpaceStatus (see Programming search engines):

■ SS_FAILED: the space is failed. The search engine needs to backtrack and revisit other
spaces encountered during exploration.

An important responsibility of a search engine is to perform resource management for
spaces. In the case of failure, the typical action is to delete the failed space.

■ SS_SOLVED: the space is solved. Hence the search engine has found a solution and
typically returns the solution.

For most engines, the responsibility for deleting a solution lies with the user of a search
engine.

Following the discussion in Section 32.1, calling the choice() function of a solved
space performs garbage collection for branchers that are not any longer needed.
Section 41.2 shows an example search engine that performs garbage collection on
solved spaces.

■ SS_BRANCH: the space requires branching for search to proceed.

The first step in branching is to compute a choice by calling the choice() function
of a space. The returned choice can be used for committing to alternatives of a
space. In particular, a choice returned by the choice() function provides a function
alternatives() that returns how many alternatives the choice has.

The pointer to the choice that is returned by the choice() function of a space s is
const. That is, the following code:

const Choice* ch = s->choice();

gets a const pointer to a choice (the choice cannot be modified). Note that it is the
obligation of the search engine to eventually delete the choice by

delete ch;

Cloning spaces. A central requirement for a search engine is that it can return to a previous
state: as spaces constitute the nodes of the search tree, a previous state is nothing but a space
again. Returning to a previous space might be necessary because an alternative suggested by
a branching did not lead to a solution, or, even if a solution has been found, more solutions
might be requested.

500

https://www.gecode.org/doc/6.2.0/reference/group__TaskSearch.html

As propagation and branching modify spaces, provisions must be taken that search can
actually return to the clone of a previous space. This is provided by the clone() function of
a space: it returns a clone of a space. This clone can be stored by a search engine such that
the engine can return to a previous state. Spaces that are clones of each other are equivalent:
space operations will have exactly the same effect on equivalent spaces.

The clone() function of a space can only be called on a space that is stable and not failed
(that is, the status() function on a space must return SS_SOLVED or SS_BRANCH). Otherwise,
Gecode throws an exception of type SpaceNotStable if the space is not stable and of type
SpaceFailed if the space is failed.

Committing to alternatives. Given a space s and a choice ch (assumed to be a const

pointer), the space s can be committed to the i-th alternative by calling the commit() func-
tion of a space as follows:

s->commit(*ch,i);

The choice ch must be compatible with the space s. Before defining when a choice is com-
patible with a space, let us look at two examples.

Suppose a search engine has invoked status() on a space s which returned SS_BRANCH.
The next step is to obtain a choice ch for s and a clone c of s by:

const Choice* ch = s->choice();

Space* c = s->clone();

Further assume that the choice is binary (that is, ch->alternatives() returns 2). A search
engine can explore both alternatives (typically, the search engine performs the commit() for
the second1 alternative much later) by:

s->commit(*ch,0);

c->commit(*ch,1);

That is, a choice ch is compatible with the space s from which it has been computed and with
the clone c of s.

Tip 41.1 (Printing information about alternatives.). Sometimes it might be helpful to print
what the commit() function does. For this reason, a space provides a print() function
that compared to commit() takes an output stream of type std::ostream& as additional
argument.

For example, the following

s->print(*ch,0,std::out);

std::out << std::endl;

c->print(*ch,1,std::out);

std::out << std::endl;

1Even though the alternatives are numbered starting from 0 we refer to the alternative with number 0 as
the first alternative and the alternative with number 1 as the second alternative.

501

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SpaceNotStable.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1SpaceFailed.html

prints information about what the commit() function in the above example actually does. ◭

A search engine for best solution search performs slightly different operations. Let us
follow an example scenario. First, the search engine starts exploring the first alternative by:

s->commit(*ch,0);

Then search continues with s. Let us assume that the search engine finds a better solution
when continuing search from s. Hence, the search engine adds additional constraints to the
clone c to make sure that exploration from c yields a better solution (the constraints are
added by calling the constrain() function of a space, see Section 41.4). And only then the
search engine commits the clone c to the second alternative by:

c->commit(*ch,1);

That is, a choice ch is also compatible with the clone c of s, even though additional constraints
have been added to c after it had been created by cloning.

In fact, the relation that a choice is compatible with a space is quite liberal. The full notion
of compatibility is needed for recomputation and is discussed in Section 42.2.1.

Parallel search. Gecode’s kernel is constructed that clones of spaces can be used in different
threads. Howeever, no two threads can simultaneously perform operations on the same
space.

Statistics support. The three main space operations (status(), clone(), and commit())
provide support for execution statistics. For example, statistics from the execution of
status() on a space s can be collected in the object stat by:

StatusStatistics stat;

s->status(stat);

The classes for the statistics correspond to the space operations:

status() StatusStatistics

clone() CloneStatistics

commit() CommitStatistics

Statistics information is collected by accumulation. That is, for spaces s1 and s2, the
following:

StatusStatistics stat;

s1->status(stat);

s2->status(stat);

502

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1StatusStatistics.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1CloneStatistics.html
https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1CommitStatistics.html

collects the combined statistics of performing status() on s1 and s2.

The statistics classes also implement addition operators. The following is equivalent to
the previous example:

StatusStatistics stat;

{

StatusStatistics a, b;

s1->status(a);

s2->status(b);

stat = a + b;

}

which is also equivalent to:

StatusStatistics stat;

{

StatusStatistics a, b;

s1->status(a); stat += a;

s2->status(b); stat += b;

}

41.2 Binary depth-first search

This section shows a simple search engine that performs left-most depth-first search. It
makes the additional simplification that all choices are binary, the general case is discussed
in Section 41.3.

Figure 41.1 shows the definition of the function dfs() that implements the search engine.
It takes a space as input and returns a space as a solution or NULL if no solution exists. The
resource policy it implements is that it takes responsibility for deleting the space s with which
dfs() is called initially. The solution it returns must eventually be deleted by the caller of
dfs() (if the initial space happens to be a solution, the engine does not delete it). The search
engine starts by executing the status() function on s and hence triggers propagation and
possibly brancher selection.

In this chapter and in Chapter 42 we use recursive functions to implement exploration
during search. This is rather inefficient with respect to both runtime and space in C++. A
more realistic implementation uses an explicit stack, for an example see Chapter 43.

Failure and solutions. In case the space s is failed, the search engine deletes the space and
returns NULL as specified:

FAILED ≡
delete s; return NULL;

503

DFS BINARY ≡ [DOWNLOAD]

· · ·
Space* dfs(Space* s) {

switch (s->status()) {

case SS_FAILED:

◮ FAILED

case SS_SOLVED:

◮ SOLVED

case SS_BRANCH:

{

◮ PREPARE FOR BRANCHING

◮ FIRST ALTERNATIVE

◮ SECOND ALTERNATIVE

}

}

}

Figure 41.1: Depth-first search for binary choices

If the space s is solved, the search engine triggers garbage collection of remaining branch-
ers as mentioned in Section 41.1 and returns the solution:

SOLVED ≡
(void) s->choice(); return s;

Branching. Following the discussion in Section 41.1, before the search engine can start
committing to alternatives and perform recursive search, it needs to compute a choice for
committing and a clone for backtracking:

PREPARE FOR BRANCHING ≡
const Choice* ch = s->choice();

Space* c = s->clone();

The search engine tries the first alternative by committing the space s to it and continues
search recursively:

FIRST ALTERNATIVE ≡
s->commit(*ch,0);

if (Space* t = dfs(s)) {

delete ch; delete c;

return t;

}

If the recursive call to dfs() returns a solution (that is, t is different from NULL and hence the
condition of the if statement is true) the engine deletes both choice and clone and returns
the solution t.

504

https://www.gecode.org/doc/6.2.0/MPG/dfs-binary.cpp

Saving memory. It is absolutely essential that the search engine uses the original space s

for further exploration and stores the clone c for backtracking. Exchanging the roles of s and
c by:

c->commit(*ch,0);

if (Space* t = dfs(c)) {

delete ch; delete s;

return t;

}

would also find the same solution. However, this search engine would most likely need more
memory. Spaces that already have been used for propagation (such as s) typically require
more memory than a pristine clone (see also Section 31.2). Hence, any search engine should
maintain the invariant that it stores pristine clones for backtracking, but never spaces that
have been used for propagation.

If the first alternative did not lead to a solution, search commits the clone c to the second
alternative, deletes the now unneeded choice, and recursively continues search:

SECOND ALTERNATIVE ≡
c->commit(*ch,1);

delete ch;

return dfs(c);

41.3 Depth-first search

This section demonstrates how left-most depth-first search with choices having an arbitrary
number of alternatives can be implemented. By this, the section presents the general version
of the search engine from Section 41.2.

Figure 41.2 outlines the depth-first search engine, where computing the space status and
handling failed and solved spaces is the same as in Section 41.2. If the search engine needs
to branch, it computes the choice ch for branching and the number of alternatives n.

Choices can actually have a single alternative, for example for assigning variables (see
Section 8.13). This special case should be optimized as in fact no clone needs to be stored
for backtracking. Hence:

SINGLE ALTERNATIVE ≡
if (n == 1) {

s->commit(*ch,0);

delete ch;

return dfs(s);

}

505

DFS ≡ [DOWNLOAD]

· · ·
Space* dfs(Space* s) {

switch (s->status()) {

· · ·
case SS_BRANCH:

{

const Choice* ch = s->choice();

unsigned int n = ch->alternatives();

◮ SINGLE ALTERNATIVE

◮ SEVERAL ALTERNATIVES

}

break;

}

}

Figure 41.2: Depth-first search

If the choice has more than a single alternative, a clone c is created and a loop iterates
over all alternatives:

SEVERAL ALTERNATIVES ≡
Space* c = s->clone();

for (unsigned int a=0; a<n; a++) {

◮ SPACE TO EXPLORE

◮ RECURSIVE SEARCH

}

delete ch;

return NULL;

If the loop terminates, no solution has been found and hence NULL is returned.
When trying the a-th alternative, the search engine determines which space e to choose

to continue exploration:

SPACE TO EXPLORE ≡
Space* e;

if (a == 0)

e = s;

else if (a == n-1)

e = c;

else

e = c->clone();

The choice of e avoids the creation of an unnecessary clone for the last alternative.

506

https://www.gecode.org/doc/6.2.0/MPG/dfs.cpp

After committing the space to explore the a-th alternative, search continues recursively.
If a solution t has been found, it is returned after the search engine deletes the clone (unless
it has already been used for the last alternative) and the choice:

RECURSIVE SEARCH ≡
e->commit(*ch,a);

if (Space* t = dfs(e)) {

if (a != n-1) delete c;

delete ch;

return t;

}

41.4 Branch-and-bound search

This section shows how to program a best solution search engine. It chooses branch-and-
bound search as an example where choices are again assumed to binary for simplicity. The
non-binary case can be programmed similar to Section 41.3.

Constraining spaces. A space to be used for best solution search must implement a
constrain() function as discussed in Section 2.5. The key aspect of a best solution search
engine is that it must be able to add constraints to a space such that the space can only lead
to solutions that are better than a previously found solution.

Assume that a best solution search engine has found a so-far best solution b (a space).
Then, by

s->constrain(*b);

the engine can add constraints to the space s that guarantee that only solutions that are
better than b are found by search starting from s.

The Space class actually already implements a constrain() function which does nothing.
That is, a space to be used with a best solution search engine must redefine the default
constrain() function by inheritance.

Search engine. The basic structure of the branch-and-bound search engine is shown in
Figure 41.3. A user of the search engine calls the function bab() taking a single space as
argument. The function either returns the best solution or NULL if no solution exists.

The function bab() that takes three arguments implements the actual exploration. The
space s is the space that is currently being explored, the unsigned integer n counts the number
of solutions found so far, and the space b is the so-far best solution. Note that both n and b

are passed by reference and hence the variables are shared between all recursive invocations
of the search engine. The number of solutions n is used for deciding when a space must be
constrained to yield better solutions.

507

https://www.gecode.org/doc/6.2.0/reference/classGecode_1_1Space.html

BAB ≡ [DOWNLOAD]

· · ·
void bab(Space* s, unsigned int& n, Space*& b) {

switch (s->status()) {

· · ·
case SS_SOLVED:

◮ SOLVED

break;

case SS_BRANCH:

{

const Choice* ch = s->choice();

Space* c = s->clone();

◮ REMEMBER NUMBER OF SOLUTIONS

◮ EXPLORE FIRST ALTERNATIVE

◮ CONSTRAIN CLONE

◮ EXPLORE SECOND ALTERNATIVE

delete ch;

}

break;

}

}

Space* bab(Space* s) {

unsigned int n = 0; Space* b = NULL;

bab(s,n,b);

return b;

}

Figure 41.3: Branch-and-bound search

508

https://www.gecode.org/doc/6.2.0/MPG/bab.cpp

The single argument bab() function initializes n and b to capture that no solution has
been found yet. After executing the bab() search engine, b refers to the best solution (or is
NULL) and is returned after garbage collecting remaining branchers.

Finding a solution. The search engine is constructed such that every solution found is
better than the previous. Hence, when a solution is found, the previous so-far best solution
is deleted2 and is updated to the newly found solution. As a new solution is found also the
number of solutions n is incremented:

SOLVED ≡
n++;

delete b;

(void) s->choice(); b = s->clone(); delete s;

The search engine first garbage collects branchers (by calling choice()) and remembers a
pristine clone of the solution found.

Branching. Exploring the first alternative differs considerably from exploring the second
alternative of a choice. When exploring the first alternative, it is guaranteed that the current
space s can only lead to better solutions. If a solution is found by exploring the first alternative
(or if several solutions are found), then a constraint must be added to the clone c such
that only better solutions can be found when continuing exploration with c for the second
alternative. To detect whether a solution has been found when exploring the first alternative,
the search engine remembers the number of solutions m before starting to explore the first
alternative as follows:

REMEMBER NUMBER OF SOLUTIONS ≡
unsigned int m=n;

Exploring the first alternative is as to be expected:

EXPLORE FIRST ALTERNATIVE ≡
s->commit(*ch,0);

bab(s,n,b);

Before exploring the second alternative, the engine checks whether new solutions have
been found during the exploration of the first alternative. If new solutions have been found,
the clone c is constrained to yield better solutions:

CONSTRAIN CLONE ≡
if (n > m)

c->constrain(*b);

2Actually, b is NULL for the first solution found. However, it is legal in C++ to invoke the delete operator on
a NULL-pointer.

509

The second alternative is explored as follows:

EXPLORE SECOND ALTERNATIVE ≡
c->commit(*ch,1);

bab(c,n,b);

Note that execution of the constrain() function might constrain some variables and
possibly add new propagators (even new variables). Even though c might not be any longer
an identical clone of s, the choice ch is still compatible with the space c (see Section 41.1).

510

42 Recomputation

This chapter demonstrates recomputation as the most essential technique for efficient search
in Gecode. It is highly recommended to read Section 9.1 before reading this chapter.

Overview. The simplest possible search engine based on recomputation, where all spaces
needed for search are recomputed from the root of the search tree, is discussed in
Section 42.1. Important invariants for recomputation and how they must be taken into
account by search engines using recomputation are discussed in Section 42.2. How best
solution search is combined with recomputation is discussed in Section 42.3. The follow-
ing three sections present important optimizations for search engines using recomputation:
Section 42.4 shows how last alternative optimization can avoid commit() operations during
recomputation; Section 42.5 shows how hybrid recomputation that stores additional spaces
can be used to speed up search; Section 42.6 shows adaptive recomputation that helps speed-
ing up search in case of failures.

Important. All sections in this chapter make the simplifying assumption that choices are
binary, dealing with non binary choices is similar to Section 41.3. The search engine in
Chapter 43 combines all recomputation techniques of this chapter for the general case.

42.1 Full recomputation

This section demonstrates search based on full recomputation. While full recomputation is
unrealistic, the search engine presented here helps in understanding the ideas behind recom-
putation. In particular, the search engine serves as an example for important invariants for
recomputation that are discussed in Section 42.2.

Search engine. Figure 42.1 shows the outline for the search engine that implements depth-
first search with full recomputation. The function dfs() that takes a single space s as its
argument is called by the user, the function dfs() that takes three arguments implements
exploration with full recomputation.

The basic idea of the search engine is to always keep a single space r as the root space of
the search tree to be explored. Exploration maintains a current space and a path consisting
of edges that defines which node in the search tree is currently being explored. Exploration

511

DFS USING FULL RECOMPUTATION ≡ [DOWNLOAD]

· · ·
◮ EDGE CLASS

Space* dfs(Space* s, Space* r, Edge* p) {

switch (s->status()) {

· · ·
case SS_BRANCH:

{

◮ EXPLORE FIRST ALTERNATIVE

◮ EXPLORE SECOND ALTERNATIVE

}

}

}

Space* dfs(Space* s) {

if (s->status() == SS_FAILED) {

delete s; return NULL;

}

Space* r = s->clone();

Space* t = dfs(s,r,NULL);

delete r;

return t;

}

Figure 42.1: Depth-first search using full recomputation

512

https://www.gecode.org/doc/6.2.0/MPG/dfs-using-full-recomputation.cpp

EDGE CLASS ≡
class Edge {

protected:

Edge* p;

const Choice* ch;

unsigned int a;

public:

Edge(Space* s, Edge* e)

: p(e), ch(s->choice()), a(0) {}

◮ NEXT ALTERNATIVE

◮ COMMITTING A SPACE

◮ RECOMPUTING A SPACE

~Edge(void) {

delete ch;

}

};

Figure 42.2: Edge class for depth-first search using full recomputation

is governed by the invariant that the current space can always be recomputed from the path
of edges maintained by the search engine.

Initially, when the user calls the dfs() function taking a single argument, the root space
r is computed as a clone of the space s passed as argument. As only stable and non-failed
spaces can be cloned (see Section 41.1), the status() function is used to find out whether
propagation on s results in failure. If not, the root space r is created as a clone of s and the
search engine dfs() is called with s as the current space, r as the root space, and NULL as
the current path from the current space to the root space.

Edges for recomputation. Figure 42.2 shows the class Edge implementing an edge of a
path to be used for recomputation. The class stores a pointer p to the predecessor edge,
a choice ch, and the number of the alternative a that corresponds to the edge. Edges are
organized from the current node (space) of the search tree upwards to the root: the last
edge of a path connects to the root of the search tree and has NULL as its predecessor p. Note
that we restrict our attention in this chapter to binary choices only.

Initialization by the Edge’s constructor takes the current space of the search engine s and
the predecessor edge e and initializes the edge with the choice for s and the first alternative.
Deleting an edge also deletes the stored choice ch.

An edge provides a next() function that redirects the edge to the next alternative:

513

NEXT ALTERNATIVE ≡
void next(void) {

a++;

}

The commit() function of an edge commits a space s to the alternative that corresponds
to the edge:

COMMITTING A SPACE ≡
Space* commit(Space* s) const {

s->commit(*ch,a); return s;

}

The function returns the space just for convenience as can be seen below.
Finally, recomputing a space corresponding to an entire path of edges is implemented by

the recompute() function. The function takes the root space r as argument and is imple-
mented as follows:

RECOMPUTING A SPACE ≡
Space* recompute(Space* r) const {

return commit((p == NULL) ? r->clone() : p->recompute(r));

}

First, the function traverses the path of edges upwards until the root of the path is reached.
Then it creates a clone of the root space r and performs the commit() operations for each
edge on the path.

Exploring alternatives. The central invariant that the current path of edges p must always
correspond to the current space is essential for how the search engine implementing full
recomputation explores the search tree.

Before exploring the first alternative recursively, a new edge is created for the first alter-
native, the current space s is committed to the first alternative, and exploration continues
recursively:

EXPLORE FIRST ALTERNATIVE ≡
Edge e(s,p);

if (Space* t = dfs(e.commit(s),r,&e))

return t;

Note that all resource management for handling edges is done automatically: as soon as the
edge e goes out of scope, it is automatically deleted (and hence also the choice for the edge
is deleted).

Again, exploration of the second alternative maintains the central invariant: the edge
is redirected to the next alternative and then a space corresponding to the path of edges is
recomputed:

EXPLORE SECOND ALTERNATIVE ≡
e.next();

return dfs(e.recompute(r),r,&e);

514

Cost of recomputation. It is important to notice the following facts about the cost of re-
computation, where we compare the search engine using full recomputation to the search
engine without recomputation in Section 41.2:

■ While the number of commit() operations on spaces drastically increases for full re-
computation, the number of status() operations executed remains exactly the same.

However, execution of status() during recomputation is more expensive as more con-
straint propagation needs to be done: full recomputation always starts from the root
space where only little constraint propagation has been performed.

■ The number of clone() operations executed by full recomputation is never larger than
the number of clone() operations without recomputation.

Typically, the number of clone() operations is much smaller: recomputation is opti-

mistic in the sense that a clone is created and recomputation is performed only if a
node is required for exploration. A search engine without recomputation is pessimistic

in that it always creates a clone before continuing exploration to be able to backtrack
to a space that might be required for further exploration.

Section 42.5 presents hybrid recomputation as a technique that makes recomputation
less optimistic in that it creates more clones before continuing exploration. Section 42.6
presents adaptive recomputation that makes recomputation even less optimistic in
cases where it is likely that exploration can benefit from additional clones.

A detailed evaluation of recomputation in Gecode and a comparison to other techniques
for implementing search can be found in [44]. An evaluation of different recomputation
techniques (although in a different setup) can be found in [48] and [49, Chapter 7].

42.2 Recomputation invariants

This section discusses two important invariants that govern recomputation. The first invari-
ant is that recomputation can only use compatible choices for commit operations: the notion
of choice compatibility has been sketched in Section 41.1 and is detailed in Section 42.2.1.
The second invariant is concerned with the fact that recomputation is not always determin-
istic. However, Section 42.2.2 explains why recomputation still works even though it is not
deterministic.

42.2.1 Choice compatibility

Section 41.1 introduced the notion that a space s is compatible with a choice ch (that is, ch
can be used for a commit() operation on s). For recomputation, a more general notion of
compatibility is needed: during recomputation, a search engine performs commit() opera-
tions using choices that have been computed earlier on a path in the search tree.

515

1

2

3

root space r

choice ch0

choice ch1

choice ch2

1

2

3

4

root space r

choice ch0

choice ch1

choice ch2

Figure 42.3: Example situations during recomputation

Consider the situation sketched in the left part of Figure 42.3 with a root space r and
choices ch0, ch1, and ch2 as stored on the path of edges for recomputation. That is, all
choices have been computed by the choice() function from a clone of the root space r where
in between the calls to choice() other operations on the space have been performed. For
example, the search engine implementing full recomputation from Section 42.1 has executed
the status() and commit() functions several times in order to compute the choices.

Suppose that s is a clone of r (computed by s=r->clone()). Then all choices are com-
patible with s. Now suppose that t is a clone of s. Then all choices are still compatible with
t. Hence, if a choice ch has been created for a space r all spaces that are related by cloning
to r are compatible with ch. Compatibility continues to hold even if other operations (such
as commit() operations for other choices, computing the status of a space, or the creation of
new variables, propagators, and branchers) are performed on a space that is clone-related.
The only exception is the choice() function of a space.

Suppose that recomputation proceeds by recomputing the space s for node 4 as shown
in the right part of Figure 42.3. Assume that s requires branching. Hence, a search engine
is executing s->choice(). After executing the choice() function, all previous choices ch0,
ch1, and ch2 are not any longer compatible with s.

Order of commit() operations. The choices ch0, ch1, and ch2 do not have to be used for
commit() in the same order in which they have been created. However, it is more efficient
to use them in the order ch0, ch1, and ch2. The difference is that if a space has n branchers
and the choices correspond to different branchers, then a commit() operation uses O(1) time
to find the corresponding brancher for a choice if the choices are used in order. If they are
not used in order, a commit() operation uses O(n) time to find the corresponding brancher.
Having said all that, n is typically just one or two.

42.2.2 Recomputation is not deterministic

Assume that a search engine has recorded a path from a node in the search tree and that the
space s corresponds to that node in the tree. Then, when a space t for that node is recom-
puted, the two spaces s and t might actually differ: the amount of propagation performed

516

by s and t can be different.

The difference in propagation is due to the fact that Gecode supports propagators that are
weakly monotonic but not necessarily monotonic. In summary, a weakly monotonic propa-
gator can perform more or less propagation (that is, prune more values from variables do-
mains or prune fewer values from variable domains) but is still correct and complete, see
also Section 23.9.

As weakly monotonic constraint propagation is still correct and complete, also recom-
putation is correct in the following sense: All solutions that are found by search starting
from space s are also found by search starting from space t. However, search might find the
solutions in different order when starting from either s or t.

Consider the special case that s is failed. The recomputed space t might not necessarily
be failed. That is, s performed more constraint propagation than t. However, additional
search from t will never find any solution. The same is also true with the roles of s and t

exchanged: even though s is not failed, the recomputed space t can be failed.

For search engines using recomputation this typically does not pose any problems. In most
cases, a search engine does not attempt to recompute a space that it assumes to be non-failed.
Consider the depth-first search engine using full recomputation from Section 42.1. There, the
spaces that are recomputed correspond to nodes in the search tree not yet explored. In other
words, when recomputing spaces that have been explored previously, a search engine cannot
make the assumption that the space is not failed just because the space explored previously
has not been failed.

An exception is adaptive recomputation to be discussed in Section 42.6 as an optimization
for recomputation. Adaptive recomputation recomputes previously explored spaces to speed
up further search.

For a detailed discussion of weakly monotonic propagation together with the conse-
quences for search including recomputation, please consult [55].

42.3 Branch-and-bound search

The first idea to combine recomputation with best solution search is to take the engine for
best solution search without recomputation (see Section 41.4) and add recomputation to it
along the lines of Section 42.1. A search engine implementing this approach would work
roughly as follows: recompute a space and, if needed, add the constraints to the space such
that the space can only lead to a better solution.

A tighter integration of recomputation and best solution search is in fact much better:
instead of adding the constraints for a better solution to the space that is recomputed, add
it to the space from which recomputation starts (with full recomputation: the root space).
The advantage is that if adding the constraints to the space from which recomputation starts
already leads to failure, the entire subtree starting from that space can be discarded (with
full recomputation: search is done).

Figure 42.4 sketches branch-and-bound best solution search using full recomputation.
The search engine takes the current space s, the root space r, the so-far best solution b, and

517

BAB USING FULL RECOMPUTATION ≡ [DOWNLOAD]

· · ·
void bab(Space* s, Space*& r, Space*& b, Edge* p) {

switch (s->status()) {

· · ·
case SS_SOLVED:

◮ SOLVED

case SS_BRANCH:

{

· · ·
◮ EXPLORE SECOND ALTERNATIVE

}

}

}

Space* bab(Space* s) {

· · ·
Space* r = s->clone();

Space* b = NULL;

bab(s,r,b,NULL);

· · ·
}

Figure 42.4: Branch-and-bound search using full recomputation

518

https://www.gecode.org/doc/6.2.0/MPG/bab-using-full-recomputation.cpp

the predecessor edge p as arguments. Note that both the root space r and the so-far best
solution b are passed by reference as they change during exploration.

When the search engine finds a new solution s, it replaces the so-far best solution b by s

and updates the root space by adding the constraints that r must yield better solutions than
b as follows:

SOLVED ≡
delete b;

(void) s->choice(); b = s->clone(); delete s;

r->constrain(*b);

if (r->status() == SS_FAILED) {

delete r; r = NULL;

} else {

Space* c = r->clone(); delete r; r = c;

}

break;

The root space then must be checked for failure. If the root space is failed, it is deleted and
the pointer to the root space becomes NULL. Otherwise, the root space becomes a clone of the
newly computed space to save memory (as mentioned earlier, it is better to store a pristine
clone of a space than a space on which propagation has been performed).

Exploring the second alternative of a choice checks whether the root space is already
failed:

EXPLORE SECOND ALTERNATIVE ≡
if (r != NULL)

bab(e.recompute(r),r,b,&e);

42.4 Last alternative optimization

This section presents an important optimization for recomputation that helps to avoid many
commit operations during recomputation. Even though the optimization is discussed in the
context of full recomputation, it is applicable to all situations in which recomputation is used.

Consider a situation during search as shown in the left part of Figure 42.5. There, the en-
tire left subtree emanating from the root node (colored in orange) has been explored. When
exploration continues for the right subtree, each time a node is recomputed, a clone of the
root node is made immediately followed by a commit operation for the second alternative.
Hence it is much better to compute a new root node for the entire right subtree and perform
the corresponding commit operation just once. This optimization is referred to as last alter-

native optimization (LAO) [49, Chapter 7]. Figure 42.5 shows the new root of the search tree
after performing LAO. Note that no space needs to be stored for the previous root node as it
will never be used again for recomputation.

Figure 42.6 shows a search engine implementing left-most depth-first search using full
recomputation and LAO. Only very few aspects have changed compared to the engine for full

519

LAO

Figure 42.5: Last alternative optimization (LAO)

DFS USING FULL RECOMPUTATION AND LAO ≡ [DOWNLOAD]

· · ·
class Edge {

· · ·
◮ TEST FOR LAST ALTERNATIVE

· · ·
};

Space* dfs(Space* s, Space*& r, Edge* p) {

switch (s->status()) {

· · ·
case SS_BRANCH:

{

Edge e(s,p);

if (Space* t = dfs(e.commit(s),r,&e))

return t;

e.next();

◮ PERFORM LAO

return dfs(e.recompute(r),r,&e);

}

}

}

· · ·

Figure 42.6: Depth-first search using full recomputation and LAO

520

https://www.gecode.org/doc/6.2.0/MPG/dfs-using-full-recomputation-and-lao.cpp

recomputation without LAO from Section 42.1. An important change is that the root space
is now passed by reference: this is necessary as the root space changes during exploration.

The Edge class is extended by a function la() that tests whether an edge happens to be
a last alternative:

TEST FOR LAST ALTERNATIVE ≡
bool la(void) const {

return (p == NULL) && (a == 1);

}

The actual optimization is performed just before exploring the second alternative:

PERFORM LAO ≡
if (e.la()) {

Space* t = r;

if (e.commit(t)->status() == SS_FAILED)

return NULL;

r = t->clone();

return dfs(t,r,NULL);

}

The space t serves as a temporary reference. After performing the commit() operation on
t for the second alternative, it is tested whether the new root node is already failed. The new
root space becomes the clone of t: this is important as a clone typically requires less memory
than a space on which constraint propagation has been performed (see Section 41.2).

42.5 Hybrid recomputation

Exploration based on copying alone or based on full recomputation is unrealistic. As already
described in Section 9.1, Gecode’s search engines use hybrid recomputation: they create a
clone now and then to limit the amount of recomputation.

This section describes hybrid recomputation where the amount
of recomputation is limited by the commit distance cd: during re-
computation at most cd commit() operations are executed. Hybrid
recomputation with commit distance cd = 2 where orange nodes are
nodes that store a clone is sketched to the right.

The additional clones are stored in a field c in the Edge class shown in Figure 42.7. Ini-
tially, the field c does not store a clone. The intuition is that the clone c (if not NULL) is a
clone that corresponds to the node to which the edge leads (please remember that edges lead
upwards to the root of the search tree).

521

DFS USING HYBRID RECOMPUTATION ≡ [DOWNLOAD]

· · ·
const unsigned int c_d = 5;

class Edge {

protected:

· · ·
Space* c;

public:

Edge(Space* s, Edge* e)

: p(e), ch(s->choice()), a(0), c(NULL) {}

· · ·
◮ CREATE CLONE

◮ PERFORM RECOMPUTATION

· · ·
};

Space* dfs(Space* s, Edge* p, unsigned int d) {

switch (s->status()) {

· · ·
case SS_BRANCH:

{

◮ STORE CLONE IF NEEDED

◮ EXPLORE FIRST ALTERNATIVE

· · ·
}

}

}

Space* dfs(Space* s) {

return dfs(s,NULL,c_d);

}

Figure 42.7: Depth-first search using hybrid recomputation

522

https://www.gecode.org/doc/6.2.0/MPG/dfs-using-hybrid-recomputation.cpp

The function clone() stores a clone of a space s in an edge:

CREATE CLONE ≡
void clone(Space* s) {

c = s->clone();

}

Recomputation as performed by the recompute() function now continues to search the
path of edges until an edge that stores a clone is found:

PERFORM RECOMPUTATION ≡
Space* recompute(void) const {

return commit((c != NULL) ? c->clone() : p->recompute());

}

It must be guaranteed that there is always at least one edge in a path that stores a clone,
otherwise recomputation would crash (see below).

The function dfs() that implements exploration takes the additional argument d (for
distance) which defines how many commit() operations would be needed to recompute
the current space. If d reaches the limit c_d (for simplicity, c_d is a constant as defined in
Figure 42.7), a new clone must be stored in the current edge. Hence, the code for branching
starts by checking whether a clone must be stored for the current edge e:

STORE CLONE IF NEEDED ≡
Edge e(s,p);

if (d >= c_d) {

e.clone(s); d=0;

}

The initial call to the function dfs() that implements exploration takes c_d as value for
d. By this, it is guaranteed that the first edge stores a clone (that is, a clone that corresponds
to the root node of the search tree).

Exploring the alternatives is as before, the only change is that the incremented distance
d+1 is passed as additional argument:

EXPLORE FIRST ALTERNATIVE ≡
if (Space* t = dfs(e.commit(s),&e,d+1))

return t;

LAO as described for full recomputation (Section 42.4) can be
added analogously to hybrid recomputation. Therefore we do not
present hybrid recomputation with LAO. However, how LAO per-
forms with hybrid recomputation is sketched to the right: gray nodes
correspond to nodes where a clone had been stored, while orange
nodes correspond to nodes where a clone has been moved due to LAO.

523

42.6 Adaptive recomputation

Consider the situation when a search engine using recomputation encounters a failed space
during exploration. Then it is quite likely that as exploration continues, more failed spaces
are found during search. This is due to the fact that some decision made during branching
(that is, some alternative) has lead to failure. It is quite likely that the wrong decision from
which search must recover is somewhere on the path to the root node.

That means that search now must explore the entire subtree starting from the wrong
decision. In this situation it would be advantageous if additional clones were available for
exploring the entire subtree. With other words, after encountering failure, search should be-
come more pessimistic by investing into the creation of additional clones to speed up further
exploration.

Adaptive recomputation [49, Chapter 7] optimizes recomputation in the case of failures:
an additional clone is created during recomputation. The idea is that on a path of length n

without any clone, an additional clone is placed in the middle of that path. This additional
clone then speeds up further recomputation (which is likely to occur as has been argued
above).

Adaptive recomputation is controlled by a parameter called adaptive distance ad: only if
n≥ ad an additional clone is created. This avoids creating an excessive amount of clones.

Adaptive recomputation is sketched in Figure 42.8. The only change compared to hybrid
recomputation (see Section 42.5) is the implementation of recompute(). The argument n is
the length of the path to the next clone. When a clone is found, d is set to ⌊ n2⌋ provided that
n ≥ a_d. Otherwise d is set to n (its old value) which also prevents that an additional clone
is created. For the edge that is d commit() operations away from the current space, a new
clone is stored on the path, provided that the space s is not failed.

The space s can be failed as has been discussed in Section 42.2.2. The search engine here
takes a rather simplistic approach to this situation: it just does not store a clone. A real-life
engine would take more benefit from the information that a space on the path is actually
failed: it would immediately discard the entire path below the failed space, see Chapter 43.

Another optimization that a real-life search engine would employ is to not place a clone
in a position where it could be moved by last alternative optimization, see again Chapter 43.

524

DFS USING ADAPTIVE RECOMPUTATION ≡ [DOWNLOAD]

· · ·
const unsigned int c_d = 5;

const unsigned int a_d = 2;

class Edge {

protected:

· · ·
Space* recompute(unsigned int n, unsigned int& d) {

if (c != NULL) {

d = (n >= a_d) ? n/2 : n;

return commit(c->clone());

} else {

Space* s = p->recompute(n+1,d);

if ((d == n) && (s->status() != SS_FAILED))

clone(s);

return commit(s);

}

}

Space* recompute(unsigned int& d) {

return recompute(1,d);

}

· · ·
};

· · ·

Figure 42.8: Depth-first search using adaptive recomputation

525

https://www.gecode.org/doc/6.2.0/MPG/dfs-using-adaptive-recomputation.cpp

526

43 An example engine

This chapter puts all techniques for search and recomputation from Chapter 41 and
Chapter 42 together. It presents a realistic search engine that can be used to search for
several solutions.

Overview. Section 43.1 sketches the design of the example depth-first search engine to be
used in this chapter. How the engine is implemented is shown in Section 43.2. Section 43.3
details how exploration is implemented, whereas Section 43.4 details how recomputation is
implemented for the search engine.

43.1 Engine design

The example engine to be developed in this chapter implements depth-first search using
hybrid and adaptive recomputation with full last alternative optimization. It provides an
interface similar to the interface of Gecode’s pre-defined search engines: it is initialized with
a space (even though the search engine presented here does not make a clone for simplicity)
and provides a next() function that returns a space for the next solution or returns NULL if
there are no more solutions.

The outline of the search engine is shown in Figure 43.1. To keep things simple, the values
for the commit distance c_d and adaptive distance a_d are constants. Furthermore, the search
engine uses an array of fixed size to implement the path of edges for recomputation. In case
the size of the array is exceeded during exploration, an exception of type StackOverflow is
thrown. A real-life engine would of course use a dynamic data structure such as a C++ vector.

43.2 Engine implementation

Figure 43.2 shows the class Engine implementing depth-first search. The engine maintains a
path p of edges for recomputation (to be explained below), a current space s, and a distance
d. The current space s can be NULL. If the current space s is not NULL, then the path p

corresponds to s. If the space is NULL, the search engine uses recomputation to compute the
next space needed for exploration.

The distance d describes the number of commit operations needed for recomputation. It
is initialized to c_d to force the immediate creation of a clone on the path (analogous to the

527

DFS ENGINE ≡ [DOWNLOAD]

#include <gecode/kernel.hh>

using namespace Gecode;

const unsigned int c_d = 5;

const unsigned int a_d = 2;

const unsigned int n_stack = 1024;

class StackOverflow : public Exception {

public:

StackOverflow(const char* l)

: Exception(l,"Stack overflow") {}

};

◮ PATH

◮ SEARCH ENGINE

Figure 43.1: Depth-first search engine

528

https://www.gecode.org/doc/6.2.0/MPG/dfs-engine.cpp

SEARCH ENGINE ≡
class Engine {

protected:

Path p;

Space* s;

unsigned int d;

public:

Engine(Space* r) : s(r), d(c_d) {}

Space* next(void) {

do {

while (s != NULL)

◮ EXPLORATION

while ((s == NULL) && p.next())

s = p.recompute(d);

} while (s != NULL);

return NULL;

}

~Engine(void) {

delete s;

}

};

Figure 43.2: Implementation of depth-first search engine

529

search engine in Section 42.5).

Exploration mode. The engine operates in two modes: exploration mode and recomputa-

tion mode. It operates in exploration mode while the current space s is not NULL. Exploration
mode continues until the current space s becomes failed or solved. In both cases, the current
space is set to NULL.

If the space s becomes solved, it is returned as a solution by the next() function. If
the next() function is called again, then the situation is exactly the same as for failure: the
current space is NULL and the engine switches to recomputation mode. Exploration is detailed
in Section 43.3.

Recomputation mode. In recomputation mode, the engine tries to recompute the current
space. The next() function of the path p moves the path to the next alternative. If there
is a next alternative (the search space has not yet been completely explored), the next()

function of a path returns true. The recompute() function tries to recompute the current
space s according to the path p. Due to adaptive recomputation, the recompute() function
might update the distance d and might actually fail to recompute a space that corresponds to
the current path (in which case it returns NULL). Recomputation is detailed in Section 43.4.

If no more alternatives are to be tried (that is, the next() function of the path p has
returned false), the next() function of the search engine terminates by returning NULL.

43.3 Exploration

The search engine continues in exploration mode while the current space s is different from
NULL and executes the code shown in Figure 43.3. In case the current space s is failed, it is
discarded, s is set to NULL, and the engine switches to recomputation mode. The same is true
if the engine finds a solution, however it garbage collects branchers on the solution found
and returns it. With another invocation of the next() function, the engine will operate in
recomputation mode.

Edge implementation. Figure 43.4 shows how an edge is implemented. The implemen-
tation is analogous to the edge classes used in Chapter 42. Edges support choices with an
arbitrary number of alternatives, the test la() whether an edge is at its last alternative takes
the number of alternatives of the choice into account.

Rather than having a default constructor and a destructor, edges use the init() and
reset() functions. This is more convenient as edges are maintained in an array implement-
ing a stack, see below for details.

Path implementation. Figure 43.5 shows how a path of edges is implemented. The array e
stores the edges of the path. The array implements a stack of edges and the unsigned integer

530

EXPLORATION ≡
switch (s->status()) {

case SS_FAILED:

delete s; s = NULL;

break;

case SS_SOLVED:

{

Space* t = s; s = NULL;

(void) t->choice();

return t;

}

case SS_BRANCH:

if (d >= c_d) {

p.push(s,s->clone()); d=1;

} else {

p.push(s,NULL); d++;

}

}

Figure 43.3: Implementation of exploration

n defines the number of edges that are currently on the stack. The edge at position n-1 of
the array of edges e corresponds to the top of the stack.

Pushing edges on the path. During exploration, the engine pushes new edges on the path
p as shown in Figure 43.3. If the distance d has reached the commit distance c_d, the engine
pushes an edge to the path that has an additional clone and resets the distance d accordingly.

Pushing an edge checks for stack overflow and initializes the field of the edge array that
corresponds to the top of stack as follows:

PUSH EDGE ≡
void push(Space* s, Space* c) {

if (n == n_stack)

throw StackOverflow("Path::push");

e[n].init(s,c); e[n].commit(s);

n++;

}

Note that the push operation also performs the commit() operation on the current space s

that corresponds to the edge just pushed onto the path.

531

EDGE ≡
class Edge {

protected:

const Choice* ch;

unsigned int a;

Space* c;

public:

void init(Space* s, Space* c0) {

ch = s->choice(); a = 0; c = c0;

}

Space* clone(void) const {

return c;

}

void clone(Space* s) {

c = s->clone();

}

void next(void) {

a++;

}

bool la(void) const {

return a+1 == ch->alternatives();

}

void commit(Space* s) {

s->commit(*ch,a);

}

◮ PERFORM LAO

void reset(void) {

delete ch; ch=NULL; delete c; c=NULL;

}

};

Figure 43.4: Implementation of edges

532

PATH ≡
class Path {

protected:

◮ EDGE

Edge e[n_stack];

unsigned int n;

public:

Path(void) : n(0) {}

◮ PUSH EDGE

◮MOVE TO NEXT ALTERNATIVE

◮ PERFORM RECOMPUTATION

};

Figure 43.5: Implementation of path of edges

43.4 Recomputation

In recomputation mode, the engine uses operations to move the engine to the next alternative
and to perform recomputation of a space corresponding to the current path.

Move to next alternative. Moving to a next alternative discards all edges from the path
that are already at their last alternative (that is, the function la() returns true). If the engine
finds an edge with remaining alternatives, it moves the edge to the next alternative. If no
edges are left, the function next() returns false as follows:

MOVE TO NEXT ALTERNATIVE ≡
bool next(void) {

while (n > 0)

if (e[n-1].la()) {

e[--n].reset();

} else {

e[n-1].next(); return true;

}

return false;

}

Perform recomputation. The recompute() function shown in Figure 43.6 performs re-
computation. LAO and adaptive recomputation are orthogonal optimizations and are dis-
cussed later. First, i is initialized such that it points to the closest edge on the path that has
a clone. Then, s is initialized to a clone of the edge’s clone and the distance d is updated
accordingly. Finally, all commit() operations between i and n are performed on s.

533

PERFORM RECOMPUTATION ≡
Space* recompute(unsigned int& d) {

◮ PERFORM LAO

unsigned int i = n-1;

for (; e[i].clone() == NULL; i--) {}

Space* s = e[i].clone()->clone();

d = n - i;

◮ PERFORM ADAPTIVE RECOMPUTATION

for (; i < n; i++)

e[i].commit(s);

return s;

}

Figure 43.6: Implementation of recomputation

Last alternative optimization. Before actually starting recomputation, the recompute()

function checks whether it can perform LAO. It checks whether the last edge of the path can
perform LAO (in which case t is different from NULL) as follows:

PERFORM LAO ≡
if (Space* t = e[n-1].lao()) {

e[--n].reset();

d = c_d;

return t;

}

The edge is removed from the path and the distance d is set to c_d to force the immediate
creation of a new clone when the engine continues in exploration mode.

LAO for an edge checks whether the edge is at the latest alternative and whether the edge
stores a clone:

PERFORM LAO ≡
Space* lao(void) {

if (!la() || (c == NULL))

return NULL;

Space* t = c; c = NULL;

commit(t);

return t;

}

If this is the case, the clone from the edge is removed and is committed to the last alternative.

534

Adaptive recomputation. If the current distance d reaches the adaptive distance a_d, re-
computation tries to perform adaptive recomputation as follows:

PERFORM ADAPTIVE RECOMPUTATION ≡
if (d >= a_d) {

unsigned int m = i + d/2;

for (; i < m; i++)

e[i].commit(s);

◮ SKIP OVER LAST ALTERNATIVES

◮ CREATE ADDITIONAL CLONE

}

The value of m is the middle between the position of the clone i and the position of the last
edge on the path. The position m is a candidate position where the additional clone might
be stored. All commit operations for edges between the clone and edge at position m are
executed.

It is entirely pointless to store the additional clone at an edge that is already at its last
alternative (this is what LAO is all about). Hence, adaptive recomputation skips over all
edges that are already at their last alternative as follows:

SKIP OVER LAST ALTERNATIVES ≡
for (; (i < n) && e[i].la(); i++)

e[i].commit(s);

An additional clone for an edge is only created if the edge is not already the topmost edge
of the path:

CREATE ADDITIONAL CLONE ≡
if (i < n-1) {

◮ PERFORM PROPAGATION

e[i].clone(s);

d = n-i;

}

After storing the clone, the distance d is adapted accordingly.
Before being able to create a clone, adaptive recomputation performs constraint propa-

gation by executing the status() function of the space s as follows:

PERFORM PROPAGATION ≡
if (s->status() == SS_FAILED) {

delete s;

for (; i < n; n--) {

e[n-1].reset(); d--;

}

return NULL;

}

535

If constraint propagation leads to a failed space (see Section 42.2.2), all edges below the
failed space are discarded and recomputation returns NULL to signal that recomputation did
not succeed in recomputing a space for the current path.

536

Bibliography

[1] Anbulagan and Adi Botea. Crossword puzzles as a constraint problem. In Peter J.
Stuckey, editor, Fourteenth International Conference on Principles and Practice of Con-

straint Programming, volume 5202 of Lecture Notes in Computer Science, pages 550–554,
Sydney, Australia, September 2008. Springer-Verlag.

[2] Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Constraint-Based Scheduling. Inter-
national Series in Operations Research & Management Science. Springer-Verlag, 2001.

[3] Nicolas Barnier and Pascal Brisset. Solving Kirkman’s schoolgirl problem in a few sec-
onds. Constraints, 10(1):7–21, 2005.

[4] Adam Beacham, Xinguang Chen, Jonathan Sillito, and Peter van Beek. Constraint pro-
gramming lessons learned from crossword puzzles. In Eleni Stroulia and Stan Matwin,
editors, Canadian Conference on AI, volume 2056 of Lecture Notes in Computer Science,
pages 78–87. Springer, 2001.

[5] Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint
with negative heights. In Pascal Van Hentenryck, editor, Eigth International Conference

on Principles and Practice of Constraint Programming, volume 2470 of Lecture Notes in

Computer Science, pages 63–79, Ithaca, NY, USA, September 2002. Springer-Verlag.

[6] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global con-
straint catalogue: Past, present and future. Constraints, 12(1):21–62, 2007.

[7] Christian Bessiere, Emanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh.
Filtering algorithms for the NValue constraint. Constraints, 11(4):271–293, 2006.

[8] Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting
systematic search by weighting constraints. In Ramon López de Mántaras and Lorenza
Saitta, editors, Sixteenth European Conference on Artificial Intelligence, pages 146–150,
Valencia, Spain, August 2004. IOS Press.

[9] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM, 16:575–577, September 1973.

[10] F[rédéric] Cazals and C[hinmay] Karande. A note on the problem of reporting maximal
cliques. Theoretical Computer Science, 407:564–568, November 2008.

537

[11] Chiu Wo Choi, Warwick Harvey, Jimmy Ho-Man Lee, and Peter J. Stuckey. Finite domain
bounds consistency revisited. In AI 2006: Advances in Artificial Intelligence, volume
4304 of Lecture Notes in Computer Science, pages 49–58. Springer Verlag, 2006.

[12] Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state restoration in
tree search. In Toby Walsh, editor, Proceedings of the Seventh International Conference

on Principles and Practice of Constraint Programming, volume 2239 of Lecture Notes in

Computer Science, pages 240–255, Paphos, Cyprus, November 2001. Springer-Verlag.

[13] Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez, Laurent
Perron, Jean-Charles Régin, and Pierre Schaus. Compact-table: Efficiently filtering table
constraints with reversible sparse bit-sets. volume 9892 of Lecture Notes in Computer

Science, pages 207–223, Toulouse, France, September 2016. Springer-Verlag.

[14] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, volume
2919 of Lecture Notes in Computer Science, pages 502–518. Springer-Verlag, 2004.

[15] Thibaut Feydy, Zoltan Somogyi, and Peter J. Stuckey. Half reification and flattening.
In Jimmy Lee, editor, Proceedings of the Seventeenth International Conference on Princi-

ples and Practice of Constraint Programming, volume 6876 of Lecture Notes in Computer

Science, pages 286–301, Perugia, Italy, September 2011. Springer-Verlag.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman
And Company, New York, NY, USA, 1979.

[17] Ian Gent, editor. Fifteenth International Conference on Principles and Practice of Con-

straint Programming, volume 5732 of Lecture Notes in Computer Science, Lisbon, Portu-
gal, September 2009. Springer-Verlag.

[18] Ian P. Gent and Toby Walsh. From approximate to optimal solutions: Constructing
pruning and propagation rules. In IJCAI, pages 1396–1401, 1997.

[19] Carmen Gervet. Finite Set Constraints. PhD thesis, L’Université de Franche-Comté,
Besançon, France, 1995.

[20] Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and Mark C. Torrance. Search
lessons learned from crossword puzzles. In AAAI, pages 210–215, 1990.

[21] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1-
2):43–62, 2001.

[22] Stefano Gualandi and Michele Lombardi. A simple and effective decomposition for
the multidimensional binpacking constraint. In Christian Schulte, editor, Proceedings

of the Nineteenth International Conference on Principles and Practice of Constraint Pro-

gramming, volume 8124 of Lecture Notes in Computer Science, pages 356–364, Uppsala,
Sweden, September 2013. Springer-Verlag.

538

[23] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Chris S.
Mellish, editor, Fourteenth International Joint Conference on Artificial Intelligence, pages
607–615, Montréal, Québec, Canada, August 1995. Morgan Kaufmann Publishers.

[24] Linnea Ingmar and Christian Schulte. Making compact-table compact. In John Hooker,
editor, Twentyforth International Conference on Principles and Practice of Constraint Pro-

gramming, volume 11008 of Lecture Notes in Computer Science, pages 210–218, Lille,
France, August 2018. Springer-Verlag. [download].

[25] George Katsirelos and Fahiem Bacchus. Generalized nogoods in csps. In Manuela M.
Veloso and Subbarao Kambhampati, editors, AAAI, pages 390–396, Pittsburgh, PA, USA,
2005. AAAI Press.

[26] Mikael Z. Lagerkvist and Gilles Pesant. Modeling irregular shape placement problems
with regular constraints. In First Workshop on Bin Packing and Placement Constraints

BPPC’08, 2008.

[27] Mikael Z. Lagerkvist and Christian Schulte. Advisors for incremental propagation. In
Christian Bessière, editor, Thirteenth International Conference on Principles and Practice

of Constraint Programming, volume 4741 of Lecture Notes in Computer Science, pages
409–422, Providence, RI, USA, September 2007. Springer-Verlag. [download].

[28] Yat Chiu Law and Jimmy H.M. Lee. Global constraints for integer and set value prece-
dence. In Wallace [73], pages 362–376.

[29] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Recording
and minimizing nogoods from restarts. Journal on Satisfiability, Boolean Modeling and

Computation, 1(3-4):147–167, 2007.

[30] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential
recency weighted average branching heuristic for SAT solvers. In Dale Schuurmans and
Michael P. Wellman, editors, Thirtieth AAAI Conference on Artificial Intelligence, pages
3434–3440. AAAI Press, 2016.

[31] Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo. C++ Primer. Addison Wesley,
fifth edition, 2013.

[32] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter van Beek. A fast
and simple algorithm for bounds consistency of the alldifferent constraint. In Georg
Gottlob and Toby Walsh, editors, Eighteenth International Joint Conference on Artificial

Intelligence, pages 245–250, Acapulco, Mexico, August 2003. Morgan Kaufmann.

[33] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas
algorithms. Information Processing Letters, 47:173–180, 1993.

[34] Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28(1):59–70, 1990.

539

https://www.gecode.org/publications/2018-08-30-making-compact-table-compact.html
https://www.gecode.org/publications/2007-07-04-advisors-for-incremental-propagation.html

[35] Christopher Mears, Maria Garcia de la Banda, Bart Demoen, and Mark Wallace.
Lightweight dynamic symmetry breaking. In Eighth International Workshop on Sym-

metry in Constraint Satisfaction Problems, SymCon’08, 2008. [download].

[36] Kurt Mehlhorn and Sven Thiel. Faster algorithms for bound-consistency of the sorted-
ness and the alldifferent constraint. In Rina Dechter, editor, Proceedings of the Sixth

International Conference on Principles and Practice of Constraint Programming, volume
1894 of Lecture Notes in Computer Science, pages 306–319, Singapore, September 2000.
Springer-Verlag.

[37] Laurent Michel and Pascal Van Hentenryck. A decomposition-based implementation of
search strategies. Transactions of Computational Logic, 5(2):351–383, 2004.

[38] Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box con-
straint programming solvers. In Nicolas Beldiceanu, Narendra Jussien, and Eric Pinson,
editors, CPAIOR, volume 7298 of Lecture Notes in Computer Science, pages 228–243,
Nantes, France, May 2012. Springer.

[39] Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliff, NJ, USA, 1966.

[40] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation

Conference, DAC 2001, pages 530–535, Las Vegas, NV, USA, 2001. ACM.

[41] Gilles Pesant. A regular language membership constraint for finite sequences of vari-
ables. In Wallace [73], pages 482–495.

[42] Claude-Guy Quimper, Peter van Beek, Alejandro López-Ortiz, Alexander Golynski, and
Sayyed Bashir Sadjad. An efficient bounds consistency algorithm for the global cardi-
nality constraint. In Francesca Rossi, editor, Ninth International Conference on Principles

and Practice of Constraint Programming, volume 2833 of Lecture Notes in Computer Sci-

ence, pages 600–614, Kinsale, Ireland, September 2003. Springer-Verlag.

[43] Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In
AAAI/IAAI, Vol. 1, pages 209–215, 1996.

[44] Raphael M. Reischuk, Christian Schulte, Peter J. Stuckey, and Guido Tack. Maintaining
state in propagation solvers. In Gent [17], pages 692–706. [download].

[45] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint

Programming. Foundations of Artificial Intelligence. Elsevier Science Publishers, Ams-
terdam, The Netherlands, 2006.

[46] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, volume 1, pages
362–367, Seattle, WA, USA, 1994. AAAI Press.

540

http://www.aloul.net/symcon/Mears2-Symcon08.pdf
https://www.gecode.org/publications/2009-10-07-maintaining-state-in-propagation-solvers.html

[47] Armin Scholl, Robert Klein, and Christian Jürgens. BISON: a fast hybrid procedure
for exactly solving the one-dimensional bin packing problem. Computers & Operations

Research, 24(7):627–645, 1997.

[48] Christian Schulte. Comparing trailing and copying for constraint programming. In
Danny De Schreye, editor, Proceedings of the 1999 International Conference on Logic

Programming, pages 275–289, Las Cruces, NM, USA, November 1999. The MIT Press.

[49] Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes in

Artificial Intelligence. Springer-Verlag, 2002.

[50] Christian Schulte and Mats Carlsson. Finite domain constraint programming systems.
In Rossi et al. [45], chapter 14, pages 495–526.

[51] Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In Wallace
[73], pages 619–633.

[52] Christian Schulte and Peter J. Stuckey. When do bounds and domain propagation
lead to the same search space? Transactions on Programming Languages and Systems,
27(3):388–425, May 2005.

[53] Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines. Trans-

actions on Programming Languages and Systems, 31(1):2:1–2:43, December 2008.
[download].

[54] Christian Schulte and Guido Tack. Views and iterators for generic constraint imple-
mentations. In Recent Advances in Constraints (2005), volume 3978 of Lecture Notes in

Computer Science, pages 118–132. Springer-Verlag, 2006. [download].

[55] Christian Schulte and Guido Tack. Weakly monotonic propagators. In Gent [17], pages
723–730. [download].

[56] Christian Schulte and Guido Tack. View-based propagator derivation. Constraints,
18(1):75–107, January 2013.

[57] Paul Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Michael J. Maher and Jean-Francois Puget, editors, Forth Interna-

tional Conference on Principles and Practice of Constraint Programming, volume 1520 of
Lecture Notes in Computer Science, pages 417–431, Pisa, Italy, 1998. Springer-Verlag.

[58] Paul Shaw. A constraint for Bin Packing. In Wallace [73], pages 648–662.

[59] Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la Banda.
Visual search tree profiling. Constraints, 21(1):77–94, 2016.

[60] Helmut Simonis. Kakuro as a constraint problem. In Workshop on Modeling and Refor-

mulation, September 2008.

541

https://www.gecode.org/publications/2009-02-23-efficient-constraint-propagation-engines.html
https://www.gecode.org/publications/2006-09-08-views-and-iterators-for-generic-constraint-implementations.html
https://www.gecode.org/publications/2009-06-17-weakly-monotonic-propagators.html

[61] Barbara M. Smith, Kostas Stergiou, and Toby Walsh. Modelling the golomb ruler prob-
lem. School of Computer Studies Research Report 1999.12, University of Leeds, Leeds,
UK, June 1999.

[62] Guido Tack. Constraint Propagation - Models, Techniques, Implementation. Doctoral
dissertation, Saarland University, Germany, 2009. [download].

[63] Nobuhisa Ueda and Tadaaki Nagao. NP-completeness results for nonogram via parsi-
monious reductions. Technical Report TR96-008, Dept. of Computer Science, Tokyo
Institute of Technology, 1996.

[64] Peter van Beek. Backtracking search algorithms. In Rossi et al. [45], chapter 4, pages
85–134.

[65] Pascal Van Hentenryck. Constraint satisfaction in logic programming. The MIT Press,
Cambridge, MA, USA, 1989.

[66] Pascal Van Hentenryck. The OPL Optimization Programming Language. The MIT Press,
Cambridge, MA, USA, 1999.

[67] Willem Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabhar-
wal. New filtering algorithms for combinations of among constraints. Constraints,
14(2):273–292, 2009.

[68] Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus. Extending compact-table
to negative and short tables. In Satinder P. Singh and Shaul Markovitch, editors, Thirty-

First AAAI Conference on Artificial Intelligence, pages 3951–3957, San Francisco, CA,
USA, 2017. AAAI Press.

[69] Petr Vilím. Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n). In Gent [17], pages 802–816.

[70] Petr Vilím. Max energy filtering algorithm for discrete cumulative resources. In
Willem Jan van Hoeve and John N. Hooker, editors, Sixth International Conference on

the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Op-

timization Problems, volume 5547 of Lecture Notes in Computer Science, pages 294–308,
Pittsburgh, PA, USA, May 2009. Springer-Verlag.

[71] Petr Vilím. Global Constraints in Scheduling. PhD thesis, Charles University, Prague,
Czech Republic, 2007.

[72] H.C. von Warnsdorff. Des Rösselsprungs einfachste und allgemeinste Lösung, 1823.
Schmalkalden, Germany.

[73] Mark Wallace, editor. Tenth International Conference on Principles and Practice of Con-

straint Programming, volume 3258 of Lecture Notes in Computer Science. Springer-
Verlag, Toronto, Canada, September 2004.

542

https://www.gecode.org/publications/2009-02-24-constraint-propagation---models--techniques--implementation.html

[74] Mark Allen Weiss. C++ for Java Programmers. Pearson Prentice Hall, 2004.

543

544

Changelog

■ Fixed opaque colors (2019-05-28).

■ Released for Gecode 6.2.0 (2019-04-12).

■ Fixed description of LNS in Section 9.4.5. (2019-04-10, thanks to Marco Correia).

■ Released for Gecode 6.1.1 (2019-02-13).

■ Released for Gecode 6.1.0 (2018-10-17).

■ Added tip about memory alignment (see Tip 31.2). (2018-10-15).

■ Released for Gecode 6.0.1 (2018-05-22).

■ Released for Gecode 6.0.0 (2018-02-05).

■ Explained how to use CPProfiler (see Section 9.8). (2017-11-06).

■ Documented commandline options for CPProfiler (see Section 11.1). (2017-11-06).

■ Updated explanation of regions for memory management (see Section 31.1). (2017-
05-10).

■ Updated explanation of shared handles and objects management (see Section 31.3).
(2017-05-10).

■ Released for Gecode 5.1.0 (2017-04-18).

■ Explained general tracing (see Section 12.4 and Section 12.6). (2017-03-20).

■ Explained CHB for branching (see Section 8.5.4). (2017-02-28).

■ Changed all functions for branching to functions based on std::function (see
Chapter 8). (2017-02-21).

■ Explained new variable and value selection for Boolean variables (see Section 8.2).
(2017-02-21).

■ Explained that function for wait() and when() can be of a type derived from
std::function (see Section 4.5, Section 5.3, and Section 6.4). (2017-02-21).

■ Released for Gecode 5.0.0 (2016-10-25).

■ Added a description of how to relax variables (see Section 9.4.5). (2016-10-23).

■ Added a discussion of how propagators using advisors are re-scheduled (see
Chapter 27). (2016-05-27).

545

■ Added a discussion of: how propagators are disabled and enabled; the now re-
quired schedule() function of a propagator; and the GECODE_POST post macro (see
Chapter 23). (2016-05-27).

■ Added new chapter on propagator and brancher groups and tracing (see Chapter 12).
(2016-05-23).

■ Documented how Boolean expressions and relations can be extended by new reified
constraints (see Section 7.1.5). (2016-04-25).

■ Documented how to use a different memory allocator (see Section 31.1). (2016-04-
19).

■ Documented portfolio search (see Section 9.5). (2015-10-14).

■ Explained when =SCHEDULE modification events are needed (see Section 35.2). (2015-
09-17, thanks to Joseph Scott).

■ Documented new integer propagation levels (see Section 4.3.5). (2015-09-17).

■ Fixed typo in example of Part V. (2015-03-31, thanks to Joseph Scott).

■ Released for Gecode 4.4.0 (2015-03-20).

■ Improved and update documentation of optimization spaces and scripts (see
Section 7.3 and Section 11.2). (2015-03-18).

■ Improved explanation of activity. (2015-02-26, thanks to Roberto Castañeda Lozano).

■ Released for Gecode 4.3.3 (2015-01-20).

■ Documented the argument of minimum and maximum constraints (see Section 4.4.5)
(2015-01-19).

■ Released for Gecode 4.3.2 (2014-11-06).

■ Released for Gecode 4.3.1 (2014-10-22).

■ Documented changed restart-based search in Section 9.4 and added information on
how to use it for LNS (see Section 9.4.5) (2014-10-20).

■ Released for Gecode 4.3.0 (2014-09-01).

■ Documented multi-dimensional bin-packing constraints (see Section 4.4.15) (2014-07-
27).

■ Added missing edges in Figure 4.5 and Figure 4.6 (2014-06-30, thanks to Léonard
Benedetti).

■ Released for Gecode 4.2.1 (2013-11-05).

■ Released for Gecode 4.2.0 (2013-07-19).

■ Explained support for no-goods for variable-value branchers (see Section 38.4) (2013-
07-10).

■ Explained how to add support for no-goods to branchers (see Section 33.2) (2013-07-
10).

546

■ Explained how to use no-goods from restarts (see Section 9.6) (2013-07-10).

■ Released for Gecode 4.1.0 (2013-06-13).

■ Documented display of branching information in Gist (see Section 10.3.4) (2013-05-
13).

■ Documented variable-value print functions for branching (see Section 8.12) (2013-05-
03).

■ Released for Gecode 4.0.0 (2013-03-14).

■ Fixed documentation of user-defined variable selection (the _MERIT_ part was missing)
(see Section 8.7) (2013-04-12, thanks to Roberto Castañeda Lozano).

■ Documented LDSB (see Section 8.10) (2013-03-08).

■ Documented restart-based search (see Section 9.4), added example (see Section 22.4)
(2013-02-22).

■ Complete rewrite of how to branch (you should read it again), see Chapter 8 (2013-
02-22).

■ Added missing copy constructors and assignment operators in Section 31.3 and
Section 31.4 (2013-02-14, thanks to David Rijsman).

■ Documented how to implement variable-value branchings (see Chapter 38) (2013-02-
04).

■ Documented how to implement constraints over float variables (see Chapter 30) (2013-
02-04).

■ Documented modeling with floats (see Chapter 6, Section 7.1.4, Section 8.4, and
Section 2.6.2) (2013-01-29).

■ Explain new search options for Gist in Section 10.3.6 (2013-01-25).

■ Fixed typo in Section 26.3 (2012-12-17, thanks to Benjamin Negrevergne).

■ Explained how to use half reification (see Section 4.3.4) and how to implement it (see
Section 25.3) (2012-10-19).

■ Properly explained regions (see Section 31.1) (2012-09-07).

■ Documented hardware-based random seed generation for random branchers (see
Section 8.6) (2012-08-29).

■ Documented pow and nroot constraints (see Section 4.4.5 and Section 7.1.1) (2012-
08-27).

■ Fixed explanation of advisor deltas (see Section 27.3) (2012-08-21, thanks to Max Os-
trowski).

■ Explained activity-based search and shared variable selection criteria (see Chapter 8)
(2012-03-06).

■ Released for Gecode 3.7.3 (2012-03-20).

547

■ Released for Gecode 3.7.2 (2012-02-22).

■ Added tip that compilers for Qt and Gecode must match (see Tip 2.10) (2011-11-10,
thanks to Pavel Bochman).

■ Released for Gecode 3.7.1 (2011-10-10).

■ Explained semantics of n-ary implication (see Section 4.4.4) (2011-10-06).

■ Released for Gecode 3.7.0 (2011-08-31).

■ Added links to the Global Constraint Catalog (GCCAT, [6]) (2011-08-22).

■ Documented membership constraints (see Section 4.4.2) (2011-08-22).

■ Documented number of values constraints (see Section 4.4.9) (2011-08-17).

■ Fixed error in explanation of value precedence constraint for multiple values (see
Section 4.4.19) (2011-08-17, thanks to Chris Mears).

■ Added missing information on creating a variable implementation disposer (see
Section 35.4) (2011-08-15, thanks to Gustavo Gutierrez).

■ Fixed some typos (2011-07-25, thanks to Pierre Flener).

■ Released for Gecode 3.6.0 (2011-07-15).

■ Documented precede constraint (see Section 5.2.9) (2011-07-13).

■ Explained that constraint post functions are clever in that they select a good propagator
(see Section 4.3) (2011-07-08, thanks to Kish Shen).

■ Documented precede constraint (see Section 4.4.19) (2011-06-30).

■ Documented nooverlap constraint (see Section 4.4.16) (2011-06-07).

■ Documented path constraint for Hamiltonian paths (see Section 4.4.17) (2011-06-07).

■ Moved graph and scheduling constraints to integer module (see Section 4.4.17 and
Section 4.4.18) (2011-05-26).

■ Fixed example for count constraint (2011-05-03, thanks to Kish Shen).

■ Added Tip 2.9 about the library path to the compilation instructions (2011-03-28,
thanks to Gabriel Hjort Blindell, Flutra Osmani).

■ Added pointers to MiniModel reference documentation (2011-03-24).

■ Added archiving for choices and branchers (2011-03-14).

■ Adapted to new names for set channeling constraints (2011-02-22).

■ Added that Gecode on Windows requires Microsoft Visual C++ 2008 or better (2011-02-
13).

■ Added missing int.hh file (2011-02-11, thanks to Gustavo Gutierrez).

■ Released for Gecode 3.5.0 (2011-02-01).

■ Added bin packing case study (Chapter 20) (2011-01-28).

548

■ Documented STL-style array iterators (Section 4.2.3) (2011-01-25, thanks to Gregory
Crosswhite).

■ Released for Gecode 3.4.2 (2010-10-09).

■ Removed discussion of limited discrepancy search (2010-10-09).

■ Released for Gecode 3.4.1 (2010-10-06).

■ Documented the binpacking constraint (Section 4.4.15) (2010-10-06).

■ Added explanation how to initially schedule a propagator using advisors (see Tip 27.2)
(2010-10-05, thanks to Chris Mears).

■ Added installation and compilation instructions (moved and eexpanded from the ref-
erence documentation) (Section 2.6) (2010-10-05).

■ Explain that variables are re-selected during branching (Tip 8.1) (2010-09-02, thanks
to Kish Shen).

■ Documented that variable implementation views are parametric with respect to vari-
ables (Section 37.2) (2010-08-31).

■ Documented that the variable base class is VarImpVar (Section 36.1) (2010-08-31).

■ Many small fixes everywhere (language, presentation, references) (2010-07-30).

■ Released for Gecode 3.4.0 (first complete version) (2010-07-26).

■ Added a how to read section (Section 1.3) and overview material to each chapter and
part (2010-07-21).

■ Added the part on programming search engines (Part S) (2010-07-20).

■ Added the part on programming variables (Part V) (2010-07-02).

■ Explain that the compiler defines the platform used on Windows (Tip 2.8) (2010-06-17,
thanks to Dan Scott).

■ Explained that variables do not have init() functions as they are not needed. (2010-
06-04).

■ Fixed typo in Section 9.1.2 (2010-05-10, thanks to Andreas Karlsson).

■ Documented new MiniModel for set constraints (Section 7.1) and adapted to other
MiniModel changes (2010-05-07).

■ Added more case studies (2010-05-06).

■ Documented new operations on argument arrays (Section 4.2.2) (2010-05-06).

■ Only use absolute URLs as not all PDF viewers honor the base URL (2010-04-11).

■ Released for Gecode 3.3.1 (first release of “Modeling and Programming with Gecode”)
(2010-04-09).

■ Fixed typo in Figure 2.5 (2010-04-01, thanks to Seyed Hosein Attarzadeh Niaki).

■ Released for Gecode 3.3.0 (2010-03-13).

549

■ Described that linear expressions can freely mix integer and Boolean variables and that
also sum expressions are supported (Section 7.1) (2010-02-01).

■ Fixed typo in example (Section 9.1.2) (2010-01-18, thanks to Vincent Barichard).

■ Added tips for linking libraries (Tip 2.7 and Tip 3.1) (2010-01-18).

■ Released for Gecode 3.2.2 (2009-11-30).

■ Documented sequence constraints (Section 4.4.10) (2009-11-24).

■ Released for Gecode 3.2.1 (2009-11-04).

■ Explained integer shared arrays for element (Tip 4.8) (2009-11-01).

■ Explained Home (Tip 2.1) (2009-10-16).

■ Documented AFC-based variable selection for branching (Section 8.2) (2009-10-13).

■ Fixed link for reporting bugs (2009-10-08).

■ Released for Gecode 3.2.0 (2009-10-05).

■ Fixed some broken links (2009-06-15, thanks to Sverker Janson).

■ Documented branching on single variables (Section 8.1) (2009-06-08).

■ Documented element constraint for matrix interface (Section 7.2) (2009-06-08).

■ Released for Gecode 3.1.0 (2009-05-20).

■ Documented parallel search (Section 9.2) (2009-05-12).

■ Clarified the use of "<GECODEDIR>". (Section 2.3.1) (2009-05-08, thanks to Markus
Böhm).

■ Documented script commandline driver (Section 3.3, Chapter 11) (2009-04-20).

■ Documented wait post functions (Section 4.5, Section 5.3) (2009-04-09).

■ Released for Gecode 3.0.2 (2009-03-26).

■ Fix for gcc compilation instructions in Section 2.3.3 (2009-03-26, thanks to Roberto
Castañeda Lozano).

■ Released for Gecode 3.0.1 (2009-03-24).

■ Generate shorter inter-document references to avoid problems with some PDF viewers
(2009-03-23, thanks to Håkan Kjellerstrand).

■ Initial release for Gecode 3.0.0 (2009-03-13).

550

License

This documentation is provided under the terms of the Creative Commons Attribution-
Noncommercial-No Derivative Works 3.0 license. A summary of the full Legal Code below
can be found at the URL

http://creativecommons.org/licenses/by-nc-nd/3.0/.

Legal Code

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPY-
RIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AU-
THORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE
MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions.

a. “Adaptation” means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of mu-
sic or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably derived from
the original, except that a work that constitutes a Collection will not be considered
an Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image ("synching") will be considered an Adaptation
for the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject
matter other than works listed in Section 1(f) below, which, by reason of the selection
and arrangement of their contents, constitute intellectual creations, in which the Work

551

http://creativecommons.org/licenses/by-nc-nd/3.0/

is included in its entirety in unmodified form along with one or more other contribu-
tions, each constituting separate and independent works in themselves, which together
are assembled into a collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the Work
through sale or other transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii)
in the case of a phonogram the producer being the person or legal entity who first fixes
the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. “Work” means the literary and/or artistic work offered under the terms of this Li-
cense including without limitation any production in the literary, scientific and artistic
domain, whatever may be the mode or form of its expression including digital form,
such as a book, pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or without words; a cine-
matographic work to which are assimilated works expressed by a process analogous
to cinematography; a work of drawing, painting, architecture, sculpture, engraving or
lithography; a photographic work to which are assimilated works expressed by a pro-
cess analogous to photography; a work of applied art; an illustration, map, plan, sketch
or three-dimensional work relative to geography, topography, architecture or science;
a performance; a broadcast; a phonogram; a compilation of data to the extent it is pro-
tected as a copyrightable work; or a work performed by a variety or circus performer
to the extent it is not otherwise considered a literary or artistic work.

g. “You” means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

h. “Publicly Perform” means to perform public recitations of the Work and to communi-
cate to the public those public recitations, by any means or process, including by wire
or wireless means or public digital performances; to make available to the public Works
in such a way that members of the public may access these Works from a place and at
a place individually chosen by them; to perform the Work to the public by any means

552

or process and the communication to the public of the performances of the Work, in-
cluding by public digital performance; to broadcast and rebroadcast the Work by any
means including signs, sounds or images.

i. “Reproduce” means to make copies of the Work by any means including without limi-
tation by sound or visual recordings and the right of fixation and reproducing fixations
of the Work, including storage of a protected performance or phonogram in digital form
or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any
uses free from copyright or rights arising from limitations or exceptions that are provided for
in connection with the copyright protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the appli-
cable copyright) license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats, but otherwise you have no rights
to make Adaptations. Subject to 8(f), all rights not expressly granted by Licensor are hereby
reserved, including but not limited to the rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms
of the License. You may not sublicense the Work. You must keep intact all notices that
refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient
under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collection, but this does not require the Collection apart from the Work itself to
be made subject to the terms of this License. If You create a Collection, upon notice

553

from any Licensor You must, to the extent practicable, remove from the Collection any
credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any man-
ner that is primarily intended for or directed toward commercial advantage or private
monetary compensation. The exchange of the Work for other copyrighted works by
means of digital file-sharing or otherwise shall not be considered to be intended for or
directed toward commercial advantage or private monetary compensation, provided
there is no payment of any monetary compensation in connection with the exchange
of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of
the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original
Author and/or Licensor designate another party or parties (e.g., a sponsor institute,
publishing entity, journal) for attribution ("Attribution Parties") in Licensor’s copyright
notice, terms of service or by other reasonable means, the name of such party or parties;
(ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI,
if any, that Licensor specifies to be associated with the Work, unless such URI does
not refer to the copyright notice or licensing information for the Work. The credit
required by this Section 4(c) may be implemented in any reasonable manner; provided,
however, that in the case of a Collection, at a minimum such credit will appear, if a
credit for all contributing authors of Collection appears, then as part of these credits
and in a manner at least as prominent as the credits for the other contributing authors.
For the avoidance of doubt, You may only use the credit required by this Section for
the purpose of attribution in the manner set out above and, by exercising Your rights
under this License, You may not implicitly or explicitly assert or imply any connection
with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express
prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which
the right to collect royalties through any statutory or compulsory licensing scheme
cannot be waived, the Licensor reserves the exclusive right to collect such royalties
for any exercise by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be
waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License if Your exercise of such
rights is for a purpose or use which is otherwise than noncommercial as permitted

554

under Section 4(b) and otherwise waives the right to collect royalties through any
statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License that is for a purpose or
use which is otherwise than noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted
by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by
itself or as part of any Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial to the Original
Author’s honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OF-
FERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, IN-
CLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR
OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER
OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF
THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received Col-
lections from You under this License, however, will not have their licenses terminated
provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not
serve to withdraw this License (or any other license that has been, or is required to be,

555

granted under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of Lit-
erary and Artistic Works (as amended on September 28, 1979), the Rome Convention
of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971).
These rights and subject matter take effect in the relevant jurisdiction in which the Li-
cense terms are sought to be enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable national law. If the stan-
dard suite of rights granted under applicable copyright law includes additional rights
not granted under this License, such additional rights are deemed to be included in the
License; this License is not intended to restrict the license of any rights under applicable
law.

556

	License information
	Acknowledgments
	Contents
	Figures
	Tips
	1 Introduction
	1.1 What is Gecode?
	1.2 What is this document?
	1.3 How to read this document?
	1.4 Do I need to be a C++ wizard?
	1.5 Can you help me?
	1.6 Does Gecode have bugs?
	1.7 How to refer to this document?
	1.8 Do you have comments?

	M Modeling
	2 Getting started
	2.1 A first Gecode model
	2.2 Searching for solutions
	2.3 Compiling, linking, and executing
	2.3.1 Microsoft Visual Studio
	2.3.2 Apple Mac OS
	2.3.3 Linux and relatives

	2.4 Using Gist
	2.5 Best solution search
	2.6 Obtaining Gecode
	2.6.1 Installing Gecode
	2.6.2 Compiling Gecode
	2.6.3 Advanced configuration and compilation

	3 Getting comfortable
	3.1 Posting linear constraints de-mystified
	3.2 Using a cost function
	3.3 Using the script commandline driver

	4 Integer and Boolean variables and constraints
	4.1 Integer and Boolean variables
	4.1.1 Creating integer variables
	4.1.2 Limits for integer values
	4.1.3 Variable domains are never empty
	4.1.4 Creating Boolean variables
	4.1.5 Variable access functions
	4.1.6 Iterating over integer variable domains
	4.1.7 When to inspect a variable
	4.1.8 Updating variables

	4.2 Variable and argument arrays
	4.2.1 Integer and Boolean variable arrays
	4.2.2 Argument arrays
	4.2.3 STL-style iterators

	4.3 Posting constraints
	4.3.1 Post functions are clever
	4.3.2 Everything is copied
	4.3.3 Reified constraints
	4.3.4 Half reification
	4.3.5 Selecting the propagation level
	4.3.6 Exceptions
	4.3.7 Unsharing arguments

	4.4 Constraint overview
	4.4.1 Domain constraints
	4.4.2 Membership constraints
	4.4.3 Simple relation constraints over integer variables
	4.4.4 Simple relation constraints over Boolean variables
	4.4.5 Arithmetic constraints
	4.4.6 Linear constraints
	4.4.7 Distinct constraints
	4.4.8 Counting constraints
	4.4.9 Number of values constraints
	4.4.10 Sequence constraints
	4.4.11 Channel constraints
	4.4.12 Element constraints
	4.4.13 Extensional constraints
	4.4.14 Sorted constraints
	4.4.15 Bin-packing constraints
	4.4.16 Geometrical packing constraints
	4.4.17 Circuit and Hamiltonian path constraints
	4.4.18 Scheduling constraints
	4.4.19 Value precedence constraints

	4.5 Synchronized execution

	5 Set variables and constraints
	5.1 Set variables
	5.2 Constraint overview
	5.2.1 Domain constraints
	5.2.2 Relation constraints
	5.2.3 Set operations
	5.2.4 Element constraints
	5.2.5 Constraints connecting set and integer variables
	5.2.6 Set channeling constraints
	5.2.7 Convexity constraints
	5.2.8 Sequence constraints
	5.2.9 Value precedence constraints

	5.3 Synchronized execution

	6 Float variables and constraints
	6.1 Float values and numbers
	6.2 Float variables
	6.3 Constraint overview
	6.3.1 Domain constraints
	6.3.2 Simple relation constraints
	6.3.3 Arithmetic constraints
	6.3.4 Linear constraints
	6.3.5 Channel constraints

	6.4 Synchronized execution

	7 Modeling convenience: MiniModel
	7.1 Expressions and relations
	7.1.1 Integer expressions and relations
	7.1.2 Boolean expressions and relations
	7.1.3 Set expressions and relations
	7.1.4 Float expressions and relations
	7.1.5 Extending Boolean expressions and relations

	7.2 Matrix interface for arrays
	7.3 Support for cost-based optimization
	7.4 Regular expressions for extensional constraints
	7.5 Channeling functions
	7.6 Aliases for integer constraints
	7.7 Aliases for set constraints

	8 Branching
	8.1 Branching basics
	8.2 Branching on integer and Boolean variables
	8.3 Branching on set variables
	8.4 Branching on float variables
	8.5 Local versus shared variable selection criteria
	8.5.1 Local variable selection criteria
	8.5.2 Selection using accumulated failure count
	8.5.3 Selection using action
	8.5.4 Selection using CHB

	8.6 Random variable and value selection
	8.7 User-defined variable selection
	8.8 User-defined value selection
	8.9 Tie-breaking
	8.10 Lightweight Dynamic Symmetry Breaking
	8.10.1 Specifying Symmetry
	8.10.2 Notes

	8.11 Using branch filter functions
	8.12 Using variable-value print functions
	8.13 Assigning integer, Boolean, set, and float variables
	8.14 Executing code between branchers

	9 Search
	9.1 Hybrid recomputation
	9.1.1 Cloning
	9.1.2 Recomputation
	9.1.3 Hybrid recomputation
	9.1.4 Why recomputation is almost for free
	9.1.5 Adaptive recomputation
	9.1.6 Controlling recomputation

	9.2 Parallel search
	9.3 Search engines
	9.3.1 Search options
	9.3.2 Stop objects

	9.4 Restart-based search
	9.4.1 Restart-based search as a meta search engine
	9.4.2 Cutoff generators
	9.4.3 Computing a next solution
	9.4.4 Master and slave configuration
	9.4.5 Large Neighborhood Search

	9.5 Portfolio search
	9.5.1 Simple portfolio search as a meta search engine
	9.5.2 Master and slave configuration
	9.5.3 Parallel and sequential portfolios
	9.5.4 Mixed portfolios

	9.6 No-goods from restarts
	9.7 Tracing search
	9.8 Using the CPProfiler

	10 Gist
	10.1 The search tree
	10.2 Invoking Gist
	10.2.1 Standalone use
	10.2.2 Use as a Qt widget

	10.3 Using Gist
	10.3.1 Automatic search
	10.3.2 Interactive search
	10.3.3 Branch-and-bound search
	10.3.4 Inspecting and comparing nodes
	10.3.5 Zooming, centering, exporting, printing
	10.3.6 Options and preferences

	11 Script commandline driver
	11.1 Commandline options
	11.2 Scripts

	12 Groups and tracing
	12.1 Propagator groups
	12.2 Brancher groups
	12.3 Variable tracing
	12.3.1 Creating a variable trace recorder
	12.3.2 Default variable tracers
	12.3.3 Using trace filters
	12.3.4 Selecting the events to trace
	12.3.5 Enabling and disabling variable trace recorders

	12.4 General tracing
	12.4.1 Creating a general trace recorder
	12.4.2 Default general tracers

	12.5 Programming variable tracers
	12.5.1 Tracers for integer and Boolean variables
	12.5.2 Variable tracers for set variables
	12.5.3 Variable tracers for float variables

	12.6 Programming general tracers

	C Case studies
	13 Golomb rulers
	13.1 Problem
	13.2 Model
	13.3 More information

	14 Magic sequence
	14.1 Problem
	14.2 Model
	14.3 More information

	15 Photo alignment
	15.1 Problem
	15.2 Model
	15.3 More information

	16 Locating warehouses
	16.1 Problem
	16.2 Model
	16.3 More information

	17 Nonogram
	17.1 Problem
	17.2 Model
	17.3 More information

	18 Social golfers
	18.1 Problem
	18.2 Model
	18.3 More information

	19 Knight's tour
	19.1 Problem
	19.2 Model
	19.3 Branching
	19.4 More information

	20 Bin packing
	20.1 Problem
	20.2 A naive model
	20.3 Improving propagation
	20.4 Improving branching
	20.5 More information

	21 Kakuro
	21.1 Problem
	21.2 A naive model
	21.3 A working model
	21.4 More information

	22 Crossword puzzle
	22.1 Problem
	22.2 Model
	22.3 An optimized model
	22.4 More information

	P Programming propagators
	23 Getting started
	23.1 Constraint propagation in a nutshell
	23.2 Background reading
	23.3 What to implement?
	23.4 Implementing the less constraint
	23.5 Improving the Less propagator
	23.6 Propagation conditions
	23.7 Using propagator patterns
	23.8 Propagator obligations
	23.9 Waiving obligations

	24 Avoiding execution
	24.1 Fixpoint reasoning reconsidered
	24.2 A Boolean disjunction propagator
	24.3 Dynamic subscriptions

	25 Reification and rewriting
	25.1 Reification
	25.2 A fully reified less or equal propagator
	25.3 Supporting both full and half reification
	25.4 Rewriting during propagation
	25.5 Rewriting during cloning

	26 Domain propagation
	26.1 Why domain operations are needed
	26.2 Iterator-based modification operations
	26.3 Taking advantage of iterators
	26.4 Modification event deltas
	26.5 Staging

	27 Advisors
	27.1 Advisors for incremental propagation
	27.2 The samedom constraint
	27.3 General Boolean disjunction
	27.4 Forced propagator re-scheduling

	28 Views
	28.1 Integer views
	28.1.1 Minus views
	28.1.2 Offset views
	28.1.3 Constant and scale views

	28.2 Boolean views
	28.3 Integer propagators on Boolean views

	29 Propagators for set constraints
	29.1 A simple example
	29.2 Modification events, propagation conditions, views, and advisors

	30 Propagators for float constraints
	30.1 A simple example
	30.2 Modification events, propagation conditions, views, and advisors

	31 Managing memory
	31.1 Memory areas
	31.2 Managing propagator state
	31.3 Shared objects and handles
	31.4 Local objects and handles

	B Programming branchers
	32 Getting started
	32.1 What to implement?
	32.2 Implementing a nonemin branching
	32.2.1 A naive brancher
	32.2.2 Improving status and choice

	32.3 Implementing a sizemin branching

	33 Advanced topics
	33.1 Assignment branchers
	33.2 Supporting no-goods
	33.2.1 Returning no-good literals
	33.2.2 Implementing no-good literals

	33.3 Using variable views

	V Programming variables
	34 Getting started
	34.1 Overview
	34.2 Structure

	35 Variable implementations
	35.1 Design decisions
	35.2 Base definitions
	35.3 Variable implementation
	35.4 Additional specification options

	36 Variables and variable arrays
	36.1 Variables
	36.2 Variable arrays and variable argument arrays

	37 Views
	37.1 View types
	37.2 Variable implementation views: integer view
	37.3 Constant views: constant integer view
	37.4 Derived views
	37.4.1 Minus views
	37.4.2 Offset views

	38 Variable-value branchings
	38.1 Type, traits, action, and more
	38.2 Variable and value selection
	38.3 View selection creation
	38.4 Value selection and commit creation
	38.5 Branchings

	39 Variable tracing support
	39.1 Trace views and deltas
	39.2 Tracers and trace recorders
	39.3 Trace post functions

	40 Putting everything together
	40.1 Golomb rulers à la integer interval variables
	40.2 Configuring and compiling Gecode

	S Programming search engines
	41 Getting started
	41.1 Space-based search
	41.2 Binary depth-first search
	41.3 Depth-first search
	41.4 Branch-and-bound search

	42 Recomputation
	42.1 Full recomputation
	42.2 Recomputation invariants
	42.2.1 Choice compatibility
	42.2.2 Recomputation is not deterministic

	42.3 Branch-and-bound search
	42.4 Last alternative optimization
	42.5 Hybrid recomputation
	42.6 Adaptive recomputation

	43 An example engine
	43.1 Engine design
	43.2 Engine implementation
	43.3 Exploration
	43.4 Recomputation

	Bibliography
	Changelog
	License

